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General idea: To derive certain deterministic equations of motion
corresponding to dissipative systems (that cannot be obtained in a classical
setting) by deforming stochastically the underlying Lagrangian paths and
interpreting the velocities in a generalized sense.

Particular case: deterministic Euler-Poincaré equations.

Lagrangian is the classical one, but computed over stochastic processes
(inspired by Feynman path integral approach to QM - Yasue, Zambrini)

Different stochastic geometric mechanics: the Lagrangian is randomly
perturbed, velocities are random - Bismut, Ortega)
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Semi-martingales in a Lie group

Semi-martingales on a Lie group
Some stochastic analysis notions:

Fix a probability space (€2, P, P) and an increasing filtration (7), t > 0. A
(real-valued) stochastic process X : Q x Rt — R is adapted if X(t) is
‘Pt-measurable for every f.

A (real valued) adapted process M(t) is a martingale if

(i) E|M,(t)| < oo foar all ¢

(i) Es(M,,(t)) = Ms(w) a.s. for all 0 < s < t where E denotes expectation
and E;g conditional expectation with respect to Pg.
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Semi-martingales in a Lie group

A real-valued process X(t) is a semimartingale if it is of the form

X(t) = X(0) + M(t) + A(t)
where M is a martingale and A an adapted process of bounded variation with
A(0) =0.
Ité stochastic integral

t
|| X(s)a¥(s) = tim 37 XY (1) = V(0]

Statonovich stochastic integral

t
, 1
/o X(s)dY(s) =Ilim > S IX(&) + X6 )Y (1) = Y(8)]
X, Y semimartingales, limits taken in probability.

X()5Y (1) = X()dY(t) + %d[X, Y]

[X, Y]t covariation of X and Y.
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It6’s formula:
For f € C3(R),

t 1 t
X)) = FX(O) + [ F(X(sNaX(s)+5 [ (X)X, X

or

t
F(X(1) = 7‘()((0))+/0 f(X(s))dX(s)

Recall that Brownian motion is a continuous martingale W(t) s.t.
W, W]; =t.
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Consider G (finite dimensional) Lie group with

< > left (right) invariant metric

V left (right) invariant connection, torsion free

e identity element

Semimartingale on G: process g : Q x RT™ — G s.t.

f(g(t)) - (g(0) / Hessf(g(s))dlg. dls
for all f € C?(G) and where

HeSSf(g)(V-], V2) = \71 ng(g) — V% ng(g),

is a martingale; vyv» € ToG, V; smooth vector fields on G s.t.
V,(g) = v; and

t t
dlg. gl = d /0 P;15g(s), /0 P;15g(s)]:

Pt : Tg0)G — Ty(1)G parallel transport over t — g(t) associated with
V.
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Consider Hx € TeG, u(:) € C'([0, T]; TeG) and the following process,

solution of the stochastic differential equation on G, for t € [0, T]:

1
dg(t) = TeLg(t)(Z HOWE = 5 > Vi Ht + u(t)dt), ..g0)=e
k i

where TpLyy : ThG — Tg)nG is the differential of the left translation
Loin(y) == g(t)y, Vy € G at the point y = h € G, W¥(t) iid R¥ valued
Brownian motions.

dg(t) = TeLgm(Z HicdWk(£) + u(t)dt), ..g0)=e
k

Remark: If H is an o.n. basis of G, V the Levi-Civita connection and
Vh,Hk = 0, u =0, then g is the Brownian motion on G, generated by
Laplace-Beltrami operator.
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Semi-martingales in a Lie group

Derivative in time for ¢ G-valued semi-martingale £(0) = x
replaced by generalized derivative :

Take n(t) := fot P;16¢(s) is a Ty(G) valued semi-martingale.
Take the derivative of bounded variation part,

Dy = lim £ [ = nt) ”(t)m}
e—0 €
and define

DY¢(t) ==t oDem
Then

DY g(t) = TeLg(yu(t)
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Semi-martingales in a Lie group

Semi-direct products:

U (finite dimensional) vector space, U* dual
o Ux U = T;G

Suppose G has a left representation on U.

<aowo,V>rg=—<av,a>y=<a,va>y
aclU, acelU" ve TG

On the set S(G) of all G- valued semimartingales defined for t € [0, T],
define the action functional

JVeol: S(G) x S(G) = Ry

\ I A1 2 T vV 1
I gl(). 680 = E [ 1(TooLasio DY (D00 et
where
a(t) = E[au(t)],  aw(t) = (95(1) ' ao,
ap € U-.
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Semi-martingales in a Lie group

Variations

For a deterministic curve v(-) € C'([0, T]; TeG), v(0) = v(T) = 0 and
€ €(0,1), e.v(-) € C'([0, T]; G solution of the deterministic equation on
G:

d )
Eeﬁ’v(t) = 6TeLee,v(l‘) v(t), e.v(0)=¢e

Then
(91(), g%(+)) € S(G) x S(G) s critical for the action functional JV -0/ if

& 10d7 0 (gl (Jecu (). EJecnl)) = O
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Semi-martingales in a Lie group

We shall consider the semimartingales g', g2 of the form

dgl. (1) = TeLgL(t)<Z H dWk 1 (£) + u(t)dt),...,g;(O) —e
k

Ag2 (1) = TeLga oy (Y HEAWER(t) + u(t)el), ... g2(0) = &
k

for fixed Hi, fixed Brownian motions, and some u € C'([0, T]; T.G).
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Theorem.
(g',9%) €€ S(G) x S(G) s critical for JV-20! iff u(-) € C'([0, T]; TeG)

satisfies the semidirect product Euler-Lagrange equations:

d 6l 51 6l 51
GO g ot o K (2L
diou ~ Mangy T e o+ <5u>

where % € T;G, % € U are functional derivativesof , K : T;G — T;G
defined by

ki
1
<K(:u)7 V> = - <:u7 2 Z (Vadvl-lj1 I_Ij1 + v/—Il1 (advl_lj1 )>>
j=1
Ve TgG, Vv e TeGand

d

ko
() = —% ; H? (Hj?a(t)) — R(f)a(t)
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Above

ki

. 1 .

U(t) = u(t) — EZVHJ;H;, i=1,2
j=1

Remark In the case of right-invariant metric, the signs in the r.h.s. of the first
and third terms of the E-P equations change. are changed.

Important remark

In some cases the operator K(u) ) coincides with the de Rham-Hodge
operator.

If G is a Lie group with right invariant metric, V is the (right invariant)
Levi-Civita connection with respect to < > and V, Hyx = 0 for each k, we
have,

K(u) =33k (Vu VH U+ R(u, HO)Hk) Yueg
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Applications

Applications

Diffeomorphisms on the torus

G = G® = {g := T® — T3, bijection, g, g~" € H%}, where

H? is the s-th order Sobolev space.

If s > % G® is an C* is a topological group and an infinite dimensional
Hilbert manifold (Ebin-Marsden).

ToG® = HS(T3; T%)
Inner product
< U v S0 /Ta<u(x), VX)xOX, U,V € TGS
Right invariant connection
Vov =vily
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Applications

We consider

dg” (t,x) = V2udW(t) + u(t,g"(t, x))dt, g”(0,x) = x

for a 3-dim Brownian motion W(t), » > 0 constants.
Corresponds to taking H; = ¢;, j = 1,2, 3 multiplied by constants v2v.

ag Will be function, differential form;

o(t) = E[ag” ()]
i.e., the action of G° on U* is the pull-back map.
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Applications

For some choices of the constants » and Lagrangian
we derive MHD equations, with dissipative viscosity (resistivity,
diffusivity) terms.
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