
THE POLAR REPRESENTATION THEOREM FOR LINEAR
HAMILTONIAN SYSTEMS

JORGE REZENDE

Let n = 1,2, . . .. If M is a real matrix, we shall denoteM∗ its transpose.In

is the identityn× n matrix.
Consider the time-dependent linear Hamiltonian system

(1) Q̇ = BQ+CP, Ṗ = −AQ− B∗P,

whereA, B andC are time-dependentn× n matrices.A andC are symmetric.
The dot means time derivative, the derivative with respect toτ. The time
variableτ belongs to an interval. Without loss of generality we shall assume
that this interval is[0,T[, T > 0. T can be∞. In the followingt, 0 < t < T,
is also a time variable andτ ∈ [0, t].

If (Q1,P1) and(Q2,P2) are solutions of (1) one denotesW (Q1,P1; Q2,P2)
the Wronskian (which is constant)

W (Q1,P1; Q2,P2) ≡W = P∗1Q2 − Q∗1P2.

A solution(Q,P) of (1) is called isotropic ifW (Q,P; Q,P) = 0. From now
on (Q1,P1) and(Q2,P2) will denote two isotropic solutions of (1) such that
W (Q1,P1; Q2,P2) = In. This means that

P∗1Q2 − Q∗1P2 = In, P∗1Q1 = Q∗1P1, P∗2Q2 = Q∗2P2.

These relations express precisely that, for eachτ ∈ [0,T[ the 2n×2n matrix

(2) Φ =

[
Q2 Q1

P2 P1

]
is symplectic. Its left inverse and, therefore, its inverse, is given by

Φ−1 =

[
P∗1 −Q∗1
−P∗2 Q∗2

]
.

As it is well-known the 2n × 2n symplectic matrices form a group, the
symplectic group.

Then, one has

P1Q∗2 − P2Q∗1 = In, Q1Q∗2 = Q2Q∗1, P1P∗2 = P2P∗1,
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and, therefore,

Q∗2P1 − P∗2Q1 = In, Q2P∗1 − Q1P∗2 = In,

and the following matrices, whenever they make sense, are symmetric:

P2Q−1
2 , Q1P−1

1 , Q2P−1
2 , P1Q−1

1 ,

Q−1
2 Q1, P−1

2 P1, Q−1
1 Q2, P−1

1 P2.

Denote byJ, S andM, the following 2n× 2n matrices

J =

[
0 −In

In 0

]
, S =

[
A B∗

B C

]
,

andM = −JS. J is symplectic andS is symmetric.
Equation (1) can then be written

Φ̇ = MΦ.

Remark that, ifΦ is symplectic,Φ∗ is symplectic, and

Φ−1 = −JΦ∗J, Φ∗JΦ = J, ΦJΦ∗ = J.

When we have aC1 functionτ 7−→ Φ (τ), Φ̇JΦ∗+ΦJΦ̇∗ = 0. Hence,Φ̇JΦ∗

is symmetric and one can recoverM:

M = Φ̇Φ−1 = −Φ̇JΦ∗J.

This means that fromΦ one can obtainA, B, andC:

A = Ṗ1P∗2 − Ṗ2P∗1, C = Q̇1Q∗2 − Q̇2Q∗1,

B = −Q̇1P∗2 + Q̇2P∗1 = Q1Ṗ∗2 − Q2Ṗ∗1.

The proof of the following theorem on a polar representation can be found
in [1]. See also [2], [3], [4].

Theorem 1. Assume that C(τ) is always> 0 (or always< 0) and of class C1.
Consider two isotropic solutions of(1), (Q1,P1) and(Q2,P2), such that W=
In. Then, there are C1 matrix-valued functions r(τ), ϕ (τ), for τ ∈ [0,T[, such
that: a) detr (τ) , 0 andϕ (τ) is symmetric for everyτ; b) the eigenvalues
of ϕ are C1 functions ofτ, with strictly positive (negative) derivatives; c) one
has

Q2 (τ) = r (τ) cosϕ (τ) and Q1 (τ) = r (τ) sinϕ (τ) .

Remark thatϕ is not unique and that

(3)
d
dτ

Q−1
2 Q1 = Q−1

2 CQ∗−1
2 ,

whenever detQ2 (τ) , 0 (see [1]).
Theorem1 can be extended in the following way:
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Theorem 2. Assume that C(τ) is of class C1. Consider two isotropic solutions
of (1), (Q1,P1) and (Q2,P2), such that W= In. Then, there are C1 matrix-
valued functions r(τ), ϕ (τ), for τ ∈ [0, t], such that: a)detr (τ) , 0 andϕ (τ)
is symmetric for everyτ; b) the eigenvalues ofϕ are C1 functions ofτ; c) one
has

Q2 (τ) = r (τ) cosϕ (τ) and Q1 (τ) = r (τ) sinϕ (τ) .

Proof. Let us first remark thatQ2Q∗2+Q1Q∗1 > 0. This is proved noticing that,
asP1Q∗2 − P2Q∗1 = In, one has

(
P∗1x,Q∗2x

)
−
(
P∗2x,Q∗1x

)
= |x|2, which implies

that kerQ∗1 ∩ kerQ∗2 = {0}. Hence,
(
Q∗2x,Q∗2x

)
+
(
Q∗1x,Q∗1x

)
> 0, for every

x , 0.
Define now

Φ =

[
Q2 Q1

P2 P1

]
, Ψ =

[
cos(kτ) In sin(kτ) In

− sin(kτ) In cos(kτ) In

]
,

M as before,Φ1 = ΦΨ andM1 = Φ̇1Φ
−1
1 . The constantk is > 0. Then, one

has
M1 = M + ΦΨ̇Ψ−1Φ−1.

Let then× n matrices, that are associated withM1, beA1, B1 andC1. Then

C1 = C + k
(
Q2Q∗2 + Q1Q∗1

)
.

Hence, asQ2Q∗2+Q1Q∗1 > 0, fork large enough, we have thatC1 (τ) > 0, for
everyτ ∈ [0, t]. We can then apply Theorem1. There areC1 matrix-valued
functionsr1 (τ), ϕ1 (τ), for τ ∈ [0, t], such that

cos(kτ) Q2 (τ) − sin(kτ) Q1 (τ) = r1 (τ) cosϕ1 (τ)

sin(kτ) Q2 (τ) + cos(kτ) Q1 (τ) = r1 (τ) sinϕ1 (τ) .

From this, we have

Q2 (τ) = r1 (τ) cos(ϕ1 (τ) − kτIn)

Q1 (τ) = r1 (τ) sin(ϕ1 (τ) − kτIn) .

�

The generic differential equations forr andϕ are easily derived from equa-
tions (15), (17) and (18) in [1].

Consider(r0, s), with s symmetric, such that

ṙ0 = Br0 +Cr∗−1
0 s, ṡ= sr−1

0 Cr∗−1
0 s+ r−1

0 Cr∗−1
0 − r∗0Ar0.

Then r is of the formr = r0Ω, whereΩ is any orthogonal,Ω−1 = Ω∗, and
time-dependentC1 matrix. From this one can derive a differential equation
for rr ∗.
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The functionϕ verifies the equations

(4)
cosCϕ − I

Cϕ
ϕ̇ = −Ω∗Ω̇,

sinCϕ
Cϕ

ϕ̇ = r−1Cr∗−1,

whereCϕϕ̇ =
[
ϕ, ϕ̇
]
= ϕϕ̇ − ϕ̇ϕ,

(
Cϕ

)2
ϕ̇ ≡ C2

ϕϕ̇ =
[
ϕ,
[
ϕ, ϕ̇
]]

, and so on.
As in Theorem1, ϕ is not unique. Remark thatr (τ) = r1 (τ) andϕ (τ) =
ϕ1 (τ) − kτIn, with k large enough andϕ1 such that its eigenvalues areC1

functions ofτ, with strictly positive derivatives.

Remark 1. If one considersΦ∗ instead ofΦ, then Q2 is replaced by Q∗2 and
Q1 is replaced by P∗1. Then, Theorem2 gives

Q∗2 (τ) = r (τ) cosϕ (τ) and P∗2 (τ) = r (τ) sinϕ (τ) ,
or

Q2 (τ) = cosϕ (τ) r∗ (τ) and P2 (τ) = sinϕ (τ) r∗ (τ) .
In this case the matrixϕ (τ) is a generalization of the so-called Prüfer an-

gle.
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