THE POLAR REPRESENTATION THEOREM FOR LINEAR
HAMILTONIAN SYSTEMS

JORGE REZENDE

Letn=1,2,.... If Mis areal matrix, we shall denotd* its transposel,
is the identityn x n matrix.
Consider the time-dependent linear Hamiltonian system

(1) Q=BQ+CP P=-AQ-BP

whereA, B andC are time-dependemtx n matrices.A andC are symmetric.
The dot means time derivative, the derivative with respect.tolrhe time
variabler belongs to an interval. Without loss of generality we shall assume
that this interval i§O, T[, T > 0. T can beco. In the followingt, 0 <t < T,

is also a time variable ande [0, t].

If (Q, P1) and(Q,, P,) are solutions of{) one denotesV (Qq, P1; Q,, Py)
the Wronskian (which is constant)

W (Q1, P1; Q2, P2) =W = P1Q; — QP>
A solution(Q, P) of (1) is called isotropic iW (Q, P; Q, P) = 0. From now
on (Qq, P1) and(Q,, P,) will denote two isotropic solutions oflf such that
W (Qq, P1; Q2. P2) = I,,. This means that
P1Q2— QP2 =1, P1Q1=QiP1, P;Q= Q5P
These relations express precisely that, for eaeljO, T[ the Z1x 2n matrix

Q Q
@ q):[Pj Pj

is symplectic. Its left inverse and, therefore, its inverse, is given by
_ P: -Q;
ot=| b &Y.
R
As it is well-known the & x 2n symplectic matrices form a group, the

symplectic group.
Then, one has

P1Q; — P2Q =1n, Q1Q; = QQ;, PP, = P3Py,
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and, therefore,
QP11 —PoQu=1n,  Q2P1 — Q1P = I,
and the following matrices, whenever they make sense, are symmetric:
P.Q;', QiPTh, QP PiQr,
Q'Qi. P;'Pi, Q'Q., PP
Denote byJ, S andM, the following 21 x 2n matrices

i S
andM = —-JS. Jis symplectic and is symmetric.
Equation () can then be written
® = M.
Remark that, ifd is symplectic®* is symplectic, and
O t=-J0) OIDP=J IO =]

When we have & functiont — @ (1), ®J®* + ®JO* = 0. Hence dJD*
is symmetric and one can recovdr.

M= o0t = —dJD*J.
This means that fror® one can obtaim, B, andC:
A=PP;- PP, C=QiQ;-QQ,
B = -QiP; + QoP; = QiP; - Q;P;.
The proof of the following theorem on a polar representation can be found
in [1]. See also?], [3], [4].

Theorem 1. Assume that Cr) is always> 0 (or always< 0) and of class €.
Consider two isotropic solutions dfl), (Qy, P1) and(Q., P,), such that W=

I.. Then, there are Ematrix-valued functions r), ¢ (r), for r € [0, T[, such
that: a) detr (r) # 0 and ¢ (7) is symmetric for every; b) the eigenvalues
of ¢ are C! functions ofr, with strictly positive (negative) derivatives; c) one
has

Q2 (1) =r(r)cosp(r) and Q (r) =r (1) sing (7).
Remark thatp is not unique and that
d
(3) 7' =QCq

whenever de@; (1) # 0 (see 1]).
Theoreml can be extended in the following way:
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Theorem 2. Assume that Cr) is of class C. Consider two isotropic solutions
of (1), (Qu, P,) and (Q,, P,), such that W= 1,. Then, there are Ematrix-
valued functions (1), ¢ (7), for T € [0, t], such that: adetr () # 0 and¢ (1)
is symmetric for every;, b) the eigenvalues af are C! functions ofr; c) one
has

Q2(r) =r(r)cosp(r) and Q (r) =r(r)sinp(r).
Proof. Let us first remark tha®,Q; + Q,Q; > 0. This is proved noticing that,
asP.Q; - P.Q; = I, one has(P’{x, Q;x) - (P;x, ij) = |x/%, which implies
that kerQ; N kerQ; = {0}. Hence,(Q;x, Q;x) + (Qjx Q;x) > 0, for every

x # 0.
Define now

_|Q2 Q | cosko) 1, sin(kr) 1,
‘D‘[Pj Pll]’ ‘P‘[—sin(kmn cos(kT)In]’

M as before®; = ®¥ andM; = d')ldql. The constank is > 0. Then, one
has
M; =M+ 09P¥ 1oL,
Let then x n matrices, that are associated with, be A;, B; andC;. Then

C; =C+k(QQ;+Q1Q7) .

Hence, a©,Q;+Q.Q; > 0, forklarge enough, we have th@at () > 0, for
everyr € [0,t]. We can then apply Theorefin There areC! matrix-valued
functionsr (1), ¢1 (1), for r € [0, 1], such that

cos(kr) Q2 (7) — sin(kr) Q1 (7) = r1 () cosp, (1)
sin(kr) Q, (7) + cos(kr) Q1 (1) = ry () Sings (7).
From this, we have
Q2 () = r1(7) cos(p1 (1) — krln)
Q1 (1) =r1(r) sin(ey (1) — krly) .
m]

The generic dferential equations farandy are easily derived from equa-
tions (15), (17) and (18) in1].

Consider(ro, ), with s symmetric, such that

fo=Bro+Cri's  §=srp'Cryts+ry'Cri™ - riAr.

Thenr is of the formr = ry,Q, whereQ is any orthogonalQ! = Q*, and
time-dependen€! matrix. From this one can derive affdirential equation
forrr*.
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The functiony verifies the equations
cosC, — I . . sinC,, .
(4) ——p=-Q'Q, fp=ricr,
CGD C‘P

2
whereC,¢ = [¢.¢] = ¢¢ - ¢, (C,) ¢ = C}¢ = [¢.[¢.¢]], and so on.
As in Theoreml, ¢ is not unique. Remark that(r) = ry (r) ande (7) =
@1 (1) — krl,, with k large enough ang-, such that its eigenvalues a@
functions ofr, with strictly positive derivatives.

Remark 1. If one considersd” instead of®d, then Q is replaced by @and
Q: is replaced by P. Then, Theorera gives

Q;(r) =r(r)cosp(r) and B (r) =r(7)sing (1),
or
Qo (1) =cosp(r)r () and B (r) =sinp(7)r (7).
In this case the matriy (7) is a generalization of the so-called Prifer an-
gle.
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