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Mean-field games

Mean field games is a class of problems which attempts to
model and understand the behaviour of large groups of
rational agents.
These models were developed in the mathematical
community by P.L. Lions and J.M. Lasry, and in the
engineering community by P. Caines, M. Huang, and R.
Malhamé.
This research area has a wide range of applications as well
as a large number of non-trivial mathematical challenges.
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Applications

Non-renewable resources (Lions, Lasry, and Guéant)
Planning problems (Porretta; Achdou, Camilli, and
Dolcetta)
Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas;
Lachapelle, and Turinici)
Price formation models (Lions,and Lasry; Markowich,
Caffarelli, Wolfram, and Pietschmann)
Social Network Dynamics (G., Mohr, and Souza; Guéant)
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Related Models

Crowd and pedestrian motion (Kamareddine, and Hughes;
Burger, Di Francesco, Markowich, Pietschmann, and
Wolfram)
Chemotaxis (Perthame et al; Carrillo et al)
Flocking and swarming (Slepcev et al, Carrillo et al;
Bertozzi et al)
Differential population games, evolutionary games,
mean-field learning (Tembine)
Wireless communication (Huang, Caines and Malhamé;
Yin, Mehta, Meyn, and Shanbhag)
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Common structure

A probability density m enconding a population distribution;
A "potential" or "value function" u which measures the
effects of the population in the environment;
A partial differential equation for u which depends on m
(tipically a nonlinear elliptic or parabolic equation)
A partial differential equation for m which is driven by the
potential u.
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Hughes-like models

Consider a region Ω, a population distribution m(x , t).
Each agent wants to leave Ω as fast as possible.
Taking into account the congestion effects the time to the
exit of a single agent if the whole population is frozen
satisfies the equation

1
2
|Du|2 =

1
(6−m)2 .

Each agent follows the "instantaneous" shortest exit path
and so the population evolves according to

mt − div(mDu) = 0
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Keller-Segel Chemotaxis model

Consider a biological population described by a density m.
This population produces chemicals which attract or repel
other members of the population and which difuse very
fast. The spatial distribution u of these chemicals solves

−∆u = f (m).

The population reacts by moving in the direction of the
gradient of this distribution:

mt − div(mDu) = ∆m.
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Benamou-Brenier optimal transport method

Given two probability measures ρ0, ρ1;
The quadratic cost optimal transport problem can be
solved in terms of the system{

−ut + |Du|2
2 = 0

ρt − div(ρDu) = 0,

with ρ(x ,0) = ρ0(x), ρ(x ,1) = ρ1(x).
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Mean field models

The canonical mathematical structure of mean-field games is:
a Hamilton-Jacobi type equation
a transport of Fokker-Planck equation
this last equation is the adjoint of the linearization of the
first one.
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Standard MFG

Time dependent MFG{
−ut + H(Du, x) = ∆u + F (m)

mt − div(DpHm) = ∆m

with m(x ,0) and u(x ,T ) given.
Stationary version{

H(Du, x) = ∆u + F (m) + H
−div(DpHm) = ∆m
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Typical non-linearity F :
Non-local: F (m) = G(η ∗m).
Power-like: F (m) = mα.
Logarithm: F (m) = ln m.
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Typical Hamiltonian: H(x ,p) = a(x)(1 + |p|2)γ/2 + V (x)

subquadratic 1 ≤ γ < 2
quadratic γ = 2 and a = 1
superquadratic 2 ≤ γ < 3.

a, V periodic, smooth, a > 0.
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Extensions

These standard models have been studied extensively
(local and non-local F , first order cases, planning
problems...).
However, in real world applications a few additional
complications arise since many interesting models have
different structure
This work is part of a program which aims at building
techniques to address those difficulties.
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Non-standard structures I

Congestion effects. An example would be{
V (x) + H(Du)

mα = ∆u + F (m) + H
−div(DpHm1−α) = ∆m

Extended models which arise when costs depend on the
actions of the players

H(Du, x ,B) = ∆u + F (m) + H
−div(Bm) = ∆m
B = −DpH(Du, xB).
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Non-standard structures II

Lack of differentiability of the Hamilton-Jacobi equation
which arises in optimal stopping and gives rise to study{

βε(u) + H(Du, x) = ∆u + F (m) + H
β′ε(u)m − div(DpHm) = ∆m

where βε(z) = 0 if z < 0 and limε→0 βε(z) = +∞.
Lack of adjoint structure (eg Hughes-type models in crowd
dynamics) {

H(Du, x) = ∆u + F (m)

mt − div(DpHm) = ∆m
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Stochastic optimal control

Define

u(x , t) = inf
v

E
∫ T

t
L(x,v)ds + ψ(x(T )),

where the infimum is taken, for instance, over all progressively
measurable controls v with respect to the filtration generated by
a Brownian motion Wt , and

dx = vdt + σdWt , x(t) = x .
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Hamilton-Jacobi equation

The Hamiltonian is defined as

H(p, x) = sup
v∈Rd

−v · p − L(x , v).

If the value function u is smooth then it solves the
Hamilton-Jacobi equation

−ut + H(x ,Dxu) =
σ2

2
∆u,

together with the terminal condition

u(x ,T ) = ψ(x).
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Verification theorem

Theorem
If u is a smooth solution to the Hamilton-Jacobi equation then

v = −DpH(x,Dxu(x, t))

is an optimal control.
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Consider a diffusion

dx = b(x, t)dt + σdWt

with initial distribution of x(0) given by a probability measure
m(x ,0). That is

P(x(0) ∈ A) =

∫
A

m(x ,0)dx .

Define m(x , t) by

P(x(t) ∈ A) =

∫
A

m(x , t)dx .
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The probability measure m solves the Focker Plank equation

mt + div(b(x , t)m) =
σ2

2
∆m.

In particular if b = −DpH(Dxu(x , t), x) is the optimal feedback
for the control problem above

mt − div(DpHm) =
σ2

2
∆m.
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The mean field game problem arises when a optimal
(deterministic or stochastic) control problem has a Lagrangian
L or terminal cost ψ depending on a population distribution m.

u(x , t) = inf
v

E
∫ T

t
L(x, ẋ,m(·, s))ds + ψ(x(T ),m(·,T )).

where the infimum is taken, for instance, over all progressively
measurable controls v with respect to the filtration generated by
a Brownian motion Wt , and

dx = vdt + σdWt .
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L(x, ẋ,m(·, s))ds + ψ(x(T ),m(·,T )).

where the infimum is taken, for instance, over all progressively
measurable controls v with respect to the filtration generated by
a Brownian motion Wt , and

dx = vdt + σdWt .

Diogo Gomes Mean field games



Introduction
A few examples

Derivation of mean-field games
Stationary problems

Time dependent mean-field games
Time dependent Hamiltonians - the proof

Then the value function u solves the Hamilton-Jacobi equation

−ut + H(Dxu, x ,m) =
σ2

2
∆u

In this setting one assumes the following rationality hypothesis,
that is, that each agent in the population follows the optimal
dynamics and then m is a solution of

mt − div(DpHm) =
σ2

2
∆m.

This class of problems were introduced by Lions and Lasry, as
well as, in the engineering community by P. Caines and his
co-workers.
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In addition to the PDE, the value function u and the probability
measure m must satisfy certain boundary conditions:

1 Initial-terminal problem

u(x ,T ) = ψ(x) m(x ,0) = m0(x).

2 Planning problem

m(x ,0) = m0 m(x ,T ) = mT
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Consider the variational problem

min
∫
Td

eH(Du,x)dx .

The Euler-Lagrange equation is the Mean Field Game:{
H(Du, x) = ln m + H
−div(DpHm) = 0,

where the constant H is chosen so that
∫

m = 1.
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One can consider also various other extensions:
- Time-dependent problems∫ T

0

∫
Td

e−ut +H(Dx u,x)dxdt

- Second order problems∫
Td

e−∆u+H(Du,x)dx

- Other convex nonlinearities∫
Td

g(H(Du, x)).
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The Euler-Lagrange equation corresponding to these
problems are mean-field games
Variational mean-field games include a large class of
interesting mean-field games with local dependence on the
measure;
Include important examples such as the p-Laplacian as
special cases;
Give rise to a very interesting class of convex but not
coercive variational problems.
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The stochastic Evans-Aronsson problem concerns the
variational problem

min
u

∫
Td

e−∆u+H(Du,x)

This problem gives rise to the mean-field game{
−∆u + H(Du, x) = ln m
−∆m − div(DpHm) = 0.
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Theorem (G. , Sanchez-Morgado)

Suppose H(p, x) = 1
2 |P + p|2 + V (x). Let u and v be periodic

solutions to {
−∆u + 1

2 |P + Du|2 + V (x) = v−u
2

∆v + 1
2 |P + Dv |2 + V (x) = v−u

2 .

Then (u,m) for
m = e

v−u
2

is a solution of the mean-field game.
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In the quadratic case thanks to the previous
transformations we (G. and Sanchez-Morgado) were able
to establish existence of a smooth solution.
In low dimension d ≤ 3 under quadratic growth conditions
we (G. and Sanchez-Morgado) also obtained existence of
a smooth solution.
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The general case, where F (m) = ln m or F (m) = mα in higher
dimensions: {

−∆u + H(Du, x) = F (m)

−∆m − div(DpHm) = 0,

was addressed by G. , Patrizi, Voskanyan.
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Extended mean-field games

We consider periodic solutions to
H(x ,Dxu,m,V ) = ∆u + H̄
div(Vm) = ∆m
V = −DpH(x ,Dxu,m,V ).
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H is quasivariational:

|H(x ,p,m,V )− H0(x ,p,m,V ) + g(m(x))| ≤ C, (A1)

H0 non-local in m, and

g(m) = ln m, or g(m) = mγ , with 0 < γ <
1

d − 4

H + g(m) smooth in x ,p, convex in p
H is quadratic-like growth in p
Small dependence in velocity field V
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Example

H(x ,p,m,V ) = α(x)
|p|2

2
+ β

∫
Td

p · Vdm − g(m),

with β small.
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Theorem (G., Patrizi, Voskanyan)

Under the previous hypothesis, there exists a classical solution
(u,m,V ,H).
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Running costs such as

L(x , v ,m) = mα(x)
|v |2

2
− V (x)

correspond to the congestion MFG:{
u + V (x) + |Du|2

2mα = ∆u + H
m − div(DpHm1−α) = ∆m + 1
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Theorem (G., H. Mitake)

Under the previous hypothesis, there exists a classical solution
(u,m) with m bounded by below if 0 < α < 1.
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The proof relies on an a-priori bound for 1
m in L∞.

This bound depends on an explicit cancellation.
It is not known if similar results hold for general models or
time-dependent problems.
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Initial-terminal value problem

−ut + H(Dxu, x) =
σ2

2
∆u + mα

mt − div(DpHm) =
σ2

2
∆m.

Together with initial conditions for m and terminal conditions for
u.
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Weak solutions

Lions (unpublished), Cardaliaguet (variational methods,
first order problems), Porretta (upcoming paper)
Planning problem - Porretta.
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Regularity for time-dependent problems

Existence of smooth solutions holds for:
Subquadratic Hamiltonians and α < ασ where ασ > 2

d−2
(G., Morgado and Pimentel); the case α < 2

d−2 was
previous addressed by Lions.
Exactly quadratic, no conditions of α (Cardaliaguet, Lasry,
Lions, and Porretta).
Superquadratic Hamiltonians α < αΣ, where αΣ > 1

d−2 (G.,
Morgado and Pimentel).
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Logarithmic nonlinearity

The logarithmic nonlinearity:

−ut + H(Dxu, x) =
σ2

2
∆u + ln m

mt − div(DpHm) =
σ2

2
∆m.

was addressed by G.-Pimentel for subquadratic Hamiltonians.
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Superquadratic case

All the proofs in three lines

‖u‖ ≤ C + C‖m‖β1

‖m‖ ≤ C + C‖u‖β2

"result" (‖u‖ bounded) follows if β1β2 < 1.
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Polynomial estimates for the Fokker-Planck equation

Theorem
Let (u,m) be a solution and ‖m‖L∞([0,T ],Lβ0 (Td )) ≤ C, for some

β0 ≥ 1. Suppose further that p > d
2 and r = p(d(θ−1)+2)

2p−d . Then,∫
Td

(m)βn (τ, x) dx ≤ C + C
∥∥∥|DpH|2

∥∥∥rn

Lr (0,T ;Lp(Td ))
,

where
rn = r

θn − 1
θ − 1

, θ > 1 and βn = θnβ0.

Diogo Gomes Mean field games



Introduction
A few examples

Derivation of mean-field games
Stationary problems

Time dependent mean-field games
Time dependent Hamiltonians - the proof

Subquadratic case
Superquadratic case

Gagliardo-Nirenberg inequality

Theorem
Let (u,m) be a solution and assume that H is subquadratic. For
1 < p, r <∞ there are positive constants c and C such that

‖D2u‖Lr (0,T ;Lp(Td )) ≤ c‖F (m)‖Lr (0,T ;Lp(Td ))

+ c‖u‖
γ

2−γ

L∞(0,T ;L∞(Td ))
+ C.
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Polynomial estimates for the Fokker-Planck equation

Theorem
Let (u,m) be a solution. Assume that H is superquadratic.
Assume further that 0 < µ < 1 < β0, θ, p, r , and 0 ≤ υ ≤ 1
satisfy

αp =
θnβ0

θn + υ − θnυ
,

and r = d(θ−1)+2
2 . Then

‖F‖L∞(0,T ;Lp(Td )) ≤ C + C ‖Du‖
(2+2µ)(θn−1)rυα

θnβ0(θ−1)

L∞(0,T ;L∞(Td ))
.
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Estimates by the non-linear adjoint method

Theorem

Suppose that H is superquadratic. Let (u,m) be a solution and
assume that p > d. Then

‖Du‖L∞(0,T ;L∞(Td )) ≤C + C‖F (m)‖
1

1−µ

L∞(0,T ;Lp(Td ))

+ C‖F (m)‖
1

1−µ

L∞(0,T ;Lp(Td ))
‖u‖

1
1−µ

L∞(0,T ;L∞(Td ))
.
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