Generalized stochastic flows and applications to incompressible viscous fluids

Marc Arnaudon

Université de Bordeaux, France

Advances in Mathematical Fluid Mechanics
Lisbon
July 3, 2014
Introduction: Euler equation
Weighted porous media equation and variational principle
Generalized flows
Existence of generalized flows with prescribed configuration
Existence of generalized flows with prescribed L^q drift
Constructing generalized flows from solutions to finite variation transport equations

joint work with
Alexandra Antoniouk
Ana Bela Cruzeiro
1. Introduction: Euler equation

2. Weighted porous media equation and variational principle

3. Generalized flows
 - Examples

4. Existence of generalized flows with prescribed configuration

5. Existence of generalized flows with prescribed L^q drift

6. Constructing generalized flows from solutions to finite variation transport equations
Euler equation on manifold M\begin{align*}
\frac{\partial u}{\partial t} &= -(u \cdot \nabla)u - \nabla p \\
\text{div} u &= 0
\end{align*}

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional
\[S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt, \]
for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that
- $E[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $E[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \, \eta(dx, dy)$: prescribed final configuration
 $\eta(dx, dy) = dx \delta_h(x)(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} E \left[\int_0^T \| \Theta_t' \|^2 dt \right]$. Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold $M \left\{ \begin{array}{l} \frac{\partial u}{\partial t} = -(u \cdot \nabla)u - \nabla p \\ \text{div} u = 0 \end{array} \right.$

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

$$S(g) = \frac{1}{2} \int_0^T \left(\int_M \left| \frac{dg(t)(x)}{dt} \right|^2 d\mu(x) \right) dt,$$

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \rightarrow M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration $\eta(dx, dy) = dx \delta_h(x)(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \|\Theta_t'\|^2 dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \rightarrow \infty} S(\Theta^n)$ if $\Theta^n \rightarrow \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold \(M \) \[
\begin{align*}
\frac{\partial u}{\partial t} &= -(u \cdot \nabla) u - \nabla p \\
\text{div} u &= 0
\end{align*}
\]

Arnold (66), integral curves \(t \mapsto g(t)(x) \) are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

\[
S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,
\]

for prescribed final configuration.

Ebin-Marsden (70), compact manifold \(M \): If \(g(\cdot) \) is close to \(id \), assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from \(id \) to \(g(\cdot) = g(T)(\cdot) \). Not true in general.

Brenier (89), generalized solutions: random variables \(\omega \mapsto (t \mapsto \Theta_t(\omega)) \) with values on paths \([0, T] \to M \), such that

- \(\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx \): incompressibility;
- \(\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy) \): prescribed final configuration
 \(\eta(dx, dy) = dx \delta_{h(x)}(dy) \);
- kinetic energy \(S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \|\Theta_t'\|^2 \, dt \right] \).

Then \(S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n) \) if \(\Theta^n \to \Theta \).

With fixed \(\eta \), if there exists \(\Theta \) with finite \(S(\Theta) \) then there exists at least one which minimizes \(S(\Theta) \).
Euler equation on manifold M \(\begin{align*} \frac{\partial u}{\partial t} &= -(u \cdot \nabla) u - \nabla p \\ \text{div} u &= 0 \end{align*} \)

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

\[
S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 \, d\mu(x) \right) \, dt,
\]

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration
 $\eta(dx, dy) = dx \delta_{h(x)}(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \|\Theta'_t\|^2 \, dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold M \[
\begin{align*}
\frac{\partial u}{\partial t} & = -(u \cdot \nabla)u - \nabla p \\
\text{div} u & = 0
\end{align*}
\]

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

$$
S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,
$$

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general.

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration $\eta(dx, dy) = dx \delta_{h(x)}(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \| \Theta_t' \|^2 dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold M \[
\begin{aligned}
\frac{\partial u}{\partial t} &= -(u \cdot \nabla)u - \nabla p \\
\text{div} u &= 0
\end{aligned}
\]

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional
\[
S(g) = \frac{1}{2} \int_{0}^{T} \left(\int_{M} \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,
\]
for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \rightarrow M$, such that
- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration $\eta(dx, dy) = dx \delta_{h(x)}(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_{0}^{T} \|\Theta'_t\|^2 \, dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \rightarrow \infty} S(\Theta^n)$ if $\Theta^n \rightarrow \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.

Marc Arnaudon
Generalized stochastic flows and applications to incompressible viscous fluids
Euler equation on manifold M \[
\begin{align*}
\frac{\partial u}{\partial t} &= -(u \cdot \nabla)u - \nabla p \\
\text{div} u &= 0
\end{align*}
\]

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional
\[
S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,
\]

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that
\[
\begin{align*}
\mathbb{E}[f(\Theta_t)] &= \int_M f(x) \, dx: \text{incompressibility;} \\
\mathbb{E}[f(\Theta_0, \Theta_T)] &= \int_M f(x, y) \, \eta(dx, dy): \text{prescribed final configuration} \\
\eta(dx, dy) &= dx \delta_{h(x)}(dy);
\end{align*}
\]

kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \| \Theta_t' \|^2 dt \right]$. Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold M \[\frac{\partial u}{\partial t} = -(u \cdot \nabla)u - \nabla p \]

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

$$S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,$$

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general.

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration
 $\eta(dx, dy) = dx \delta_h(x)(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \|\Theta'_t\|^2 dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.
Euler equation on manifold M \begin{align*}
\frac{\partial u}{\partial t} &= -(u \cdot \nabla)u - \nabla p \\
\text{div } u &= 0
\end{align*}

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

$$S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{d g(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,$$

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \eta(dx, dy)$: prescribed final configuration
 $\eta(dx, dy) = dx \delta_h(x)(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \| \Theta_t' \|^2 dt \right]$.

Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.

Marc Arnaudon

Generalized stochastic flows and applications to incompressible viscous fluids
Euler equation on manifold M \[\begin{align*} \frac{\partial u}{\partial t} &= -(u \cdot \nabla) u - \nabla p, \\ \text{div} u &= 0. \end{align*} \]

Arnold (66), integral curves $t \mapsto g(t)(x)$ are geodesics on measure preserving diffeomorphisms and they minimize the energy functional

\[
S(g) = \frac{1}{2} \int_0^T \left(\int_M \left\| \frac{dg(t)(x)}{dt} \right\|^2 d\mu(x) \right) dt,
\]

for prescribed final configuration.

Ebin-Marsden (70), compact manifold M: If $g(\cdot)$ is close to id, assuming some Sobolev regularity, then there exists a unique geodesic in diffeomorphism group from id to $g(\cdot) = g(T)(\cdot)$. Not true in general

Brenier (89), generalized solutions: random variables $\omega \mapsto (t \mapsto \Theta_t(\omega))$ with values on paths $[0, T] \to M$, such that

- $\mathbb{E}[f(\Theta_t)] = \int_M f(x) \, dx$: incompressibility;
- $\mathbb{E}[f(\Theta_0, \Theta_T)] = \int_M f(x, y) \, \eta(dx, dy)$: prescribed final configuration $\eta(dx, dy) = dx \delta_h(x)(dy)$;
- kinetic energy $S(\Theta) = \frac{1}{2} \mathbb{E} \left[\int_0^T \| \Theta_t' \|^2 \, dt \right]$.\n
Then $S(\Theta) \leq \lim \inf_{n \to \infty} S(\Theta^n)$ if $\Theta^n \to \Theta$.

With fixed η, if there exists Θ with finite $S(\Theta)$ then there exists at least one which minimizes $S(\Theta)$.\n
Marc Arnaudon

Generalized stochastic flows and applications to incompressible viscous fluids
weighted porous media equation, \(M = \mathbb{T}, G, G/H \), compact, \(q \geq 2 \),

\[
\begin{align*}
\text{(wpmeq)} \quad \frac{\partial u}{\partial t} &= (-u \cdot \nabla + \nu \Delta)(\|u\|^{q-2}u) - \nabla p \\
\text{div} u &= 0
\end{align*}
\]

g(t)(x) incompressible Brownian flow

\[
dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) \, dt.
\]

q-energy functional

\[
\mathcal{E}_q(g) = \frac{1}{q} \mathbb{E} \left[\int_0^T dt \int_M dx \|Dg(t, g(t)(x))(\omega)\|^q \right]
\]

with \(Dg := u \), drift of \(g \).

Theorem, variational principle

\(u \) solves (wpmeq) if and only if \(g \) is a critical point of \(\mathcal{E}_q \).
weighted porous media equation, \(M = \mathbb{T}, G, G/H, \) compact, \(q \geq 2, \)

\[
\begin{align*}
\frac{\partial u}{\partial t} &= (-u \cdot \nabla + \nu \Delta)(\|u\|^{q-2} u) - \nabla p \\
\text{div} u &= 0
\end{align*}
\]

\(g(t)(x) \) incompressible Brownian flow

\[
dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) \, dt.
\]

\(q \)-energy functional

\[
\mathcal{E}_q(g) = \frac{1}{q} \mathbb{E} \left[\int_0^T dt \int_M dx \|Dg(t, g(t)(x))(\omega)\|^q \right]
\]

with \(Dg := u, \) drift of \(g. \)

Theorem, variational principle

\(u \) solves (wpmeq) if and only if \(g \) is a critical point of \(\mathcal{E}_q. \)
weighted porous media equation, $M = \mathbb{T}, G, G/H$, compact, $q \geq 2$,

\[
(\text{wpmeq}) \quad \begin{cases}
\frac{\partial u}{\partial t} & = (-u \cdot \nabla + \nu \Delta)((\|u\|^{q-2} u) - \nabla p \\
\text{div} u & = 0
\end{cases}
\]

$g(t)(x)$ incompressible Brownian flow

\[
dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) \, dt.
\]

q-energy functional

\[
\mathcal{E}_q(g) = \frac{1}{q} \mathbb{E} \left[\int_0^T dt \int_M dx \|Dg(t, g(t)(x))(\omega)\|^q \right]
\]

with $Dg := u$, drift of g.

Theorem, variational principle

u solves (wpmeq) if and only if g is a critical point of \mathcal{E}_q.
weighted porous media equation, $M = \mathbb{T}$, G, G/H, compact, $q \geq 2$,

\[
\text{(wpmeq)} \quad \begin{cases}
\frac{\partial u}{\partial t} = (-u \cdot \nabla + \nu \Delta)(\|u\|^q - u) - \nabla p \\
\operatorname{div} u = 0
\end{cases}
\]

g(t)(x) incompressible Brownian flow

\[
dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) dt.
\]

q-energy functional

\[
\mathcal{E}_q(g) = \frac{1}{q} \mathbb{E} \left[\int_0^T dt \int_M dx \|Dg(t, g(t)(x))^{(\omega)}\|^q \right]
\]

with $Dg := u$, drift of g.

Theorem, variational principle

u solves (wpmeq) if and only if g is a critical point of \mathcal{E}_q.

Marc Arnaudon

Generalized stochastic flows and applications to incompressible viscous fluids
weighted porous media equation, \(M = \mathbb{T}, G, G/H, \) compact, \(q \geq 2, \)

\[
\begin{align*}
\text{(wpmeq)} \quad \frac{\partial u}{\partial t} &= (-u \cdot \nabla + \nu \Delta)(\|u\|^{q-2}u) - \nabla p \\
\operatorname{div} u &= 0
\end{align*}
\]

\(g(t)(x) \) incompressible Brownian flow

\[
dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) \, dt.
\]

\(q \)-energy functional

\[
\mathcal{E}_q(g) = \frac{1}{q} \mathbb{E} \left[\int_0^T dt \int_M dx \|Dg(t, g(t)(x))(\omega))\|^q \right]
\]

with \(Dg := u, \) drift of \(g. \)

Theorem, variational principle

\(u \) solves (wpmeq) if and only if \(g \) is a critical point of \(\mathcal{E}_q. \)
Consider a Brownian flow $g(t)(x)$. Denote by η the law of $(g(0), g(T))$ on $M \times M$.

For $\varphi, \psi \in L^2(M)$, define $\Theta_t(\varphi, \psi) = \Theta^g_t(\varphi, \psi) = \int_M \varphi(x)\psi(g(t)(x)(\omega)) \, dx$. If $\varphi, \psi \in C^\infty(M)$ then by Itô calculus

$$\Theta_t(\varphi, \psi) = (\varphi, \psi)_{L^2(M)} + \int_0^t \Theta_s(\varphi, \text{div}(\psi\sigma)) \, dW_s + \int_0^t \Theta_s(\varphi, \langle d\psi, u \rangle) \, ds + \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds.$$

So let $\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \psi) - \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds$, define the drift

$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u \rangle)$ and the q-energy for $q \geq 1$

$$\mathcal{E}_q'(\Theta) = \frac{1}{q} \sup \left\{ \mathbb{E} \left[\int_0^T dt \sum_{j=1}^m \left(\sum_{k=1}^\ell \frac{D\tilde{\Theta}_t(\varphi_j, \psi_k)^2}{(\int_M \varphi_j)^{2(q-1)/q}} \right)^{q/2} \right] \right\},$$

where

$$m, \ell \geq 1, \sum_j \varphi_j = 1, \varphi_j \geq 0, \forall \nu \in TM, \sum_k \langle \nabla \psi_k, \nu \rangle^2 \leq \|\nu\|^2.$$
Consider a Brownian flow $g(t)(x)$. Denote by η the law of $(g(0), g(T))$ on $M \times M$. For $\varphi, \psi \in L^2(M)$, define $\Theta_t(\varphi, \psi) = \Theta^g_t(\varphi, \psi) = \int_M \varphi(x) \psi(g(t)(x)(\omega)) \, dx$. If $\varphi, \psi \in C^\infty(M)$ then by Itô calculus

$$\Theta_t(\varphi, \psi) = (\varphi, \psi)_{L^2(M)} + \int_0^t \Theta_s(\varphi, \text{div}(\psi \sigma)) \, dW_s + \int_0^t \Theta_s(\varphi, \langle d\psi, u \rangle) \, ds + \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds.$$

So let $\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \psi) - \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds$, define the drift

$$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u \rangle)$$

and the q-energy for $q \geq 1$

$$E'_q(\Theta) = \frac{1}{q} \sup \left\{ \mathbb{E} \left[\int_0^T dt \sum_{j=1}^m \left(\sum_{k=1}^\ell \frac{D\tilde{\Theta}_t(\varphi_j, \psi_k)^2}{2(q-1)} \right)^{q/2} \right] \right\},$$

$$m, \ell \geq 1, \sum_j \varphi_j = 1, \varphi_j \geq 0, \forall v \in TM, \sum_k \langle \nabla \psi_k, v \rangle^2 \leq \|v\|^2.$$

Proposition

$$E'_q(\Theta^g) = E_q(g), \quad q > 1$$
Consider a Brownian flow $g(t)(x)$. Denote by η the law of $(g(0), g(T))$ on $M \times M$.

For $\varphi, \psi \in L^2(M)$, define $\Theta_t(\varphi, \psi) = \Theta^g_t(\varphi, \psi) = \int_M \varphi(x)\psi(g(t)(x)(\omega)) \, dx$. If $\varphi, \psi \in C^\infty(M)$ then by Itô calculus

$$\Theta_t(\varphi, \psi) = (\varphi, \psi)_{L^2(M)} + \int_0^t \Theta_s(\varphi, \text{div}(\psi\sigma)) \, dW_s + \int_0^t \Theta_s(\varphi, \langle d\psi, u \rangle) \, ds + \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds.$$

So let $\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \psi) - \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds$, define the drift

$$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u \rangle)$$

and the q-energy for $q \geq 1$

$$E'_q(\Theta) = \frac{1}{q} \sup \{ \mathbb{E} \left[\int_0^T dt \sum_{j=1}^m \left(\sum_{k=1}^{\ell} \frac{D\tilde{\Theta}_t(\varphi_j, \psi_k)^2}{2(q-1)} \right)^{q/2} \right] \},$$

$$m, \ell \geq 1, \sum_j \varphi_j = 1, \varphi_j \geq 0, \forall \nu \in TM, \sum_k \langle \nabla \psi_k, \nu \rangle^2 \leq ||\nu||^2.$$
Consider a Brownian flow \(g(t)(x) \). Denote by \(\eta \) the law of \((g(0), g(T)) \) on \(M \times M \).

For \(\varphi, \psi \in L^2(M) \), define \(\Theta_t(\varphi, \psi) = \Theta^g_t(\varphi, \psi) = \int_M \varphi(x) \psi(g(t)(x)(\omega)) \, dx \). If \(\varphi, \psi \in C^\infty(M) \) then by Itô calculus

\[
\Theta_t(\varphi, \psi) = (\varphi, \psi)_{L^2(M)} + \int_0^t \Theta_s(\varphi, \text{div}(\psi \sigma)) \, dW_s + \int_0^t \Theta_s(\varphi, \langle d\psi, u \rangle) \, ds + \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds.
\]

So let \(\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \psi) - \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds \), define the drift

\[
D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u \rangle)
\]

and the \(q \)-energy for \(q \geq 1 \)

\[
\mathcal{E}'_q(\Theta) = \frac{1}{q} \sup \left\{ \mathbb{E} \left[\int_0^T dt \sum_{j=1}^m \left(\sum_{k=1}^\ell \frac{D\tilde{\Theta}_t(\varphi_j, \psi_k)^2}{(\int_M \varphi_j)^{2(q-1)}} \right)^{q/2} \right] \right\},
\]

\[
m, \ell \geq 1, \sum_j \varphi_j = 1, \varphi_j \geq 0, \forall \nu \in TM, \sum_k \langle \nabla \psi_k, \nu \rangle^2 \leq \|\nu\|^2 \}.
\]

Proposition

\[
\mathcal{E}'_q(\Theta^g) = \mathcal{E}_q(g), \quad q > 1
\]

Marc Arnaudon
Generalized stochastic flows and applications to incompressible viscous fluids
Consider a Brownian flow $g(t)(x)$. Denote by η the law of $(g(0), g(T))$ on $M \times M$.

For $\varphi, \psi \in L^2(M)$, define $\Theta_t(\varphi, \psi) = \Theta^g_t(\varphi, \psi) = \int_M \varphi(x) \psi(g(t)(x)(\omega)) \, dx$. If $\varphi, \psi \in C^\infty(M)$ then by Itô calculus

$$\Theta_t(\varphi, \psi) = (\varphi, \psi)_{L^2(M)} + \int_0^t \Theta_s(\varphi, \text{div}(\psi \sigma)) \, dW_s + \int_0^t \Theta_s(\varphi, \langle d\psi, u \rangle) \, ds + \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds.$$

So let $\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \psi) - \frac{1}{2} \int_0^t \Theta_s(\varphi, \Delta \psi) \, ds$, define the drift $D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u \rangle)$ and the q-energy for $q \geq 1$

$$\mathcal{E}'_q(\Theta) = \frac{1}{q} \sup \left\{ \mathbb{E} \left[\int_0^T dt \sum_{j=1}^m \left(\sum_{k=1}^\ell \frac{D\tilde{\Theta}_t(\varphi_j, \psi_k)^2}{(\int_M \varphi_j)^{2(q-1)/q}} \right)^{q/2} \right], \right\}$$

$$m, \ell \geq 1, \sum_j \varphi_j = 1, \varphi_j \geq 0, \forall \nu \in TM, \sum_k \langle \nabla \psi_k, \nu \rangle^2 \leq \|\nu\|^2.$$
Properties of Θ

- $E [\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d [\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d [\Theta(\varphi, \psi), \Theta(\varphi, \psi)]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $E \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q E'_q(\Theta) \|\varphi\|_q^q \|\nabla \psi\|_q^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $E'_q(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.

Examples
Properties of Θ

- $\mathbb{E} [\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d [\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d [\Theta(\varphi, \psi), \Theta(\varphi, \psi)]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}_q'(\Theta) \|\varphi\|_q^q \|\nabla \psi\|_q^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q'(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.
Properties of Θ

- $\mathbb{E} \left[\Theta_T(\varphi, \psi) \right] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$
- $d \left[\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2) \right] = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) \, dt$
- $d \left[\Theta(\varphi, \psi), \Theta(\varphi, \psi) \right] \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 \, dt$
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q \, dt \right] \leq 2^q \mathcal{E}_q'(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q$
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}'_q(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.
Properties of Θ

- $\mathbb{E} \left[\Theta_T(\varphi, \psi) \right] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d \left[\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2) \right]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d \left[\Theta(\varphi, \psi), \Theta(\varphi, \psi) \right]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $\mathbb{E} \left[\int_0^T D\Theta_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}_q'(\Theta)' \|\varphi\|_q^q \|\nabla \psi\|_q^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q'(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}_q' = \mathcal{H}_q'(\sigma, \eta, T)$.
Properties of Θ

- $\mathbb{E} \left[\Theta_T(\varphi, \psi) \right] = \int_{M\times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d \left[\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2) \right] = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d \left[\Theta(\varphi, \psi), \Theta(\varphi, \psi) \right] \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}_q(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}_q = \mathcal{H}_q(\sigma, \eta, T)$.

Marc Arnaudon

Generalized stochastic flows and applications to incompressible viscous fluids
Properties of Θ

\[\mathbb{E} [\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy); \]

\[\Theta_t(\varphi, 1) = \int_M \varphi, \quad \Theta_t(1, \psi) = \int_M \psi; \]

\[d [\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) \, dt; \]

\[d [\Theta(\varphi, \psi), \Theta(\varphi, \psi)]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 \, dt; \]

\[\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q \, dt \right] \leq 2^q \mathcal{E}_q'(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q; \]

\[\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}; \]

If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;

$|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q'(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.
Properties of Θ

- $\mathbb{E}[\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x)\psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d[\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)] = \text{trace}\Theta(\varphi_1, \text{div}\psi_1 \sigma(\cdot))\Theta(\varphi_2, \text{div}\psi_2 \sigma(\cdot)) dt$;
- $d[\Theta(\varphi, \psi), \Theta(\varphi, \psi)] \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}_q'(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q'(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.
Properties of Θ

- $E [\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi, \quad \Theta_t(1, \psi) = \int_M \psi$;
- $d [\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d [\Theta(\varphi, \psi), \Theta(\varphi, \psi)]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $E \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}'_q(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}'_q(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.

Properties of Θ

- $\mathbb{E} [\Theta_T(\varphi, \psi)] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d [\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2)]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) dt$;
- $d [\Theta(\varphi, \psi), \Theta(\varphi, \psi)]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 dt$;
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q dt \right] \leq 2^q \mathcal{E}'_q(\Theta) \|\varphi\|_\infty^q \|\nabla \psi\|_\infty^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}'_q(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = H'_q(\sigma, \eta, T)$.

Marc Arnaudon
Generalized stochastic flows and applications to incompressible viscous fluids
Introduction: Euler equation
Weighted porous media equation and variational principle
Generalized flows
Existence of generalized flows with prescribed configuration
Existence of generalized flows with prescribed L^q drift
Constructing generalized flows from solutions to finite variation transport equations

Properties of Θ

- $\mathbb{E} \left[\Theta_T(\varphi, \psi) \right] = \int_{M \times M} \varphi(x) \psi(y) \eta(dx, dy)$;
- $\Theta_t(\varphi, 1) = \int_M \varphi$, $\Theta_t(1, \psi) = \int_M \psi$;
- $d \left[\Theta(\varphi_1, \psi_1), \Theta(\varphi_2, \psi_2) \right]_t = \text{trace} \Theta(\varphi_1, \text{div} \psi_1 \sigma(\cdot)) \Theta(\varphi_2, \text{div} \psi_2 \sigma(\cdot)) \, dt$;
- $d \left[\Theta(\varphi, \psi), \Theta(\varphi, \psi) \right]_t \leq \|\varphi\|_2^2 \|\nabla \psi\|_2^2 \, dt$;
- $\mathbb{E} \left[\int_0^T D\tilde{\Theta}_t(\varphi, \psi)^q \, dt \right] \leq 2^q \mathcal{E}_q'(\Theta) \|\varphi\|_q^q \|\nabla \psi\|_q^q$;
- $\Theta_0(\varphi, \psi) = (\varphi, \psi)_{L^2(M)}$;
- If $\varphi, \psi \geq 0$ then $\Theta_t(\varphi, \psi) \geq 0$;
- $|\Theta_t(\varphi, \psi)| \leq \|\varphi\|_2 \cdot \|\psi\|_2$.

Definition

A generalized flow with diffusion coefficient σ and final configuration η is a bilinear map Θ which to $\varphi, \psi \in L^2(M)$ associates a continuous semimartingale $\Theta_t(\varphi, \psi)$ satisfying all the properties above. Its kinetic q-energy is $\mathcal{E}_q'(\Theta)$. The set of laws of generalized flows with finite kinetic energy is denoted by $\mathcal{H}'_q = \mathcal{H}'_q(\sigma, \eta, T)$.
Examples

- Θ^g with $g(t)(x)$ an incompressible Brownian flow:

$$dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) dt;$$

- $\Theta_t(\varphi, \psi) = (\theta^\varphi_t, \psi)_{L^2(M)}$ with θ^φ_t solution to the transport equation

$$\begin{cases}
 d\theta^\varphi_t &= -\langle \nabla \theta, \sigma dW_t \rangle - \langle \nabla \theta, u \rangle dt \\
 \theta^\varphi_0 &= \varphi
\end{cases}$$

(Fang-Luo, Stoch. Analysis Appl., 2007)

- If $\Theta_1^i(\omega_1)$ and $\Theta_2^i(\omega_2)$ are two generalized flows defined on Ω_1 and Ω_2, then on $\Omega_1 \times \Omega_2 \times \{1, 2\}$ with product probability and any law on $\{1, 2\}$,

$$\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i)$$

defines a generalized flow. More generally, with obvious notation

$$\Theta_t((\omega_a)_{a \in A}, a) = \Theta^a_t(\omega_a)$$

defines a generalized flow from generalized flows Θ^a_t.
Examples

- Θ^g with $g(t)(x)$ an incompressible Brownian flow:

 $$dg(t)(x) = \sigma(g(t)(x)) dW_t + u(t, g(t)(x)) \, dt;$$

- $\Theta_t(\varphi, \psi) = (\theta_t^\varphi, \psi)_{L^2(M)}$ with θ_t^φ solution to the transport equation

 $$\begin{cases}
 d\theta_t^\varphi &= -\langle \nabla \theta, \sigma dW_t \rangle - \langle \nabla \theta, u \rangle \, dt \\
 \theta_0^\varphi &= \varphi
 \end{cases}$$

 (Fang-Luo, Stoch. Analysis Appl., 2007)

- If $\Theta_t^{1}(\omega_1)$ and $\Theta_t^{2}(\omega_2)$ are two generalized flows defined on Ω_1 and Ω_2, then on $\Omega_1 \times \Omega_2 \times \{1, 2\}$ with product probability and any law on $\{1, 2\}$,

 $$\Theta_t(\omega_1, \omega_2, i) = \Theta_t^i(\omega_i)$$

 defines a generalized flow. More generally, with obvious notation

 $$\Theta_t((\omega_a)_{a \in A}, a) = \Theta_t^a(\omega_a)$$

 defines a generalized flow from generalized flows Θ_t^a.
Introduction: Euler equation
Weighted porous media equation and variational principle
Generalized flows
Existence of generalized flows with prescribed configuration
Existence of generalized flows with prescribed L^q drift
Constructing generalized flows from solutions to finite variation transport equations
Examples

Θ^g with $g(t)(x)$ an incompressible Brownian flow:

$$dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x))\,dt;$$

$\Theta_t(\varphi, \psi) = (\theta^\varphi_t, \psi)_{L^2(M)}$ with θ^φ_t solution to the transport equation

$$\begin{cases}
 d\theta^\varphi_t = -\langle \nabla \theta, \sigma dW_t \rangle - \langle \nabla \theta, u \rangle \,dt \\
 \theta^\varphi_0 = \varphi
\end{cases}$$

(Fang-Luo, Stoch. Analysis Appl., 2007)

If $\Theta^1_t(\omega_1)$ and $\Theta^2_t(\omega_2)$ are two generalized flows defined on Ω_1 and Ω_2, then on $\Omega_1 \times \Omega_2 \times \{1, 2\}$ with product probability and any law on $\{1, 2\}$,

$$\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i)$$

defines a generalized flow. More generally, with obvious notation

$$\Theta_t((\omega_a)_{a \in A}, a) = \Theta^a_t(\omega_a)$$

defines a generalized flow from generalized flows Θ^a_t.
Examples

- Θ^g with $g(t)(x)$ an incompressible Brownian flow:

$$dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x)) \, dt;$$

- $\Theta_t(\varphi, \psi) = (\theta_t^\varphi, \psi)_{L^2(M)}$ with θ_t^φ solution to the transport equation

\[
\begin{cases}
 d\theta_t^\varphi &= -\langle \nabla \theta, \sigma dW_t \rangle - \langle \nabla \theta, u \rangle \, dt \\
 \theta_0^\varphi &= \varphi
\end{cases}
\]

(Fang-Luo, Stoch. Analysis Appl., 2007)

- If $\Theta^1_t(\omega_1)$ and $\Theta^2_t(\omega_2)$ are two generalized flows defined on Ω_1 and Ω_2, then on $\Omega_1 \times \Omega_2 \times \{1, 2\}$ with product probability and any law on $\{1, 2\}$,

$$\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i)$$

defines a generalized flow. More generally, with obvious notation

$$\Theta_t((\omega_a)_{a \in A}, a) = \Theta^a_t(\omega_a)$$

defines a generalized flow from generalized flows Θ^a_t.

Marc Arnaudon
Examples

- Θ^g with $g(t)(x)$ an incompressible Brownian flow:
 \[dg(t)(x) = \sigma(g(t)(x))dW_t + u(t, g(t)(x))\,dt; \]

- $\Theta_t(\varphi, \psi) = (\theta^\varphi_t, \psi)_{L^2(M)}$ with θ^φ_t solution to the transport equation
 \[
 \begin{cases}
 d\theta^\varphi_t &= -\langle \nabla \theta, \sigma dW_t \rangle - \langle \nabla \theta, u \rangle \,dt \\
 \theta^\varphi_0 &= \varphi
 \end{cases}
 \]
 (Fang-Luo, Stoch. Analysis Appl., 2007)

- If $\Theta^1_t(\omega_1)$ and $\Theta^2_t(\omega_2)$ are two generalized flows defined on Ω_1 and Ω_2, then on $\Omega_1 \times \Omega_2 \times \{1, 2\}$ with product probability and any law on $\{1, 2\}$,
 \[\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i) \]
 defines a generalized flow. More generally, with obvious notation
 \[\Theta_t((\omega_a)_{a \in A}, a) = \Theta^a_t(\omega_a) \]
 defines a generalized flow from generalized flows Θ^a_t.
Define
\[\mathcal{E}_q'(\sigma, \eta, T) = \inf \{ \mathcal{E}_q'(\Theta), \ Law(\Theta) \in \mathcal{H}_q'(\sigma, \eta, T) \} \]
with convention \(\mathcal{E}_q'(\sigma, \eta, T) = \infty \) if the set is empty.

Theorem
If \(\mathcal{E}_q'(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}_q'(\sigma, \eta, T) \), and such that
\[\mathcal{E}_q'(\Theta) = \mathcal{E}_q'(\sigma, \eta, T). \]

Sketch of proof
- Let \((\Theta^n)_{n \geq 1} \) satisfy \(\mathcal{E}_q'(\Theta^n) \to \mathcal{E}_q'(\sigma, \eta, T) \);
- for \((\tilde{\phi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n\ell})_{\ell \geq 1} \) such that all \(\Theta^{n\ell}(\tilde{\phi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \to \infty \) (W.A. Zheng 85). Limit \(\Theta(\phi^j, \psi^k) \) extends to \(\Theta(\varphi, \psi) \).

\[\mathcal{E}_q'(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}_q'(\Theta^{n\ell}) \quad \text{(P.A. Meyer, W.A. Zheng 85)} \]

Proposition
The set of laws of generalized flows minimizing \(\mathcal{E}_q' \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j) \).
Define

\[\mathcal{E}'_q(\sigma, \eta, T) = \inf \{ \mathcal{E}'_q(\Theta), \ \text{Law}(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]

with convention \(\mathcal{E}'_q(\sigma, \eta, T) = \infty \) if the set is empty.

Theorem

If \(\mathcal{E}'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that

\[\mathcal{E}'_q(\Theta) = \mathcal{E}'_q(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(\mathcal{E}'_q(\Theta^n) \rightarrow \mathcal{E}'_q(\sigma, \eta, T) \);
- for \((\tilde{\varphi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n_\ell})_{\ell \geq 1} \) such that all \(\Theta^{n_\ell}(\tilde{\varphi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \rightarrow \infty \) (W.A. Zheng 85). Limit \(\Theta(\tilde{\varphi}^j, \tilde{\psi}^k) \) extends to \(\Theta(\varphi, \psi) \).

\[\mathcal{E}'_q(\Theta) \leq \lim \inf_{\ell \rightarrow \infty} \mathcal{E}'_q(\Theta^{n_\ell}) \]
(P.A. Meyer, W.A. Zheng 85)

Proposition

The set of laws of generalized flows minimizing \(\mathcal{E}'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j) \).
Define
\[\mathcal{E}'_q(\sigma, \eta, T) = \inf \{ \mathcal{E}'_q(\Theta), \text{ Law}(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]
with convention \(\mathcal{E}'_q(\sigma, \eta, T) = \infty \) if the set is empty.

Theorem

If \(\mathcal{E}'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that
\[\mathcal{E}'_q(\Theta) = \mathcal{E}'_q(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(\mathcal{E}'_q(\Theta^n) \rightarrow \mathcal{E}'_q(\sigma, \eta, T) \);
- for \((\tilde{\varphi}_j)_{j \geq 1} \) and \((\tilde{\psi}_k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n_\ell})_{\ell \geq 1} \) such that all \(\Theta^{n_\ell}(\tilde{\varphi}_j, \tilde{\psi}_k) \) converge together in law as \(\ell \rightarrow \infty \) (W.A. Zheng 85). Limit \(\Theta(\tilde{\varphi}_j, \tilde{\psi}_k) \) extends to \(\Theta(\varphi, \psi) \).

\[\mathcal{E}'_q(\Theta) \leq \lim \inf_{\ell \rightarrow \infty} \mathcal{E}'_q(\Theta^{n_\ell}) \quad (P.A. \ Meyer, \ W.A. \ Zheng \ 85) \]

Proposition

The set of laws of generalized flows minimizing \(\mathcal{E}'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j) \).
Define
\[E'_q(\sigma, \eta, T) = \inf \{ E'_q(\Theta), \ Law(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]
with convention \(E'_q(\sigma, \eta, T) = \infty \) if the set is empty

Theorem
If \(E'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that
\[E'_q(\Theta) = E'_q(\sigma, \eta, T). \]

Sketch of proof
- Let \((\Theta^n)_{n \geq 1} \) satisfy \(E'_q(\Theta^n) \rightarrow E'_q(\sigma, \eta, T) \);
- for \((\tilde{\varphi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n\ell})_{\ell \geq 1} \) such that all \(\Theta^{n\ell}(\tilde{\varphi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \rightarrow \infty \) (W.A. Zheng 85). Limit \(\Theta(\tilde{\varphi}^j, \tilde{\psi}^k) \) extends to \(\Theta(\varphi, \psi) \).

\[E'_q(\Theta) \leq \lim inf_{\ell \rightarrow \infty} E'_q(\Theta^{n\ell}) \quad (\text{P.A. Meyer, W.A. Zheng 85}) \]

Proposition
The set of laws of generalized flows minimizing \(E'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i) \).
Define

\[E'_q(\sigma, \eta, T) = \inf \{ E'_q(\Theta), \ \text{Law}(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]

with convention \(E'_q(\sigma, \eta, T) = \infty \) if the set is empty.

Theorem

If \(E'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that

\[E'_q(\Theta) = E'_q(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(E'_q(\Theta^n) \rightarrow E'_q(\sigma, \eta, T) \);
- for \((\varphi^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \(\Theta^{n_\ell} \) such that all \(\Theta^{n_\ell}(\varphi^j, \tilde{\psi}^k) \) converge together in law as \(\ell \rightarrow \infty \) (W.A. Zheng 85). Limit \(\Theta(\varphi, \psi) \) extends to \(\Theta(\varphi, \psi) \).

Proposition

The set of laws of generalized flows minimizing \(E'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j) \).
Define
\[\mathcal{E}_q'(\sigma, \eta, T) = \inf \{ \mathcal{E}_q'(\Theta), \ \text{Law}(\Theta) \in \mathcal{H}_q'(\sigma, \eta, T) \} \]
with convention \(\mathcal{E}_q'(\sigma, \eta, T) = \infty \) if the set is empty

Theorem

If \(\mathcal{E}_q'(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}_q'(\sigma, \eta, T) \), and such that
\[\mathcal{E}_q'(\Theta) = \mathcal{E}_q'(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(\mathcal{E}_q'(\Theta^n) \to \mathcal{E}_q'(\sigma, \eta, T) \);
- for \((\tilde{\varphi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n\ell})_{\ell \geq 1} \) such that all \(\Theta^{n\ell}(\tilde{\varphi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \to \infty \) (W.A. Zheng 85). Limit \(\Theta(\tilde{\varphi}^j, \tilde{\psi}^k) \) extends to \(\Theta(\varphi, \psi) \).

\[\mathcal{E}_q'(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}_q'(\Theta^{n\ell}) \] (P.A. Meyer, W.A. Zheng 85)

Proposition

The set of laws of generalized flows minimizing \(\mathcal{E}_q' \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j) \).
Define
\[E'_q(\sigma, \eta, T) = \inf \{ E'_q(\Theta), \text{Law}(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]
with convention \(E'_q(\sigma, \eta, T) = \infty \) if the set is empty.

Theorem

If \(E'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that
\[E'_q(\Theta) = E'_q(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(E'_q(\Theta^n) \rightarrow E'_q(\sigma, \eta, T) \);
- for \((\tilde{\varphi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n\ell})_{\ell \geq 1} \) such that all \(\Theta^{n\ell}(\tilde{\varphi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \rightarrow \infty \) (W.A. Zheng 85). Limit \(\Theta(\tilde{\varphi}^j, \tilde{\psi}^k) \) extends to \(\Theta(\varphi, \psi) \).
\[E'_q(\Theta) \leq \liminf_{\ell \rightarrow \infty} E'_q(\Theta^{n\ell}) \] (P.A. Meyer, W.A. Zheng 85)

Proposition

The set of laws of generalized flows minimizing \(E'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_i) \).
Define

$$\mathcal{E}_q'(\sigma, \eta, T) = \inf \{ \mathcal{E}_q'(\Theta), \text{Law}(\Theta) \in \mathcal{H}_q'(\sigma, \eta, T) \}$$

with convention $\mathcal{E}_q'(\sigma, \eta, T) = \infty$ if the set is empty.

Theorem

If $\mathcal{E}_q'(\sigma, \eta, T) < \infty$ then there exists a generalized flow Θ with law belonging to $\mathcal{H}_q'(\sigma, \eta, T)$, and such that

$$\mathcal{E}_q'(\Theta) = \mathcal{E}_q'(\sigma, \eta, T).$$

Sketch of proof

- Let $(\Theta^n)_{n \geq 1}$ satisfy $\mathcal{E}_q'(\Theta^n) \to \mathcal{E}_q'(\sigma, \eta, T)$;
- for $(\tilde{\varphi}^j)_{j \geq 1}$ and $(\tilde{\psi}^k)_{k \geq 1}$ smooth and dense for uniform convergence, there exists a subsequence $(\Theta^{n_\ell})_{\ell \geq 1}$ such that all $\Theta^{n_\ell}(\tilde{\varphi}^j, \tilde{\psi}^k)$ converge together in law as $\ell \to \infty$ (W.A. Zheng 85). Limit $\Theta(\tilde{\varphi}^j, \tilde{\psi}^k)$ extends to $\Theta(\varphi, \psi)$.

$$\mathcal{E}_q'(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}_q'(\Theta^{n_\ell}) \quad \text{(P.A. Meyer, W.A. Zheng 85)}$$

Proposition

The set of laws of generalized flows minimizing \mathcal{E}_q' is convex.

Sketch of proof

use construction $\Theta_t(\omega_1, \omega_2, i) = \Theta^i_t(\omega_j)$.
Define

\[\mathcal{E}'_q(\sigma, \eta, T) = \inf \{ \mathcal{E}'_q(\Theta), \ Law(\Theta) \in \mathcal{H}'_q(\sigma, \eta, T) \} \]

with convention \(\mathcal{E}'_q(\sigma, \eta, T) = \infty \) if the set is empty

Theorem

If \(\mathcal{E}'_q(\sigma, \eta, T) < \infty \) then there exists a generalized flow \(\Theta \) with law belonging to \(\mathcal{H}'_q(\sigma, \eta, T) \), and such that

\[\mathcal{E}'_q(\Theta) = \mathcal{E}'_q(\sigma, \eta, T). \]

Sketch of proof

- Let \((\Theta^n)_{n \geq 1} \) satisfy \(\mathcal{E}'_q(\Theta^n) \to \mathcal{E}'_q(\sigma, \eta, T) \);
- for \((\tilde{\varphi}^j)_{j \geq 1} \) and \((\tilde{\psi}^k)_{k \geq 1} \) smooth and dense for uniform convergence, there exists a subsequence \((\Theta^{n\ell})_{\ell \geq 1} \) such that all \(\Theta^{n\ell}(\tilde{\varphi}^j, \tilde{\psi}^k) \) converge together in law as \(\ell \to \infty \) (W.A. Zheng 85). Limit \(\Theta(\varphi, \psi) \) extends to \(\Theta(\varphi, \psi) \).

\[\mathcal{E}'_q(\Theta) \leq \lim \inf_{\ell \to \infty} \mathcal{E}'_q(\Theta^{n\ell}) \quad (P.A. Meyer, W.A. Zheng 85) \]

Proposition

The set of laws of generalized flows minimizing \(\mathcal{E}'_q \) is convex.

Sketch of proof: use construction \(\Theta_t(\omega_1, \omega_2, i) = \Theta^j_i(\omega_i) \).
Let $u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM)$ a divergence-free drift, $q > 1$.

Theorem

There exists a generalized flow Θ such that

$$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)$$

and

$$\mathcal{E}_q'(\Theta) \leq \frac{1}{q} \|u\|_q^q.$$

Sketch of proof

- Let u^n smooth $\to u$ in L^q, such that $\text{div} u^n = 0$;
- Construct g^n associated flow;
- As before $\Theta g^{n, \ell} \to \Theta$ as $\ell \to \infty$;
- $\mathcal{E}_q'(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}_q'(\Theta g^{n, \ell})$;
- $\mathcal{E}_q'(\Theta g^{n, \ell}) = \mathcal{E}_q(g^{n, \ell}) = \frac{1}{q} \|u^{n, \ell}\|_q^q$.
Let \(u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM) \) a divergence-free drift, \(q > 1 \).

Theorem

There exists a generalized flow \(\Theta \) such that

\[
D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)
\]

and

\[
\mathcal{E}_q'(\Theta) \leq \frac{1}{q} ||u||^q.
\]

Sketch of proof

- Let \(u^n \) smooth \(\to u \) in \(L^q \), such that \(\text{div} u^n = 0 \);
- Construct \(g^n \) associated flow;
- As before \(\Theta g^n \to \Theta \) as \(\ell \to \infty \);
- \(\mathcal{E}_q'(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}_q'(\Theta g^n) \);
- \(\mathcal{E}_q'(\Theta g^n) = \mathcal{E}_q(g^n) = \frac{1}{q} ||u^n||^q \).
Let \(u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM) \) a divergence-free drift, \(q > 1 \).

Theorem

There exists a generalized flow \(\Theta \) such that

\[
D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)
\]

and

\[
\mathcal{E}'_q(\Theta) \leq \frac{1}{q} \|u\|_q^q.
\]

Sketch of proof

- Let \(u^n \) smooth \(\to u \) in \(L^q \), such that \(\text{div} u^n = 0 \);
- Construct \(g^n \) associated flow;
- As before \(\Theta g^{n\ell} \to \Theta \) as \(\ell \to \infty \);
- \(\mathcal{E}'_q(\Theta) \leq \liminf_{\ell \to \infty} \mathcal{E}'_q(\Theta g^{n\ell}) \);
- \(\mathcal{E}'_q(\Theta g^{n\ell}) = \mathcal{E}_q(g^{n\ell}) = \frac{1}{q} \|u^{n\ell}\|_q^q \).
Let \(u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM) \) a divergence-free drift, \(q > 1 \).

Theorem

There exists a generalized flow \(\Theta \) such that

\[
D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)
\]

and

\[
E'_q(\Theta) \leq \frac{1}{q} \|u\|^q_q.
\]

Sketch of proof

- Let \(u^n \) smooth \(\to u \) in \(L^q \), such that \(\text{div} u^n = 0 \);
- Construct \(g^n \) associated flow;
- As before \(\Theta g^{n\ell} \to \Theta \) as \(\ell \to \infty \);
- \(E'_q(\Theta) \leq \lim \inf_{\ell \to \infty} E'_q(\Theta g^{n\ell}) \);
- \(E'_q(\Theta g^{n\ell}) = E_q(g^{n\ell}) = \frac{1}{q} \|u^{n\ell}\|^q_q \).
Let \(u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM) \) a divergence-free drift, \(q > 1 \).

Theorem

There exists a generalized flow \(\Theta \) such that

\[
D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)
\]

and

\[
\mathcal{E}'_q(\Theta) \leq \frac{1}{q} \|u\|_q^q.
\]

Sketch of proof

- Let \(u^n \) smooth \(\to u \) in \(L^q \), such that \(\text{div} u^n = 0 \);
- Construct \(g^n \) associated flow;
 - As before \(\Theta^{g^n} \to \Theta \) as \(\ell \to \infty \);
 - \(\mathcal{E}'(\Theta) \leq \lim \inf_{\ell \to \infty} \mathcal{E}'(\Theta^{g^n}) \);
 - \(\mathcal{E}'(\Theta^{g^n}) = \mathcal{E}_q(\Theta^{g^n}) = \frac{1}{q} \|u^n\|_q^q. \)
Let \(u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM) \) a divergence-free drift, \(q > 1 \).

Theorem

There exists a generalized flow \(\Theta \) such that

\[
D\bar{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)
\]

and

\[
\mathcal{E}'_q(\Theta) \leq \frac{1}{q} \|u\|_q^q.
\]

Sketch of proof

- Let \(u^n \) smooth \(\rightarrow u \) in \(L^q \), such that \(\text{div} u^n = 0 \);
- Construct \(g^n \) associated flow;
- As before \(\Theta g^{n\ell} \rightarrow \Theta \) as \(\ell \rightarrow \infty \);
- \(\mathcal{E}'_q(\Theta) \leq \lim \inf_{\ell \rightarrow \infty} \mathcal{E}'_q(\Theta g^{n\ell}) \)
- \(\mathcal{E}'_q(\Theta g^{n\ell}) = \mathcal{E}_q(g^{n\ell}) = \frac{1}{q} \|u^{n\ell}\|_q^q \).
Let $u(t, x) \in L^1([0, T], L^q(\Gamma(TM))) = L^q([0, T] \times M, TM)$ a divergence-free drift, $q > 1$.

Theorem

There exists a generalized flow Θ such that

$$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)$$

and

$$\mathcal{E}'_q(\Theta) \leq \frac{1}{q} \|u\|_q^q.$$

Sketch of proof

- Let u^n smooth $\rightarrow u$ in L^q, such that $\text{div} u^n = 0$;
- Construct g^n associated flow;
- As before $\Theta g^{n_\ell} \rightarrow \Theta$ as $\ell \rightarrow \infty$;
- $\mathcal{E}'_q(\Theta) \leq \liminf_{\ell \rightarrow \infty} \mathcal{E}'_q(\Theta g^{n_\ell})$

$$\mathcal{E}'_q(\Theta g^{n_\ell}) = \mathcal{E}_q(g^{n_\ell}) = \frac{1}{q} \|u^{n_\ell}\|_q^q.$$
Let $u(t, x) \in L^1([0, T], L^q(P_1(TM))) = L^q([0, T] \times M, TM)$ a divergence-free drift, $q > 1$.

Theorem

There exists a generalized flow Θ such that

$$D\tilde{\Theta}_t(\varphi, \psi) = \Theta_t(\varphi, \langle d\psi, u(t, \cdot) \rangle)$$

and

$$\mathcal{E}'_q(\Theta) \leq \frac{1}{q} \|u\|_q^q.$$

Sketch of proof

- Let u^n smooth $\rightarrow u$ in L^q, such that $\text{div} u^n = 0$;
- Construct g^n associated flow;
- As before $\Theta g^{n\ell} \rightarrow \Theta$ as $\ell \rightarrow \infty$;
- $\mathcal{E}'_q(\Theta) \leq \liminf_{\ell \rightarrow \infty} \mathcal{E}'_q(\Theta g^{n\ell})$
- $\mathcal{E}'_q(\Theta g^{n\ell}) = \mathcal{E}_q(g^{n\ell}) = \frac{1}{q} \|u^n\|_q^q$.
If (1) \(dg(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt \), \(g(0)(x) = x \)
consider \(d\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t \), \(\tilde{g}(0)(x) = x \)
Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with
\[d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = (T_y \tilde{g}(t)(\cdot))^{-1} u(t, \tilde{g}(t)(y)) \]
(Ocone-Pardoux 89).
Get \(\Theta^g_t(\varphi, \psi) = \Theta^\tilde{g}_t(\theta^\beta, \varphi, \psi) \) where \(\theta^\beta, \varphi \) solves transport equation
\[(2) \quad \frac{\partial \theta^\beta, \varphi}{\partial t} = - (\tilde{u} \cdot \nabla) \theta^\beta, \varphi, \theta^0, \varphi = \varphi. \]
Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let
\(\Theta^\sigma_{\sigma, u}(\varphi, \psi) = \Theta^\tilde{g}_t(\theta^\beta, \varphi, \psi). \)

Proposition

We have
\[
D\Theta^\sigma_{\sigma, u}(\varphi, \psi) = \Theta^\sigma_{\sigma, u}(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta^\sigma_{\sigma, u}) \leq \frac{1}{q} \| u \|_q^q.
\]
If (1) \(dg(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt, \quad g(0)(x) = x \)
consider \(d\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t, \quad \tilde{g}(0)(x) = x \)
Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with
\[
d\beta(t)(x) = \ddot{u}(t, \beta(t)(x)) \, dt, \quad \ddot{u}(t, y, \omega) = (T_y\tilde{g}(t)(\cdot))^{-1} \, u(t, \tilde{g}(t)(y)) \quad \text{(Ocone-Pardoux 89)}. \]
Get \(\Theta^g_t(\varphi, \psi) = \Theta^\tilde{g}_{t} \left(\theta^\beta, \varphi, \psi \right) \) where \(\theta^\beta, \varphi \) solves transport equation
\[
(2) \quad \frac{\partial \theta^\beta, \varphi}{\partial t} = - (\ddot{u} \cdot \nabla) \theta^\beta, \varphi, \quad \theta^\beta, \varphi_0 = \varphi. \]
Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let
\(\Theta^{\sigma, u}_t(\varphi, \psi) = \Theta^\tilde{g}_{t} \left(\theta^\beta, \varphi, \psi \right). \)

Proposition
We have
\[
D\tilde{\Theta}^{\sigma, u}_t(\varphi, \psi) = \Theta^{\sigma, u}_t(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta^{\sigma, u}) \leq \frac{1}{q} \| u \|^q. \]
If (1) \[dg(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt, \quad g(0)(x) = x \]
consider \[d\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t, \quad \tilde{g}(0)(x) = x \]
Then \[g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \]
\[d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = (T_y \tilde{g}(t)(\cdot))^{-1} u(t, \tilde{g}(t)(y)) \] (Ocone-Pardoux 89).

Get \[\Theta^g_t(\varphi, \psi) = \Theta^{\tilde{g}}_t(\theta^\beta, \varphi, \psi) \]
where \(\theta^\beta, \varphi \) solves transport equation
\[\frac{\partial \theta^\beta, \varphi}{\partial t} = - (\tilde{u} \cdot \nabla) \theta^\beta, \varphi, \theta^\beta, \varphi_0 = \varphi. \]

Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let \[\Theta^{\sigma, u}_t(\varphi, \psi) = \Theta^{\tilde{g}}_t(\theta^\beta, \varphi, \psi). \]

Proposition

We have
\[D\Theta^{\sigma, u}_t(\varphi, \psi) = \Theta^{\sigma, u}_t(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta^{\sigma, u}) \leq \frac{1}{q} \| u \|^q_q. \]
If \(\text{dg}(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt, \quad g(0)(x) = x \)

consider \(\text{d}\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t, \quad \tilde{g}(0)(x) = x \)

Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with

\[
d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = (T_y \tilde{g}(t)(\cdot))^{-1} u(t, \tilde{g}(t)(y)) \text{ (Ocone-Pardoux 89).}
\]

Get \(\Theta^g_t(\varphi, \psi) = \tilde{\Theta}^\tilde{g}_t(\theta^\beta, \varphi, \psi) \) where \(\theta^\beta, \varphi \) solves transport equation

\[
\frac{\partial \theta^\beta, \varphi}{\partial t} = -\left(\tilde{u} \cdot \nabla\right) \theta^\beta, \varphi, \quad \theta^\beta, \varphi_0 = \varphi.
\]

Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let

\(\Theta^\sigma, u_t(\varphi, \psi) = \tilde{\Theta}^\tilde{g}_t(\theta^\beta, \varphi, \psi) \).

Proposition

We have

\[
D\Theta^\sigma, u_t(\varphi, \psi) = \Theta^\sigma, u_t(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad E'(\Theta^\sigma, u) \leq \frac{1}{q} \| u \|^q.
\]
If (1) \(dg(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt, \quad g(0)(x) = x \)
consider \(d\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t, \quad \tilde{g}(0)(x) = x \)
Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with
\[
d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = (T_y \tilde{g}(t)(\cdot))^{-1} u(t, \tilde{g}(t)(y)) \) (Ocone-Pardoux 89).

Get \(\Theta_t^g(\phi, \psi) = \Theta_t^\tilde{g} \left(\theta^\beta, \phi, \psi \right) \) where \(\theta^\beta, \phi \) solves transport equation
\[
(2) \quad \frac{\partial \theta^\beta, \phi}{\partial t} = - (\tilde{u} \cdot \nabla) \theta^\beta, \phi, \quad \theta^\beta, \phi_0 = \phi.
\]
Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let
\(\Theta_t^{\sigma, u}(\phi, \psi) = \Theta_t^\tilde{g} \left(\theta^\beta, \phi, \psi \right) \).

Proposition

We have
\[
D\Theta_t^{\sigma, u}(\phi, \psi) = \Theta_t^{\sigma, u}(\phi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta_t^{\sigma, u}) \leq \frac{1}{q} \|u\|_q^q.
\]
If (1) \(\frac{d}{dt} g(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt, \quad g(0)(x) = x \)
consider \(\frac{d}{dt} \tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t, \quad \tilde{g}(0)(x) = x \)
Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with
\[
d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = \left(T_y \tilde{g}(t)(\cdot) \right)^{-1} u(t, \tilde{g}(t)(y)) \text{ (Ocone-Pardoux 89).}
\]
Get \(\Theta^g_t(\varphi, \psi) = \Theta^\tilde{g}_t \left(\theta^\beta, \varphi, \psi \right) \) where \(\theta^\beta, \varphi \) solves transport equation
\[
\frac{\partial \theta^\beta, \varphi}{\partial t} = - (\tilde{u} \cdot \nabla) \theta^\beta, \varphi, \quad \theta^\beta, \varphi_0 = \varphi.
\]
Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let
\(\Theta^\sigma, u_T(\varphi, \psi) = \Theta^\tilde{g}_t \left(\theta^\beta, \varphi, \psi \right) \).

Proposition

We have
\[
D\Theta^\sigma, u_T(\varphi, \psi) = \Theta^\sigma, u_T(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta^\sigma, u) \leq \frac{1}{q} \| u \|_q^q.
\]
If (1) \(dg(t) = \sigma(g(t)) \circ dW_t + u(t, g(t)) \, dt \), \(g(0)(x) = x \)
consider \(d\tilde{g}(t) = \sigma(\tilde{g}(t)) \circ dW_t \), \(\tilde{g}(0)(x) = x \)
Then \(g(t)(x) = \tilde{g}(t)(\beta(t)(x)) \) with
\[
d\beta(t)(x) = \tilde{u}(t, \beta(t)(x)) \, dt, \quad \tilde{u}(t, y, \omega) = (T_y \tilde{g}(t)(\cdot))^{-1} u(t, \tilde{g}(t)(y)) \quad \text{(Ocone-Pardoux 89)}.
\]
Get \(\Theta^g_t(\varphi, \psi) = \Theta^\tilde{g}_t(\theta^\beta, \varphi, \psi) \) where \(\theta^\beta, \varphi \) solves transport equation
\[
(2) \quad \frac{\partial \theta^\beta, \varphi}{\partial t} = -(\tilde{u} \cdot \nabla) \theta^\beta, \varphi, \quad \theta^\beta, \varphi_0 = \varphi.
\]
Conversely, to solve (1), first solve (2) (DiPerna Lions 89)) then let
\(\Theta^{\sigma, u}_t(\varphi, \psi) = \Theta^\tilde{g}_t(\theta^\beta, \varphi, \psi) \).

Proposition

We have
\[
D\Theta^{\sigma, u}_t(\varphi, \psi) = \Theta^{\sigma, u}_t(\varphi, \langle d\psi, u(t, \cdot) \rangle) \quad \text{and} \quad \mathcal{E}'(\Theta^{\sigma, u}_t) \leq \frac{1}{q} \|u\|^q.
\]