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Introduction

Mean-field games

@ Mean field games is a class of problems which attempts to

model and understand the behaviour of large groups of
rational agents.
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Introduction

Mean-field games

@ Mean field games is a class of problems which attempts to
model and understand the behaviour of large groups of
rational agents.

@ These models were developed in the mathematical
community by P.L. Lions and J.M. Lasry, and in the
engineering community by P. Caines, M. Huang, and R.
Malhamé.

@ This research area has a wide range of applications as well
as a large number of non-trivial mathematical challenges.
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Applications

@ Non-renewable resources (Lions, Lasry, and Guéant)
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Introduction

Applications

@ Non-renewable resources (Lions, Lasry, and Guéant)

@ Planning problems (Porretta; Achdou, Camilli, and
Dolcetta)

@ Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas;
Lachapelle, and Turinici)

@ Price formation models (Lions,and Lasry; Markowich,
Caffarelli, Wolfram, and Pietschmann)

@ Social Network Dynamics (G., Mohr, and Souza; Guéant)
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Related Models

@ Crowd and pedestrian motion (Kamareddine, and Hughes;
Burger, Di Francesco, Markowich, Pietschmann, and
Wolfram)
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Introduction

Related Models

@ Crowd and pedestrian motion (Kamareddine, and Hughes;
Burger, Di Francesco, Markowich, Pietschmann, and
Wolfram)

@ Chemotaxis (Perthame et al; Carrillo et al)

@ Flocking and swarming (Slepcev et al, Carrillo et al;
Bertozzi et al)

@ Differential population games, evolutionary games,
mean-field learning (Tembine)

@ Wireless communication (Huang, Caines and Malhamé;
Yin, Mehta, Meyn, and Shanbhag)
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A few examples

Common structure

@ A probability density m enconding a population distribution;
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@ A probability density m enconding a population distribution;

@ A "potential" or "value function" u which measures the
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Common structure

@ A probability density m enconding a population distribution;

@ A "potential" or "value function" u which measures the
effects of the population in the environment;

@ A partial differential equation for u which depends on m
(tipically a nonlinear elliptic or parabolic equation)
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A few examples

Common structure

@ A probability density m enconding a population distribution;

@ A "potential" or "value function" u which measures the
effects of the population in the environment;

@ A partial differential equation for u which depends on m
(tipically a nonlinear elliptic or parabolic equation)

@ A partial differential equation for m which is driven by the
potential u.
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A few examples

Hughes-like models

@ Consider a region 2, a population distribution m(x, t).
Each agent wants to leave Q as fast as possible.
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A few examples

Hughes-like models

@ Consider a region 2, a population distribution m(x, t).
Each agent wants to leave Q as fast as possible.

@ Taking into account the congestion effects the time to the
exit of a single agent if the whole population is frozen
satisfies the equation

1

1 2
30U =
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A few examples

Hughes-like models

@ Consider a region 2, a population distribution m(x, t).
Each agent wants to leave Q as fast as possible.

@ Taking into account the congestion effects the time to the
exit of a single agent if the whole population is frozen
satisfies the equation

1 5 1
30U =

@ Each agent follows the "instantaneous" shortest exit path
and so the population evolves according to

m; — div(mDu) =0

Diogo Gomes Mean field games
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A few examples

Keller-Segel Chemotaxis model

@ Consider a biological population described by a density m.
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A few examples

Keller-Segel Chemotaxis model

@ Consider a biological population described by a density m.

@ This population produces chemicals which attract or repel
other members of the population and which difuse very
fast. The spatial distribution u of these chemicals solves

—Au = f(m).
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A few examples

Keller-Segel Chemotaxis model

@ Consider a biological population described by a density m.

@ This population produces chemicals which attract or repel
other members of the population and which difuse very
fast. The spatial distribution u of these chemicals solves

—Au = f(m).

@ The population reacts by moving in the direction of the
gradient of this distribution:

m; — div(mDu) = Am.

(]

Diogo Gomes Mean field games



A few examples

Benamou-Brenier optimal transport method

@ Given two probability measures pg, p1;
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A few examples

Benamou-Brenier optimal transport method

@ Given two probability measures pg, p1;

@ The quadratic cost optimal transport problem can be
solved in terms of the system

—Uut + % =0
pt — div(pDu) = 0,

with p(x,0) = po(x), p(x, 1) = p1(X).
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A few examples

Mean field models

The canonical mathematical structure of mean-field games is:
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The canonical mathematical structure of mean-field games is:
@ a Hamilton-Jacobi type equation
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Mean field models

The canonical mathematical structure of mean-field games is:
@ a Hamilton-Jacobi type equation
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A few examples

Mean field models

The canonical mathematical structure of mean-field games is:
@ a Hamilton-Jacobi type equation
@ a transport of Fokker-Planck equation

@ this last equation is the adjoint of the linearization of the
first one.
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A few examples

Standard MFG

@ Time dependent MFG

—ut + H(Du, x) = Au+ F(m)
my — div(DpHm) = Am

with m(x,0) and u(x, T) given.
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A few examples

Standard MFG

@ Time dependent MFG

—ut + H(Du, x) = Au+ F(m)
my — div(DpHm) = Am

with m(x,0) and u(x, T) given.
@ Stationary version

H(Du,x) = Au+ F(m)+ H
—div(DpHm) = Am
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A few examples

Typical non-linearity F:
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A few examples

Typical non-linearity F:
@ Non-local: F(m) = G(n* m).
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A few examples

Typical non-linearity F:
@ Non-local: F(m) = G(n* m).
@ Power-like: F(m) = m®.
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A few examples

Typical non-linearity F:
@ Non-local: F(m) = G(n* m).
@ Power-like: F(m) = m®.
@ Logarithm: F(m) =Inm.
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A few examples

Typical Hamiltonian: H(x, p) = a(x)(1 + |p?)?/? + V(x)
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Typical Hamiltonian: H(x, p) = a(x)(1 + |p?)?/? + V(x)
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@ quadraticy=2and a=1
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A few examples

Typical Hamiltonian: H(x, p) = a(x)(1 + |p?)?/? + V(x)
@ subquadratic1 <~y <2
@ quadraticy=2and a=1
@ superquadratic 2 < v < 3.
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A few examples

Typical Hamiltonian: H(x, p) = a(x)(1 + |p?)?/? + V(x)
@ subquadratic1 <~y <2
@ quadraticy=2and a=1
@ superquadratic 2 < v < 3.

a, V periodic, smooth, a > 0.
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A few examples

Extensions

@ These standard models have been studied extensively
(local and non-local F, first order cases, planning
problems...).
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A few examples

Extensions

@ These standard models have been studied extensively
(local and non-local F, first order cases, planning
problems...).

@ However, in real world applications a few additional
complications arise since many interesting models have
different structure
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A few examples

Extensions

@ These standard models have been studied extensively
(local and non-local F, first order cases, planning
problems...).

@ However, in real world applications a few additional
complications arise since many interesting models have
different structure

@ This work is part of a program which aims at building
techniques to address those difficulties.

(]

Diogo Gomes Mean field games



A few examples

Non-standard structures |

@ Congestion effects. An example would be

me

V(x)+ 289D — Ayt F(m)+H
—div(DpHm'=%) = Am
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A few examples

Non-standard structures |

@ Congestion effects. An example would be

me

V(x)+ 289D — Ayt F(m)+H
—div(DpHm'=%) = Am

@ Extended models which arise when costs depend on the
actions of the players

H(Du, x,B) = Au+ F(m)+ H

—div(Bm) = Am
B = —DyH(Du, xB).
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A few examples

Non-standard structures I

@ Lack of differentiability of the Hamilton-Jacobi equation
which arises in optimal stopping and gives rise to study

Be(u) + H(Du,x) = Au+ F(m)+ H
BL(uym — div(DpyHm) = Am

where .(z) =0if z < 0 and lim._,o Bc(2) = +o0.
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A few examples

Non-standard structures I

@ Lack of differentiability of the Hamilton-Jacobi equation
which arises in optimal stopping and gives rise to study

Be(u) + H(Du,x) = Au+ F(m)+ H
BL(uym — div(DpyHm) = Am

where .(z) =0if z < 0 and lim._,o Bc(2) = +o0.
@ Lack of adjoint structure (eg Hughes-type models in crowd
dynamics)

H(Du, x) = Au + F(m)
m¢ — div(DpHm) = Am
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e Derivation of mean-field games
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Derivation of mean-field games

Stochastic optimal control

Define -
u(x,t) =inf E/ L(x,v)ds + ¢ (x(T)),
v t
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Derivation of mean-field games

Stochastic optimal control

Define -
u(x,t) =inf E/ L(x,v)ds + ¢ (x(T)),
v t

where the infimum is taken, for instance, over all progressively
measurable controls v with respect to the filtration generated by
a Brownian motion W4, and

dx = vadt + ocdW;, X(t) = x.
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Derivation of mean-field games

Hamilton-Jacobi equation

The Hamiltonian is defined as

H(p,x) = sup —v-p— L(x,v).

veRd
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Derivation of mean-field games

Hamilton-Jacobi equation

The Hamiltonian is defined as

H(p,x) = sup —v-p— L(x,v).

veRd

If the value function u is smooth then it solves the
Hamilton-Jacobi equation

o2
—ut + H(x, Dyu) = ?Au,
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Derivation of mean-field games

Hamilton-Jacobi equation

The Hamiltonian is defined as

H(p,x) = sup —v-p— L(x, V).

veRd

If the value function u is smooth then it solves the
Hamilton-Jacobi equation

o2
—Ut + H(x, Dxu) = ?Au,

together with the terminal condition
u(x, T) = 9(x).
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Derivation of mean-field games

Verification theorem

If u is a smooth solution to the Hamilton-Jacobi equation then

is an optimal control.
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Derivation of mean-field games

Consider a diffusion

dx = b(x, t)dt + ocdW;
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Derivation of mean-field games

Consider a diffusion
dx = b(x, t)dt + ocdW;

with initial distribution of x(0) given by a probability measure
m(x,0). Thatis

P(x(0) c A) = /A m(x, 0)d.
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Derivation of mean-field games

Consider a diffusion
dx = b(x, t)dt + ocdW;

with initial distribution of x(0) given by a probability measure
m(x,0). Thatis

P(x(0) € A) — / m(x, 0)dx.
A
Define m(x, t) by

P(x(t) € A) = /Am(x, t)dx.
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Derivation of mean-field games

The probability measure m solves the Focker Plank equation

2
m; + div(b(x, tym) = %Am.
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Derivation of mean-field games

The probability measure m solves the Focker Plank equation
o2
m; + div(b(x, tym) = fAm.

In particular if b = —DpH(Dyu(x, t), x) is the optimal feedback
for the control problem above

o2
my — div(DpHm) = ?Am.

(]

Diogo Gomes Mean field games



Derivation of mean-field games

The mean field game problem arises when a optimal
(deterministic or stochastic) control problem has a Lagrangian
L or terminal cost v depending on a population distribution m.
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Derivation of mean-field games

The mean field game problem arises when a optimal
(deterministic or stochastic) control problem has a Lagrangian
L or terminal cost v depending on a population distribution m.

u(x, 1) = inf E/T L(x, X, m(-, $))ds + w(X(T), m(-, T)).
v t

where the infimum is taken, for instance, over all progressively
measurable controls v with respect to the filtration generated by
a Brownian motion W4, and

ax = vdt + ocdW;.
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Derivation of mean-field games

Then the value function u solves the Hamilton-Jacobi equation

o2
—ut + H(Dxu,x,m) = ?Au
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Derivation of mean-field games

Then the value function u solves the Hamilton-Jacobi equation

o2
—Ut + H(Dxu, x, m) = ?Au

In this setting one assumes the following rationality hypothesis,
that is, that each agent in the population follows the optimal
dynamics and then m is a solution of

o2
my — div(DpyHm) = ?Am.
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Derivation of mean-field games

Then the value function u solves the Hamilton-Jacobi equation

o2
—Ut + H(Dxu, x, m) = ?Au

In this setting one assumes the following rationality hypothesis,
that is, that each agent in the population follows the optimal
dynamics and then m is a solution of

o2
my — div(DpyHm) = ?Am.

This class of problems were introduced by Lions and Lasry, as
well as, in the engineering community by P. Caines and his
co-workers.

Diogo Gomes Mean field games
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Derivation of mean-field games

In addition to the PDE, the value function u and the probability
measure m must satisfy certain boundary conditions:
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Derivation of mean-field games

In addition to the PDE, the value function u and the probability
measure m must satisfy certain boundary conditions:

@ Initial-terminal problem

u(x, T) =(x) m(x,0) = mp(x).
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Derivation of mean-field games

In addition to the PDE, the value function u and the probability
measure m must satisfy certain boundary conditions:

@ Initial-terminal problem

u(x, T) =(x) m(x,0) = mp(x).

© Planning problem

m(x,0) = mg m(x, T) =mr
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Variational mean-field games
Extended mean-field games

ionary problem .
Stationary problems Congestion models
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e Stationary problems
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

Consider the variational problem

min | e"(PuX) gy
Td
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

Consider the variational problem
min/ e(PuX) gy
Td

The Euler-Lagrange equation is the Mean Field Game:

H(Du,x) =Inm+ H
— div(DpHm) = 0,

where the constant H is chosen so that [ 'm = 1.

(]

Diogo Gomes Mean field games



Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

One can consider also various other extensions:
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

One can consider also various other extensions:
- Time-dependent problems

T
/ / e—uH—H(DXU,X)dth
0 Td
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

One can consider also various other extensions:
- Time-dependent problems

T
/ / e—uH—H(DXU,X)dth
0 Td

- Second order problems

/ efAquH(Du,x) dx
Td
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

One can consider also various other extensions:
- Time-dependent problems

T
/ / e—uH—H(DXU,X)dth
0 Td

- Second order problems
/ efAquH(Du,x) dx
Td
- Other convex nonlinearities

/ 9(H(Du, x)).
Td

(]

Diogo Gomes Mean field games



Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The Euler-Lagrange equation corresponding to these
problems are mean-field games
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The Euler-Lagrange equation corresponding to these
problems are mean-field games
@ Variational mean-field games include a large class of

interesting mean-field games with local dependence on the
measure;
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The Euler-Lagrange equation corresponding to these
problems are mean-field games

@ Variational mean-field games include a large class of
interesting mean-field games with local dependence on the
measure;

@ Include important examples such as the p-Laplacian as
special cases;
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The Euler-Lagrange equation corresponding to these
problems are mean-field games

@ Variational mean-field games include a large class of
interesting mean-field games with local dependence on the
measure;

@ Include important examples such as the p-Laplacian as
special cases;

@ Give rise to a very interesting class of convex but not
coercive variational problems.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

The stochastic Evans-Aronsson problem concerns the
variational problem

min/ e—Au+H(Du,x)
u Td
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

The stochastic Evans-Aronsson problem concerns the
variational problem

min/ e—Au+H(Du,x)
u Td

This problem gives rise to the mean-field game

—Au+ H(Du,x) =Inm
—Am — div(DpHm) = 0.
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Variational mean-field games
Extended mean-field games

Stationary problems Congestion models

Theorem (G. , Sanchez-Morgado)
Suppose H(p, x) = }|P + p|? + V(x).
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Variational mean-field games
Extended mean-field games

Stationary problems Congestion models

Theorem (G. , Sanchez-Morgado)

Suppose H(p, x) = %|P + p|? + V(x). Let u and v be periodic
solutions to

—~Au+ 3P+ DuP + V(x) =Y%U
v—u

Av+3|IP+Dv2+V(x) =YY
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Variational mean-field games
Extended mean-field games

Stationary problems Congestion models

Theorem (G. , Sanchez-Morgado)

Suppose H(p, x) = %|P + p|? + V(x). Let u and v be periodic
solutions to
—~Au+ 3P+ DuP + V(x) =Y%U
Av+3|IP+Dv2+V(x) =YY

Then (u, m) for

is a solution of the mean-field game.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ In the quadratic case thanks to the previous
transformations we (G. and Sanchez-Morgado) were able
to establish existence of a smooth solution.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ In the quadratic case thanks to the previous
transformations we (G. and Sanchez-Morgado) were able
to establish existence of a smooth solution.

@ Inlow dimension d < 3 under quadratic growth conditions
we (G. and Sanchez-Morgado) also obtained existence of
a smooth solution.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

The general case, where F(m) = Inmor F(m) = m® in higher
dimensions:

—Au+ H(Du, x) = F(m)

—Am —div(DpHm) = 0,

was addressed by G. , Patrizi, Voskanyan.
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Variational mean-field games
Extended mean-field games

Stationary problems Congestion models

Extended mean-field games

We consider periodic solutions to
H(x, Dyu,m,V) = Au+ H

div(Vm) = Am
V — —DpH(X, Dxu, m, V)

(]
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ His quasivariational:

‘H(vavmv V)fHO(X)pa m, V)+g(m(x))\ < C’ (A1)
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ His quasivariational:
[H(x,p,m, V) — Ho(x, p,m, V) + g(m(x))| < C, (A1)

Hy non-local in m, and

g(m)=Inm, org(m)=m",with0 <~ < ﬁ
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ His quasivariational:
[H(x,p,m, V) — Ho(x, p,m, V) + g(m(x))| < C, (A1)

Hy non-local in m, and

g(m)=Inm, org(m)=m",with0 <~ < ﬁ

@ H+ g(m) smooth in x, p, convex in p
@ H is quadratic-like growth in p
@ Small dependence in velocity field V
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Variational mean-field games
Extended mean-field games

ionary problem
Stationary problems Congestion models

Example

2
H(x.p.m. V) = a(x) P + 5 /T - Vem —g(m)

with 8 small.
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Variational mean-field games
Extended mean-field games

i I
Stationary problems Congestion models

Theorem (G., Patrizi, Voskanyan)

Under the previous hypothesis, there exists a classical solution
(u,m, V, H).
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

Running costs such as

[v?

L(x,v,m)=m*(x) 5

V(x)

correspond to the congestion MFG:

Ut Vx)+ 2L Ay H

2me

m — div(DpHmM'=%) = Am + 1
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Variational mean-field games
Extended mean-field games

Stationary problems CaTEsien mesEs

Theorem (G., H. Mitake)

Under the previous hypothesis, there exists a classical solution
(u, m) with m bounded by below if0 < o < 1.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The proof relies on an a-priori bound for % in L°°.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The proof relies on an a-priori bound for % in L°°.
@ This bound depends on an explicit cancellation.
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Variational mean-field games
Extended mean-field games
Congestion models

Stationary problems

@ The proof relies on an a-priori bound for % in L°°.
@ This bound depends on an explicit cancellation.

@ ltis not known if similar results hold for general models or
time-dependent problems.
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Time dependent mean-field games

Outline

e Time dependent mean-field games
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Time dependent mean-field games

Initial-terminal value problem

—Ut + H(Dxu, x) = %Au + m*
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Time dependent mean-field games

Initial-terminal value problem

2
—U; + H(Dxu, x) = %Au +m®

o2
my — div(DpHm) = ?Am.
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Time dependent mean-field games

Initial-terminal value problem

2
—Ut + H(Dxu, x) = %Au + m*

o2
my — div(DpHm) = ?Am.
Together with initial conditions for m and terminal conditions for

u.
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Time dependent mean-field games

Weak solutions

@ Lions (unpublished), Cardaliaguet (variational methods,
first order problems), Porretta (upcoming paper)

@ Planning problem - Porretta.
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Time dependent mean-field games

Regularity for time-dependent problems

Existence of smooth solutions holds for:

@ Subquadratic Hamiltonians and a < a, where a, > 425
(G., Morgado and Pimentel); the case a < ﬁ was
previous addressed by Lions.

@ Exactly quadratic, no conditions of o (Cardaliaguet, Lasry,
Lions, and Porretta).

@ Superquadratic Hamiltonians o < ay, where ay > ﬁ (G.,
Morgado and Pimentel).
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Time dependent mean-field games

Logarithmic nonlinearity

The logarithmic nonlinearity:

2
—Ut + H(Dyu, x) = %Au +Inm
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Time dependent mean-field games

Logarithmic nonlinearity

The logarithmic nonlinearity:

2
—Ut + H(Dyu, x) = %Au +Inm

52
my — div(DpHm) = ?Am.

was addressed by G.-Pimentel for subquadratic Hamiltonians.
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Outline

e Time dependent Hamiltonians - the proof
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

All the proofs in three lines

® |lu] < C+Cllm|*
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

All the proofs in three lines

® |lu] < C+Cllm|*
o ||ml < C+ Cllul|*
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

All the proofs in three lines

o |lu|| < C+ C|m|
o ||m|| < C+ Cllu|®
@ "result" (||u]| bounded) follows if 318, < 1.
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Subquadratic case

Superquadratic case

Time dependent Hamiltonians - the proof
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Subquadratic case

@ Polynomial estimates for the Fokker-Planck equation
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Subquadratic case

@ Polynomial estimates for the Fokker-Planck equation
© Gagliardo-Nirenberg inequality
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Polynomial estimates for the Fokker-Planck equation

Theorem
Let (u, m) be a solution and ||m|| (o 1,150 (1ey) < C. for some

Bo > 1. Suppose further thatp > $ andr = w Then,

[, myr.x) e < ¢+ oo

Lr(o,T; LP('Jl‘d))

where
n

=g

0 >1andpB,=0"pp.

(]

Diogo Gomes Mean field games



Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Gagliardo-Nirenberg inequality

Let (u, m) be a solution and assume that H is subquadratic. For
1 < p, r < oo there are positive constants ¢ and C such that

102l (0, ;10 (rey) < CHF(m)HL’(O,T;LP(’H‘d))
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Superquadratic case

@ Polynomial estimates for the Fokker-Planck equation
@ Estimates by the non-linear adjoint method
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Polynomial estimates for the Fokker-Planck equation

Theorem
Let (u, m) be a solution. Assume that H is superquadratic.

Assume furtherthat0 < <1< g, 8, p, r,and0 < v <1
satisfy

B 0" 5o
op = 0"+ v — 0"’
andr = A=D¥2  Then

(2+2u) (6" rva

1F | o0, 7:p(Toyy < C + CHDUHLooiOE%iol)( ) *
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Subquadratic case
Superquadratic case

Time dependent Hamiltonians - the proof

Estimates by the non-linear adjoint method

Suppose that H is superquadratic. Let (u, m) be a solution and
assume that p > d. Then

1

HDUHLOO(O,T;LOO(T"')) <C+ CHF(m)HEQT;Lp(Td»

1

+ C”F(m)HLoo 0,T;LP(Td)) ||u||Loo 0,T;Lo=(T9))"
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