Mean field games

Diogo Gomes

King Abdullah University of Science and Technology (KAUST), CEMSE Division, Saudi Arabia.

July 2014

Outline

- Introduction
- A few examples
- Openion of mean-field games
- Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

Outline

- Introduction
- A few examples
- Derivation of mean-field games
- Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

Mean-field games

- Mean field games is a class of problems which attempts to model and understand the behaviour of large groups of rational agents.
- These models were developed in the mathematical community by P.L. Lions and J.M. Lasry, and in the engineering community by P. Caines, M. Huang, and R. Malhamé.
- This research area has a wide range of applications as well as a large number of non-trivial mathematical challenges.

Mean-field games

- Mean field games is a class of problems which attempts to model and understand the behaviour of large groups of rational agents.
- These models were developed in the mathematical community by P.L. Lions and J.M. Lasry, and in the engineering community by P. Caines, M. Huang, and R. Malhamé.
- This research area has a wide range of applications as well as a large number of non-trivial mathematical challenges.

Mean-field games

- Mean field games is a class of problems which attempts to model and understand the behaviour of large groups of rational agents.
- These models were developed in the mathematical community by P.L. Lions and J.M. Lasry, and in the engineering community by P. Caines, M. Huang, and R. Malhamé.
- This research area has a wide range of applications as well as a large number of non-trivial mathematical challenges.

- Non-renewable resources (Lions, Lasry, and Guéant)
- Planning problems (Porretta; Achdou, Camilli, and Dolcetta)
- Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas; Lachapelle, and Turinici)
- Price formation models (Lions, and Lasry; Markowich, Caffarelli, Wolfram, and Pietschmann)
- Social Network Dynamics (G., Mohr, and Souza; Guéant)

- Non-renewable resources (Lions, Lasry, and Guéant)
- Planning problems (Porretta; Achdou, Camilli, and Dolcetta)
- Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas; Lachapelle, and Turinici)
- Price formation models (Lions, and Lasry; Markowich, Caffarelli, Wolfram, and Pietschmann)
- Social Network Dynamics (G., Mohr, and Souza; Guéant)

- Non-renewable resources (Lions, Lasry, and Guéant)
- Planning problems (Porretta; Achdou, Camilli, and Dolcetta)
- Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas; Lachapelle, and Turinici)
- Price formation models (Lions, and Lasry; Markowich, Caffarelli, Wolfram, and Pietschmann)
- Social Network Dynamics (G., Mohr, and Souza; Guéant)

- Non-renewable resources (Lions, Lasry, and Guéant)
- Planning problems (Porretta; Achdou, Camilli, and Dolcetta)
- Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas; Lachapelle, and Turinici)
- Price formation models (Lions, and Lasry; Markowich, Caffarelli, Wolfram, and Pietschmann)
- Social Network Dynamics (G., Mohr, and Souza; Guéant)

- Non-renewable resources (Lions, Lasry, and Guéant)
- Planning problems (Porretta; Achdou, Camilli, and Dolcetta)
- Growth theory (Lions, Lasry, and Guéant; Moll, and Lucas; Lachapelle, and Turinici)
- Price formation models (Lions, and Lasry; Markowich, Caffarelli, Wolfram, and Pietschmann)
- Social Network Dynamics (G., Mohr, and Souza; Guéant)

- Crowd and pedestrian motion (Kamareddine, and Hughes; Burger, Di Francesco, Markowich, Pietschmann, and Wolfram)
- Chemotaxis (Perthame et al; Carrillo et al)
- Flocking and swarming (Slepcev et al, Carrillo et al; Bertozzi et al)
- Differential population games, evolutionary games, mean-field learning (Tembine)
- Wireless communication (Huang, Caines and Malhamé; Yin, Mehta, Meyn, and Shanbhag)

- Crowd and pedestrian motion (Kamareddine, and Hughes; Burger, Di Francesco, Markowich, Pietschmann, and Wolfram)
- Chemotaxis (Perthame et al; Carrillo et al)
- Flocking and swarming (Slepcev et al, Carrillo et al; Bertozzi et al)
- Differential population games, evolutionary games, mean-field learning (Tembine)
- Wireless communication (Huang, Caines and Malhamé; Yin, Mehta, Meyn, and Shanbhag)

- Crowd and pedestrian motion (Kamareddine, and Hughes; Burger, Di Francesco, Markowich, Pietschmann, and Wolfram)
- Chemotaxis (Perthame et al; Carrillo et al)
- Flocking and swarming (Slepcev et al, Carrillo et al; Bertozzi et al)
- Differential population games, evolutionary games, mean-field learning (Tembine)
- Wireless communication (Huang, Caines and Malhamé; Yin, Mehta, Meyn, and Shanbhag)

- Crowd and pedestrian motion (Kamareddine, and Hughes; Burger, Di Francesco, Markowich, Pietschmann, and Wolfram)
- Chemotaxis (Perthame et al; Carrillo et al)
- Flocking and swarming (Slepcev et al, Carrillo et al; Bertozzi et al)
- Differential population games, evolutionary games, mean-field learning (Tembine)
- Wireless communication (Huang, Caines and Malhamé; Yin, Mehta, Meyn, and Shanbhag)

- Crowd and pedestrian motion (Kamareddine, and Hughes; Burger, Di Francesco, Markowich, Pietschmann, and Wolfram)
- Chemotaxis (Perthame et al; Carrillo et al)
- Flocking and swarming (Slepcev et al, Carrillo et al; Bertozzi et al)
- Differential population games, evolutionary games, mean-field learning (Tembine)
- Wireless communication (Huang, Caines and Malhamé; Yin, Mehta, Meyn, and Shanbhag)

Outline

- Introduction
- A few examples
- Derivation of mean-field games
- 4 Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- 5 Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

- A probability density *m* enconding a population distribution;
- A "potential" or "value function" u which measures the effects of the population in the environment;
- A partial differential equation for u which depends on m (tipically a nonlinear elliptic or parabolic equation)
- A partial differential equation for m which is driven by the potential u.

- A probability density *m* enconding a population distribution;
- A "potential" or "value function" u which measures the effects of the population in the environment;
- A partial differential equation for u which depends on m (tipically a nonlinear elliptic or parabolic equation)
- A partial differential equation for m which is driven by the potential u.

- A probability density *m* enconding a population distribution;
- A "potential" or "value function" u which measures the effects of the population in the environment;
- A partial differential equation for u which depends on m (tipically a nonlinear elliptic or parabolic equation)
- A partial differential equation for m which is driven by the potential u.

- A probability density m enconding a population distribution;
- A "potential" or "value function" u which measures the effects of the population in the environment;
- A partial differential equation for u which depends on m (tipically a nonlinear elliptic or parabolic equation)
- A partial differential equation for m which is driven by the potential u.

Hughes-like models

- Consider a region Ω , a population distribution m(x, t). Each agent wants to leave Ω as fast as possible.
- Taking into account the congestion effects the time to the exit of a single agent if the whole population is frozen satisfies the equation

$$\frac{1}{2}|Du|^2 = \frac{1}{(6-m)^2}.$$

 Each agent follows the "instantaneous" shortest exit path and so the population evolves according to

$$m_t - \operatorname{div}(mDu) = 0$$

Hughes-like models

- Consider a region Ω , a population distribution m(x, t). Each agent wants to leave Ω as fast as possible.
- Taking into account the congestion effects the time to the exit of a single agent if the whole population is frozen satisfies the equation

$$\frac{1}{2}|Du|^2=\frac{1}{(6-m)^2}.$$

 Each agent follows the "instantaneous" shortest exit path and so the population evolves according to

$$m_t - \operatorname{div}(mDu) = 0$$

Hughes-like models

- Consider a region Ω , a population distribution m(x, t). Each agent wants to leave Ω as fast as possible.
- Taking into account the congestion effects the time to the exit of a single agent if the whole population is frozen satisfies the equation

$$\frac{1}{2}|Du|^2=\frac{1}{(6-m)^2}.$$

 Each agent follows the "instantaneous" shortest exit path and so the population evolves according to

$$m_t - \operatorname{div}(mDu) = 0$$

Keller-Segel Chemotaxis model

- Consider a biological population described by a density m.
- This population produces chemicals which attract or repel other members of the population and which difuse very fast. The spatial distribution u of these chemicals solves

$$-\Delta u=f(m).$$

 The population reacts by moving in the direction of the gradient of this distribution:

$$m_t - \operatorname{div}(mDu) = \Delta m.$$

Keller-Segel Chemotaxis model

- Consider a biological population described by a density m.
- This population produces chemicals which attract or repel other members of the population and which difuse very fast. The spatial distribution u of these chemicals solves

$$-\Delta u = f(m).$$

 The population reacts by moving in the direction of the gradient of this distribution:

$$m_t - \operatorname{div}(mDu) = \Delta m.$$

Keller-Segel Chemotaxis model

- Consider a biological population described by a density m.
- This population produces chemicals which attract or repel other members of the population and which difuse very fast. The spatial distribution u of these chemicals solves

$$-\Delta u = f(m)$$
.

 The population reacts by moving in the direction of the gradient of this distribution:

$$m_t - \operatorname{div}(mDu) = \Delta m$$
.

Benamou-Brenier optimal transport method

- Given two probability measures ρ_0 , ρ_1 ;
- The quadratic cost optimal transport problem can be solved in terms of the system

$$\begin{cases} -u_t + \frac{|Du|^2}{2} = 0\\ \rho_t - \operatorname{div}(\rho Du) = 0, \end{cases}$$

with
$$\rho(x,0) = \rho_0(x)$$
, $\rho(x,1) = \rho_1(x)$.

Benamou-Brenier optimal transport method

- Given two probability measures ρ_0 , ρ_1 ;
- The quadratic cost optimal transport problem can be solved in terms of the system

$$\begin{cases} -u_t + \frac{|Du|^2}{2} = 0\\ \rho_t - \operatorname{div}(\rho Du) = 0, \end{cases}$$

with
$$\rho(x, 0) = \rho_0(x)$$
, $\rho(x, 1) = \rho_1(x)$.

Mean field models

- a Hamilton-Jacobi type equation
- a transport of Fokker-Planck equation
- this last equation is the adjoint of the linearization of the first one.

Mean field models

- a Hamilton-Jacobi type equation
- a transport of Fokker-Planck equation
- this last equation is the adjoint of the linearization of the first one.

Mean field models

- a Hamilton-Jacobi type equation
- a transport of Fokker-Planck equation
- this last equation is the adjoint of the linearization of the first one.

Mean field models

- a Hamilton-Jacobi type equation
- a transport of Fokker-Planck equation
- this last equation is the adjoint of the linearization of the first one.

Standard MFG

Time dependent MFG

$$\begin{cases} -u_t + H(Du, x) = \Delta u + F(m) \\ m_t - \operatorname{div}(D_p Hm) = \Delta m \end{cases}$$

with m(x,0) and u(x,T) given.

Stationary version

$$\begin{cases} H(Du, x) = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(D_p H m) = \Delta m \end{cases}$$

Standard MFG

Time dependent MFG

$$\begin{cases} -u_t + H(Du, x) = \Delta u + F(m) \\ m_t - \operatorname{div}(D_p Hm) = \Delta m \end{cases}$$

with m(x,0) and u(x,T) given.

Stationary version

$$\begin{cases} H(Du, x) = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(D_p H m) = \Delta m \end{cases}$$

Typical non-linearity *F*:

- Non-local: $F(m) = G(\eta * m)$.
- Power-like: $F(m) = m^{\alpha}$.
- Logarithm: $F(m) = \ln m$.

Typical non-linearity *F*:

- Non-local: $F(m) = G(\eta * m)$.
- Power-like: $F(m) = m^{\alpha}$.
- Logarithm: $F(m) = \ln m$.

Typical non-linearity *F*:

- Non-local: $F(m) = G(\eta * m)$.
- Power-like: $F(m) = m^{\alpha}$.
- Logarithm: $F(m) = \ln m$.

Typical non-linearity *F*:

- Non-local: $F(m) = G(\eta * m)$.
- Power-like: $F(m) = m^{\alpha}$.
- Logarithm: $F(m) = \ln m$.

Typical Hamiltonian:
$$H(x,p) = a(x)(1+|p|^2)^{\gamma/2} + V(x)$$

- subquadratic $1 \le \gamma < 2$
- quadratic $\gamma = 2$ and a = 1
- superquadratic $2 \le \gamma < 3$.
- a, V periodic, smooth, a > 0.

Typical Hamiltonian:
$$H(x,p) = a(x)(1+|p|^2)^{\gamma/2} + V(x)$$

- subquadratic 1 $\leq \gamma <$ 2
- quadratic $\gamma = 2$ and a = 1
- superquadratic $2 \le \gamma < 3$.
- $a,\ V$ periodic, smooth, a>0.

Typical Hamiltonian:
$$H(x,p) = a(x)(1+|p|^2)^{\gamma/2} + V(x)$$

- subquadratic $1 \le \gamma < 2$
- quadratic $\gamma = 2$ and a = 1
- superquadratic $2 \le \gamma < 3$.
- $a,\ V$ periodic, smooth, a>0.

Typical Hamiltonian:
$$H(x,p) = a(x)(1+|p|^2)^{\gamma/2} + V(x)$$

- subquadratic $1 \le \gamma < 2$
- quadratic $\gamma = 2$ and a = 1
- superquadratic $2 \le \gamma < 3$.
- a, V periodic, smooth, a > 0.

Typical Hamiltonian:
$$H(x, p) = a(x)(1 + |p|^2)^{\gamma/2} + V(x)$$

- subquadratic $1 \le \gamma < 2$
- quadratic $\gamma = 2$ and a = 1
- superquadratic $2 \le \gamma < 3$.
- a, V periodic, smooth, a > 0.

Extensions

- These standard models have been studied extensively (local and non-local F, first order cases, planning problems...).
- However, in real world applications a few additional complications arise since many interesting models have different structure
- This work is part of a program which aims at building techniques to address those difficulties.

Extensions

- These standard models have been studied extensively (local and non-local F, first order cases, planning problems...).
- However, in real world applications a few additional complications arise since many interesting models have different structure
- This work is part of a program which aims at building techniques to address those difficulties.

Extensions

- These standard models have been studied extensively (local and non-local F, first order cases, planning problems...).
- However, in real world applications a few additional complications arise since many interesting models have different structure
- This work is part of a program which aims at building techniques to address those difficulties.

Non-standard structures I

Congestion effects. An example would be

$$\begin{cases} V(x) + \frac{H(Du)}{m^{\alpha}} = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(D_p H m^{1-\alpha}) = \Delta m \end{cases}$$

 Extended models which arise when costs depend on the actions of the players

$$\begin{cases} H(Du, x, B) = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(Bm) = \Delta m \\ B = -D_p H(Du, xB). \end{cases}$$

Non-standard structures I

Congestion effects. An example would be

$$\begin{cases} V(x) + \frac{H(Du)}{m^{\alpha}} = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(D_{p}Hm^{1-\alpha}) = \Delta m \end{cases}$$

 Extended models which arise when costs depend on the actions of the players

$$\begin{cases} H(Du, x, B) = \Delta u + F(m) + \overline{H} \\ -\operatorname{div}(Bm) = \Delta m \\ B = -D_p H(Du, xB). \end{cases}$$

Non-standard structures II

 Lack of differentiability of the Hamilton-Jacobi equation which arises in optimal stopping and gives rise to study

$$\begin{cases} \beta_{\epsilon}(u) + H(Du, x) = \Delta u + F(m) + \overline{H} \\ \beta'_{\epsilon}(u)m - \text{div}(D_{p}Hm) = \Delta m \end{cases}$$

where
$$\beta_{\epsilon}(z) = 0$$
 if $z < 0$ and $\lim_{\epsilon \to 0} \beta_{\epsilon}(z) = +\infty$.

 Lack of adjoint structure (eg Hughes-type models in crowd dynamics)

$$\begin{cases} H(Du, x) = \Delta u + F(m) \\ m_t - \text{div}(D_p H m) = \Delta m \end{cases}$$

Non-standard structures II

 Lack of differentiability of the Hamilton-Jacobi equation which arises in optimal stopping and gives rise to study

$$\begin{cases} \beta_{\epsilon}(u) + H(Du, x) = \Delta u + F(m) + \overline{H} \\ \beta'_{\epsilon}(u)m - \text{div}(D_{\rho}Hm) = \Delta m \end{cases}$$

where
$$\beta_{\epsilon}(z) = 0$$
 if $z < 0$ and $\lim_{\epsilon \to 0} \beta_{\epsilon}(z) = +\infty$.

 Lack of adjoint structure (eg Hughes-type models in crowd dynamics)

$$\begin{cases} H(Du, x) = \Delta u + F(m) \\ m_t - \operatorname{div}(D_p Hm) = \Delta m \end{cases}$$

Outline

- Introduction
- 2 A few examples
- Derivation of mean-field games
- 4 Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- 5 Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superguadratic case

Stochastic optimal control

Define

$$u(x,t) = \inf_{\mathbf{v}} E \int_{t}^{T} L(\mathbf{x},\mathbf{v}) ds + \psi(\mathbf{x}(T)),$$

where the infimum is taken, for instance, over all progressively measurable controls \mathbf{v} with respect to the filtration generated by a Brownian motion W_t , and

$$d\mathbf{x} = \mathbf{v}dt + \sigma dW_t, \quad \mathbf{x}(t) = x.$$

Stochastic optimal control

Define

$$u(x,t) = \inf_{\mathbf{v}} E \int_{t}^{T} L(\mathbf{x},\mathbf{v}) ds + \psi(\mathbf{x}(T)),$$

where the infimum is taken, for instance, over all progressively measurable controls \mathbf{v} with respect to the filtration generated by a Brownian motion W_t , and

$$d\mathbf{x} = \mathbf{v}dt + \sigma dW_t, \quad \mathbf{x}(t) = x.$$

Hamilton-Jacobi equation

The Hamiltonian is defined as

$$H(p,x) = \sup_{v \in \mathbb{R}^d} -v \cdot p - L(x,v).$$

If the value function u is smooth then it solves the Hamilton-Jacobi equation

$$-u_t + H(x, D_x u) = \frac{\sigma^2}{2} \Delta u,$$

together with the terminal condition

$$u(x,T)=\psi(x).$$

Hamilton-Jacobi equation

The Hamiltonian is defined as

$$H(p,x) = \sup_{v \in \mathbb{R}^d} -v \cdot p - L(x,v).$$

If the value function u is smooth then it solves the Hamilton-Jacobi equation

$$-u_t + H(x, D_x u) = \frac{\sigma^2}{2} \Delta u,$$

together with the terminal condition

$$u(x,T)=\psi(x).$$

Hamilton-Jacobi equation

The Hamiltonian is defined as

$$H(p,x) = \sup_{v \in \mathbb{R}^d} -v \cdot p - L(x,v).$$

If the value function u is smooth then it solves the Hamilton-Jacobi equation

$$-u_t + H(x, D_x u) = \frac{\sigma^2}{2} \Delta u,$$

together with the terminal condition

$$u(x,T)=\psi(x).$$

Verification theorem

Theorem

If u is a smooth solution to the Hamilton-Jacobi equation then

$$\mathbf{v} = -D_{p}H(\mathbf{x}, D_{x}u(\mathbf{x}, t))$$

is an optimal control.

Consider a diffusion

$$d\mathbf{x} = b(\mathbf{x}, t)dt + \sigma dW_t$$

with initial distribution of $\mathbf{x}(0)$ given by a probability measure m(x,0). That is

$$P(\mathbf{x}(0) \in A) = \int_A m(x,0) dx.$$

Define m(x, t) by

$$P(\mathbf{x}(t) \in A) = \int_A m(x, t) dx.$$

Consider a diffusion

$$d\mathbf{x} = b(\mathbf{x}, t)dt + \sigma dW_t$$

with initial distribution of $\mathbf{x}(0)$ given by a probability measure m(x,0). That is

$$P(\mathbf{x}(0) \in A) = \int_A m(x,0) dx.$$

Define m(x, t) by

$$P(\mathbf{x}(t) \in A) = \int_A m(x, t) dx.$$

Consider a diffusion

$$d\mathbf{x} = b(\mathbf{x}, t)dt + \sigma dW_t$$

with initial distribution of $\mathbf{x}(0)$ given by a probability measure m(x,0). That is

$$P(\mathbf{x}(0) \in A) = \int_A m(x,0) dx.$$

Define m(x, t) by

$$P(\mathbf{x}(t) \in A) = \int_A m(x, t) dx.$$

The probability measure *m* solves the Focker Plank equation

$$m_t + \operatorname{div}(b(x,t)m) = \frac{\sigma^2}{2}\Delta m.$$

In particular if $b = -D_p H(D_x u(x, t), x)$ is the optimal feedback for the control problem above

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m$$

The probability measure *m* solves the Focker Plank equation

$$m_t + \operatorname{div}(b(x,t)m) = \frac{\sigma^2}{2}\Delta m.$$

In particular if $b = -D_pH(D_xu(x,t),x)$ is the optimal feedback for the control problem above

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

The mean field game problem arises when a optimal (deterministic or stochastic) control problem has a Lagrangian L or terminal cost ψ depending on a population distribution m.

$$u(x,t) = \inf_{\mathbf{v}} E \int_{t}^{T} L(\mathbf{x}, \dot{\mathbf{x}}, m(\cdot, s)) ds + \psi(\mathbf{x}(T), m(\cdot, T)).$$

where the infimum is taken, for instance, over all progressively measurable controls \mathbf{v} with respect to the filtration generated by a Brownian motion W_t , and

$$d\mathbf{x} = \mathbf{v}dt + \sigma dW_t.$$

The mean field game problem arises when a optimal (deterministic or stochastic) control problem has a Lagrangian L or terminal cost ψ depending on a population distribution m.

$$u(x,t) = \inf_{\mathbf{v}} E \int_{t}^{T} L(\mathbf{x}, \dot{\mathbf{x}}, m(\cdot, s)) ds + \psi(\mathbf{x}(T), m(\cdot, T)).$$

where the infimum is taken, for instance, over all progressively measurable controls \mathbf{v} with respect to the filtration generated by a Brownian motion W_t , and

$$d\mathbf{x} = \mathbf{v}dt + \sigma dW_t$$
.

Then the value function *u* solves the Hamilton-Jacobi equation

$$-u_t + H(D_x u, x, m) = \frac{\sigma^2}{2} \Delta u$$

In this setting one assumes the following rationality hypothesis, that is, that each agent in the population follows the optimal dynamics and then m is a solution of

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

This class of problems were introduced by Lions and Lasry, as well as, in the engineering community by P. Caines and his co-workers.

Then the value function *u* solves the Hamilton-Jacobi equation

$$-u_t + H(D_x u, x, m) = \frac{\sigma^2}{2} \Delta u$$

In this setting one assumes the following rationality hypothesis, that is, that each agent in the population follows the optimal dynamics and then m is a solution of

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

This class of problems were introduced by Lions and Lasry, as well as, in the engineering community by P. Caines and his co-workers.

Then the value function *u* solves the Hamilton-Jacobi equation

$$-u_t + H(D_x u, x, m) = \frac{\sigma^2}{2} \Delta u$$

In this setting one assumes the following rationality hypothesis, that is, that each agent in the population follows the optimal dynamics and then m is a solution of

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

This class of problems were introduced by Lions and Lasry, as well as, in the engineering community by P. Caines and his co-workers.

In addition to the PDE, the value function u and the probability measure m must satisfy certain boundary conditions:

Initial-terminal problem

$$u(x, T) = \psi(x)$$
 $m(x, 0) = m_0(x)$.

Planning problem

$$m(x,0) = m_0 \qquad m(x,T) = m_T$$

In addition to the PDE, the value function u and the probability measure m must satisfy certain boundary conditions:

Initial-terminal problem

$$u(x,T)=\psi(x)$$
 $m(x,0)=m_0(x).$

Planning problem

$$m(x,0) = m_0 \qquad m(x,T) = m_T$$

In addition to the PDE, the value function u and the probability measure m must satisfy certain boundary conditions:

Initial-terminal problem

$$u(x,T)=\psi(x)$$
 $m(x,0)=m_0(x).$

Planning problem

$$m(x,0) = m_0$$
 $m(x,T) = m_T$

Variational mean-field game Extended mean-field games Congestion models

Outline

- Introduction
- A few examples
- Derivation of mean-field games
- Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- 5 Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

Consider the variational problem

$$\min \int_{\mathbb{T}^d} e^{H(Du,x)} dx.$$

The Euler-Lagrange equation is the Mean Field Game:

$$\begin{cases} H(Du, x) = \ln m + \overline{H} \\ -\operatorname{div}(D_p H m) = 0, \end{cases}$$

where the constant \overline{H} is chosen so that $\int m=1$.

Consider the variational problem

$$\min \int_{\mathbb{T}^d} e^{H(Du,x)} dx.$$

The Euler-Lagrange equation is the Mean Field Game:

$$\begin{cases} H(Du, x) = \ln m + \overline{H} \\ -\operatorname{div}(D_p H m) = 0, \end{cases}$$

where the constant \overline{H} is chosen so that $\int m = 1$.

- Time-dependent problems

$$\int_0^T \int_{\mathbb{T}^d} e^{-u_t + H(D_X u, x)} dx dx$$

Second order problems

$$\int_{\mathbb{T}^d} e^{-\Delta u + H(Du,x)} dx$$

$$\int_{\mathbb{T}^d} g(H(Du,x)).$$

- Time-dependent problems

$$\int_0^T \int_{\mathbb{T}^d} e^{-u_t + H(D_x u, x)} dx dt$$

Second order problems

$$\int_{\mathbb{T}^d} e^{-\Delta u + H(Du,x)} dx$$

$$\int_{\mathbb{T}^d} g(H(Du,x)).$$

- Time-dependent problems

$$\int_0^T \int_{\mathbb{T}^d} e^{-u_t + H(D_x u, x)} dx dt$$

- Second order problems

$$\int_{\mathbb{T}^d} e^{-\Delta u + H(Du,x)} dx$$

$$\int_{\mathbb{T}^d} g(H(Du,x)).$$

- Time-dependent problems

$$\int_0^T \int_{\mathbb{T}^d} e^{-u_t + H(D_x u, x)} dx dt$$

- Second order problems

$$\int_{\mathbb{T}^d} e^{-\Delta u + H(Du, x)} dx$$

$$\int_{\mathbb{T}^d} g(H(Du,x)).$$

- The Euler-Lagrange equation corresponding to these problems are mean-field games
- Variational mean-field games include a large class of interesting mean-field games with local dependence on the measure;
- Include important examples such as the p-Laplacian as special cases;
- Give rise to a very interesting class of convex but not coercive variational problems.

- The Euler-Lagrange equation corresponding to these problems are mean-field games
- Variational mean-field games include a large class of interesting mean-field games with local dependence on the measure;
- Include important examples such as the p-Laplacian as special cases;
- Give rise to a very interesting class of convex but not coercive variational problems.

- The Euler-Lagrange equation corresponding to these problems are mean-field games
- Variational mean-field games include a large class of interesting mean-field games with local dependence on the measure;
- Include important examples such as the p-Laplacian as special cases;
- Give rise to a very interesting class of convex but not coercive variational problems.

- The Euler-Lagrange equation corresponding to these problems are mean-field games
- Variational mean-field games include a large class of interesting mean-field games with local dependence on the measure;
- Include important examples such as the p-Laplacian as special cases;
- Give rise to a very interesting class of convex but not coercive variational problems.

The stochastic Evans-Aronsson problem concerns the variational problem

$$\min_{u} \int_{\mathbb{T}^d} e^{-\Delta u + H(Du,x)}$$

This problem gives rise to the mean-field game

$$\begin{cases} -\Delta u + H(Du, x) = \ln m \\ -\Delta m - \operatorname{div}(D_p Hm) = 0. \end{cases}$$

The stochastic Evans-Aronsson problem concerns the variational problem

$$\min_{u} \int_{\mathbb{T}^d} e^{-\Delta u + H(Du,x)}$$

This problem gives rise to the mean-field game

$$\begin{cases} -\Delta u + H(Du, x) = \ln m \\ -\Delta m - \operatorname{div}(D_p Hm) = 0. \end{cases}$$

Theorem (G., Sanchez-Morgado)

Suppose $H(p, x) = \frac{1}{2}|P + p|^2 + V(x)$. Let u and v be periodic solutions to

$$\begin{cases} -\Delta u + \frac{1}{2}|P + Du|^2 + V(x) &= \frac{v - u}{2} \\ \Delta v + \frac{1}{2}|P + Dv|^2 + V(x) &= \frac{v - u}{2}. \end{cases}$$

Then (u, m) for

$$m=e^{\frac{V-U}{2}}$$

is a solution of the mean-field game.

Theorem (G., Sanchez-Morgado)

Suppose $H(p, x) = \frac{1}{2}|P + p|^2 + V(x)$. Let u and v be periodic solutions to

$$\begin{cases} -\Delta u + \frac{1}{2}|P + Du|^2 + V(x) &= \frac{v - u}{2} \\ \Delta v + \frac{1}{2}|P + Dv|^2 + V(x) &= \frac{v - u}{2}. \end{cases}$$

Then (u, m) for

$$m=e^{\frac{v-u}{2}}$$

is a solution of the mean-field game.

Theorem (G., Sanchez-Morgado)

Suppose $H(p, x) = \frac{1}{2}|P + p|^2 + V(x)$. Let u and v be periodic solutions to

$$\begin{cases} -\Delta u + \frac{1}{2}|P + Du|^2 + V(x) &= \frac{v - u}{2} \\ \Delta v + \frac{1}{2}|P + Dv|^2 + V(x) &= \frac{v - u}{2}. \end{cases}$$

Then (u, m) for

$$m=e^{\frac{v-u}{2}}$$

is a solution of the mean-field game.

- In the quadratic case thanks to the previous transformations we (G. and Sanchez-Morgado) were able to establish existence of a smooth solution.
- In low dimension d ≤ 3 under quadratic growth conditions we (G. and Sanchez-Morgado) also obtained existence of a smooth solution.

- In the quadratic case thanks to the previous transformations we (G. and Sanchez-Morgado) were able to establish existence of a smooth solution.
- In low dimension d ≤ 3 under quadratic growth conditions we (G. and Sanchez-Morgado) also obtained existence of a smooth solution.

The general case, where $F(m) = \ln m$ or $F(m) = m^{\alpha}$ in higher dimensions:

$$\begin{cases} -\Delta u + H(Du, x) = F(m) \\ -\Delta m - \operatorname{div}(D_p Hm) = 0, \end{cases}$$

was addressed by G., Patrizi, Voskanyan.

Variational mean-field games Extended mean-field games Congestion models

Extended mean-field games

We consider periodic solutions to

$$\begin{cases} H(x, D_x u, m, V) = \Delta u + \bar{H} \\ \operatorname{div}(Vm) = \Delta m \\ V = -D_p H(x, D_x u, m, V). \end{cases}$$

H is quasivariational:

$$|H(x, p, m, V) - H_0(x, p, m, V) + g(m(x))| \le C,$$
 (A1)

 H_0 non-local in m, and

$$g(m) = \ln m$$
, or $g(m) = m^{\gamma}$, with $0 < \gamma < \frac{1}{d-4}$

- H + g(m) smooth in x, p, convex in p
- H is quadratic-like growth in p
- Small dependence in velocity field V

• H is quasivariational:

$$|H(x, p, m, V) - H_0(x, p, m, V) + g(m(x))| \le C,$$
 (A1)

 H_0 non-local in m, and

$$g(m) = \ln m$$
, or $g(m) = m^{\gamma}$, with $0 < \gamma < \frac{1}{d-4}$

- H + g(m) smooth in x, p, convex in p
- H is quadratic-like growth in p
- Small dependence in velocity field V

H is quasivariational:

$$|H(x, p, m, V) - H_0(x, p, m, V) + g(m(x))| \le C,$$
 (A1)

 H_0 non-local in m, and

$$g(m) = \ln m$$
, or $g(m) = m^{\gamma}$, with $0 < \gamma < \frac{1}{d-4}$

- H + g(m) smooth in x, p, convex in p
- H is quadratic-like growth in p
- Small dependence in velocity field V

Example

$$H(x, p, m, V) = \alpha(x) \frac{|p|^2}{2} + \beta \int_{\mathbb{T}^d} p \cdot V dm - g(m),$$

with β small.

Variational mean-field games Extended mean-field games Congestion models

Theorem (G., Patrizi, Voskanyan)

Under the previous hypothesis, there exists a classical solution (u, m, V, \overline{H}) .

Running costs such as

$$L(x, v, m) = m^{\alpha}(x) \frac{|v|^2}{2} - V(x)$$

correspond to the congestion MFG:

$$\begin{cases} u + V(x) + \frac{|Du|^2}{2m^{\alpha}} = \Delta u + \overline{H} \\ m - \operatorname{div}(D_p H m^{1-\alpha}) = \Delta m + 1 \end{cases}$$

Variational mean-field games Extended mean-field games Congestion models

Theorem (G., H. Mitake)

Under the previous hypothesis, there exists a classical solution (u,m) with m bounded by below if $0<\alpha<1$.

- The proof relies on an a-priori bound for $\frac{1}{m}$ in L^{∞} .
- This bound depends on an explicit cancellation.
- It is not known if similar results hold for general models or time-dependent problems.

- The proof relies on an a-priori bound for $\frac{1}{m}$ in L^{∞} .
- This bound depends on an explicit cancellation.
- It is not known if similar results hold for general models or time-dependent problems.

Variational mean-field game Extended mean-field games Congestion models

- The proof relies on an a-priori bound for $\frac{1}{m}$ in L^{∞} .
- This bound depends on an explicit cancellation.
- It is not known if similar results hold for general models or time-dependent problems.

Outline

- Introduction
- A few examples
- Derivation of mean-field games
- Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- 5 Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

Initial-terminal value problem

$$-u_t + H(D_x u, x) = \frac{\sigma^2}{2} \Delta u + m^{\alpha}$$

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

Together with initial conditions for m and terminal conditions for u.

Initial-terminal value problem

$$-u_t + H(D_x u, x) = \frac{\sigma^2}{2} \Delta u + m^{\alpha}$$

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

Together with initial conditions for m and terminal conditions for u.

Initial-terminal value problem

$$-u_t + H(D_x u, x) = \frac{\sigma^2}{2} \Delta u + m^{\alpha}$$

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

Together with initial conditions for m and terminal conditions for u.

Introduction
A few examples
Derivation of mean-field games
Stationary problems
Time dependent mean-field games
Time dependent hean-field games

Weak solutions

- Lions (unpublished), Cardaliaguet (variational methods, first order problems), Porretta (upcoming paper)
- Planning problem Porretta.

Regularity for time-dependent problems

Existence of smooth solutions holds for:

- Subquadratic Hamiltonians and $\alpha < \alpha_{\sigma}$ where $\alpha_{\sigma} > \frac{2}{d-2}$ (G., Morgado and Pimentel); the case $\alpha < \frac{2}{d-2}$ was previous addressed by Lions.
- Exactly quadratic, no conditions of α (Cardaliaguet, Lasry, Lions, and Porretta).
- Superquadratic Hamiltonians $\alpha < \alpha_{\Sigma}$, where $\alpha_{\Sigma} > \frac{1}{d-2}$ (G., Morgado and Pimentel).

Logarithmic nonlinearity

The logarithmic nonlinearity:

$$-u_t + H(D_x u, x) = \frac{\sigma^2}{2} \Delta u + \ln m$$

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

was addressed by G.-Pimentel for subquadratic Hamiltonians

Logarithmic nonlinearity

The logarithmic nonlinearity:

$$-u_t + H(D_x u, x) = \frac{\sigma^2}{2} \Delta u + \ln m$$

$$m_t - \operatorname{div}(D_p H m) = \frac{\sigma^2}{2} \Delta m.$$

was addressed by G.-Pimentel for subquadratic Hamiltonians.

Subquadratic case Superquadratic case

Outline

- Introduction
- A few examples
- Derivation of mean-field games
- Stationary problems
 - Variational mean-field games
 - Extended mean-field games
 - Congestion models
- 5 Time dependent mean-field games
- Time dependent Hamiltonians the proof
 - Subquadratic case
 - Superquadratic case

All the proofs in three lines

- $||u|| \leq C + C||m||^{\beta_1}$
- $||m|| \leq C + C||u||^{\beta_2}$
- "result" (||u|| bounded) follows if $\beta_1\beta_2 < 1$.

All the proofs in three lines

•
$$||u|| \leq C + C||m||^{\beta_1}$$

•
$$||m|| \leq C + C||u||^{\beta_2}$$

• "result" (||u|| bounded) follows if $\beta_1\beta_2 < 1$.

All the proofs in three lines

•
$$||u|| \leq C + C||m||^{\beta_1}$$

•
$$||m|| \leq C + C||u||^{\beta_2}$$

• "result" (||u|| bounded) follows if $\beta_1\beta_2 < 1$.

Introduction
A few examples
Derivation of mean-field games
Stationary problems
Time dependent mean-field games
Time dependent Hamiltonians - the proof

Subquadratic case Superquadratic cas

Subquadratic case Superquadratic cas

Subquadratic case

- Polynomial estimates for the Fokker-Planck equation
- Gagliardo-Nirenberg inequality

Subquadratic case Superquadratic cas

Subquadratic case

- Polynomial estimates for the Fokker-Planck equation
- Gagliardo-Nirenberg inequality

Polynomial estimates for the Fokker-Planck equation

Theorem

Let (u,m) be a solution and $\|m\|_{L^{\infty}([0,T],L^{\beta_0}(\mathbb{T}^d))} \leq C$, for some $\beta_0 \geq 1$. Suppose further that $p > \frac{d}{2}$ and $r = \frac{p(d(\theta-1)+2)}{2p-d}$. Then,

$$\int_{\mathbb{T}^d} (m)^{\beta_n} (\tau, x) dx \leq C + C \left\| |D_p H|^2 \right\|_{L^r(0, T; L^p(\mathbb{T}^d))}^{r_n},$$

where

$$r_n = r \frac{\theta^n - 1}{\theta - 1}, \ \theta > 1 \ \text{and} \ \beta_n = \theta^n \beta_0.$$

Gagliardo-Nirenberg inequality

Theorem

Let (u, m) be a solution and assume that H is subquadratic. For $1 < p, r < \infty$ there are positive constants c and C such that

$$\|D^2 u\|_{L^r(0,T;L^p(\mathbb{T}^d))} \le c \|F(m)\|_{L^r(0,T;L^p(\mathbb{T}^d))} + c \|u\|_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^d))}^{\frac{\gamma}{2-\gamma}} + C.$$

Subquadratic case Superquadratic case

Superquadratic case

- Polynomial estimates for the Fokker-Planck equation
- Estimates by the non-linear adjoint method

Polynomial estimates for the Fokker-Planck equation

Theorem

Let (u,m) be a solution. Assume that H is superquadratic. Assume further that $0 < \mu < 1 < \beta_0, \, \theta, \, p, \, r, \, and \, 0 \leq \upsilon \leq 1$ satisfy

$$\alpha \boldsymbol{p} = \frac{\theta^{\boldsymbol{n}} \beta_0}{\theta^{\boldsymbol{n}} + \upsilon - \theta^{\boldsymbol{n}} \upsilon},$$

and $r = \frac{d(\theta-1)+2}{2}$. Then

$$\|F\|_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))} \leq C + C \|Du\|_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))}^{\frac{(2+2\mu)(\theta^{n}-1)r\upsilon\alpha}{\theta^{n}\beta_{0}(\theta-1)}}.$$

Estimates by the non-linear adjoint method

Theorem

Suppose that H is superquadratic. Let (u, m) be a solution and assume that p > d. Then

$$||Du||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))} \leq C + C||F(m)||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}} + C||F(m)||_{L^{\infty}(0,T;L^{p}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}}||u||_{L^{\infty}(0,T;L^{\infty}(\mathbb{T}^{d}))}^{\frac{1}{1-\mu}}.$$

