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Introduction: Darcy’s and Forchheimer’s flows

Fluid flows in porous media with velocity u and pressure p:

Darcy’s Law:
αu = −∇p,

Forchheimer’s “two term” law

αu + β|u| u = −∇p,

Forchheimer’s “three term” law

Au + B |u| u + C|u|2 u = −∇p.

Forchheimer’s “power” law

au + cn|u|n−1 u = −∇p,

Here α, β, a, c , n,A,B, and C are empirical positive constants.
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Generalized Forchheimer equations

[Aulisa-Bloshanskaya-H.-Ibragimov 2009]
Generalizing the above equations as follows

g(|u|)u = −∇p.

Let G (s) = sg(s). Then G (|u|) = |∇p| ⇒ |u| = G−1(|∇p|). Hence

u = − ∇p
g(G−1(|∇p|))

⇒ u = −K (|∇p|)∇p,

K (ξ) = Kg (ξ) =
1

g(s)
=

1

g(G−1(ξ))
, sg(s) = ξ.

Class FP(N, ~α). Let N > 0, 0 = α0 < α1 < α2 < . . . < αN ,

FP(N, ~α) =
{
g(s) = a0s

α0 + a1s
α1 + a2s

α2 + . . .+ aNs
αN

}
,

where a0, aN > 0, a1, . . . , aN−1 ≥ 0. Notation: αN = deg(g),
~a = (a0, a1, . . . , aN), a = αN

αN+1 ∈ (0, 1), b = αN
αN+2 ∈ (0, 1).
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Historical remarks

Darcy-Dupuit: 1865

Forchheimer: 1901

Other nonlinear models: 1940s–1960s

Incompressible fluids: Payne, Straughan and collaborators since
1990’s, Celebi-Kalantarov-Ugurlu since 2005 (Brinkman-Forchheimer)

Derivation of non-Darcy, non-Forchheimer flows: Marusic-Paloka and
Mikelic 2009 (homogenization for Navier–Stokes equations), Balhoff
et. al. 2009 (computational)
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Works on generalized Forchheimer flows

A. Single-phase flows.

1990’s Numerical study

L2-theory (for slightly compressible flows):
Aulisa-Bloshanskaya-H.-Ibragimov (2009), H.-Ibragimov: Dirichlet
B.C. (2011), H.-Ibragimov Flux B.C. (2012),
Aulisa-Bloshanskaya-Ibragimov total flux, productivity index (2011,
2012), Inhomogeneous media Celik-H.(in preparation).

Lα-theory: H.-Ibragimov-Kieu-Sobol (2012-preprint)

L∞, W 1,p-theory: H.-Kieu-Phan (2014-to appear), Celik-H.(in
preparation).

W 1,∞-theory: interior H.-Kieu (2014-preprint), global Celik-H.-Kieu
(in preparation).

B. Multi-phase flows.

One-dimensional case: H.-Ibragimov-Kieu (2013).

Multi-dimensional case: H.-Ibragimov-Kieu (this talk-preprint).

Note: there are more works on Forchheimer flows (2-terms or 3 terms).
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A. Single-phase Forchheimer flows

Let ρ be the density. Continuity equation

dρ

dt
+∇ · (ρu) = 0.

For slightly compressible fluid:

dρ

dp
=

1

κ
ρ,

where κ� 1. Then

dp

dt
= κ∇ ·

(
K (|∇p|)∇p

)
+ K (|∇p|)|∇p|2.

Since κ� 1, we neglect the last terms, after scaling the time variable:

dp

dt
= ∇ ·

(
K (|∇p|)∇p

)
.

Degeneracy

K (ξ) ≡ (1 + ξ)−a, a =
αN

αN + 1
.
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B. Two-phase incompressible Forchheimer flows

For each ith-phase (i = 1, 2), saturation Si ∈ [0, 1], density ρi ≥ 0,
velocity ui ∈ Rn, and , and pressure pi ∈ R. The saturations satisfy

S1 + S2 = 1.

Each phase’s velocity obeys the generalized Forchheimer equation.
Conservation of mass holds for each of the phases:

∂t(φρiSi ) + div(ρiui ) = 0, i = 1, 2.

Due to incompressibility of the phases, i.e. ρi = const. > 0, it is reduced to

φ∂tSi + div ui = 0, i = 1, 2.

Let pc be the capillary pressure between two phases, more specifically,

p1 − p2 = pc .

Darcy’s flows. Kruzkov, Sukorjanski, Alt, DiBenedetto, Cances, Mikelic,
Galusinski, Saad, Chemetov, Neves ...
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Denote S = S1 and pc = pc(S). Then

gi (|ui |)ui = −fi (S)∇pi , i = 1, 2,

∇p1 −∇p2 = p′c(S)∇S .

Hence
F2(S)g2(|u2|)u2 − F1(S)g1(|u1|)u1 = ∇S ,

where

Fi (S) =
1

p′c(S)fi (S)
, i = 1, 2.

In summary,

0 ≤ S = S(x, t) ≤ 1,

St = −div u1,

St = div u2,

∇S = F2(S)G2(u2)− F1(S)G1(u1).
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One-dimensional problem

Assumption A.
f1, f2 ∈ C ([0, 1]) ∩ C 1((0, 1)),

f1(0) = 0, f2(1) = 0,

f ′1(S) > 0, f ′2(S) < 0 on (0, 1).

Assumption B.

p′c ∈ C 1((0, 1)), p′c(S) > 0 on (0, 1).

Theorem (H.-Kieu-Ibragimov 2013)

• There are 16 types of non-constant steady states (based on their
monotonicity and asymptotic behavior as x → ±∞).
• The steady states which are never zero nor one are linearly stable.
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Multi-dimensional problem

In Rn, steady states:

div u1 = div u2 = 0, ∇S = F2(S)G2(u2)− F1(S)G1(u1).

Steady states with geometric constraints:

u∗1(x) = c1|x|−nx, u∗2(x) = c2|x|−nx, S∗(x) = S(|x|),

where c1, c2 are constants and S(r) is a solution of the following ODE:

S ′ = F (r ,S(r)) for r > r0, S(r0) = s0, 0 < S(r) < 1.

where s0 is always a number in (0, 1) and

F (r ,S(r)) = G2(c2r
1−n)F2(S)− G1(c1r

1−n)F1(S).
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Theorem

There exists a maximal interval of existence [r0,Rmax), where
Rmax ∈ (r0,∞], and a unique solution S ∈ C 1([r0,Rmax); (0, 1)).
Moreover, if Rmax is finite then either

lim
r→R−max

S(r) = 0 or lim
r→R−max

S(r) = 1.

Theorem

If solution S(r) exists in [r0,∞), then it eventually becomes monotone
and, consequently, s∞ = limr→∞ S(r) exists.

In case n = 2 and c2
1 + c2

2 > 0, let s∗ = (f1/f2)−1
(
c1a0

1

c2a0
2

)
.

(i) If c1 ≤ 0 and c2 ≥ 0 then s∞ = 1.
(ii) If c1 ≥ 0 and c2 ≤ 0 then s∞ = 0.
(iii) If c1, c2 < 0 then s∞ = s∗.
(iv) If c1, c2 > 0 then s∞ ∈ {0, 1, s∗}.
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Linearized problem

The formal linearized system at the steady state (u∗1(x),u∗2(x), S∗(x)) is

σt = −div v1, σt = div v2,

∇σ = F2(S∗)G
′
2(u∗2)v2 + F ′2(S∗)σG2(u∗2)

−
(
F1(S∗)G

′
1(u∗1)v1 + F ′1(S∗)σG1(u∗1)

)
.

Let v = v1 + v2. Then div v = 0. Assume v = V(x, t) is given . Let

B = B(x) = F2(S∗)G
′
2(u∗2) + F1(S∗)G

′
1(u∗1),

A = A(x) = B(x)−1

b = b(x) = F ′2(S∗)G2(u∗2)− F ′1(S∗)G1(u∗1),

c = c(x, t) = F1(S∗)G
′
1(u∗1)V(x, t).

Decoupling the linearized system:

σt = ∇ ·
[
A(∇σ − σb)

]
+∇ · (Ac),

v2 = A(∇σ − σb) + Ac, v1 = V − v2.
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Lemma

For any c2
1 + c2

2 > 0 and x 6= 0, matrices B(x) and A(x) are symmetric,
invertible and positive definite.

Also, matrix B has the following special property:

B(x)x =
2∑

i=1

{
Fi (Ŝ(|x|))

[
gi (|ci ||x|1−n) + g ′i (|ci ||x|1−n)|ci ||x|1−n

] }
x

= φ(|x|)x,

where

φ(r) =
2∑

i=1

Fi (Ŝ(r))
[
gi (|ci |r1−n) + g ′i (|ci |r1−n)|ci |r1−n] .

Now consider “good” steady states.
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In Bounded domains

Let R > r0 > 0, U ⊂ U
def
== BR \ B̄r0 . Denote Γ = ∂U, D = U × (0,∞)

and D = U× (0,∞).
Initial-boundary value problem (IBVP):

σt = ∇ ·
[
A(∇σ − σb)

]
+∇ · (Ac) on U × (0,∞),

σ = g(x, t) on Γ× (0,∞),

σ = σ0(x) on U × {t = 0}.
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Condition (E1). F1,F2 ∈ C 7((0, 1)) and V ∈ C 6
x (D̄); Vt ∈ C 3

x (D̄).

Theorem

Assume (E1) and ∆4
def
== supD(|V(x, t)|+ |∇V(x, t)|) + supΓ×[0,∞) |g(x, t)|

is finite. Then the solution σ(x, t) of the linearized equation satisfies

sup
x∈U
|σ(x, t)| ≤ C

[
e−η1t sup

U
|σ0(x)|+ ∆4

]
for all t > 0.

Moreover,

lim sup
t→∞

[
sup
x∈U
|σ(x, t)|

]
≤ C∆5,

where
∆5 = lim supt→∞

[
supx∈U(|V(x, t)|+ |∇V(x, t)|) + supx∈Γ |g(x, t)|

]
.
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Theorem

Assume (E1), and ∆6
def
== supD(|V(x, t)|+ |∇V(x, t)|+ |∇2V(x, t)|) and

∆7
def
== supΓ×[0,∞) |g(x, t)| are finite. Then for any U ′ b U, there is M̃ > 0

such that for i = 1, 2, x ∈ U ′ and t > 0,

sup
x∈U′
|vi (x, t)| ≤ M̃

(
1 +

1√
t

)[
e−η1t sup

U
|σ0(x)|+ ∆6 +

√
∆6 + ∆7

]
.

Consequently, if

lim
t→∞

{
sup
x∈U

(|V(x, t)|+ |∇V(x, t)|+ |∇2V(x, t)|) + sup
x∈Γ
|g(x, t)|

}
= 0,

then for any x ∈ U,

lim
t→∞

v1(x, t) = lim
t→∞

v2(x, t) = 0.
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Structure and Transformation

Rewrite vector function b(x) explicitly as

b(x) =
(
F ′2(S∗(x))g2(

|c2|
|x|n−1

)
c2

|x|n
− F ′1(S∗(x))g1(

|c1|
|x|n−1

)
c1

|x|n
)
x = λ(|x|)x,

where

λ(r) = F ′2(Ŝ(r))g2(
|c2|
rn−1

)
c2

rn
− F ′1(Ŝ(r))g1(

|c1|
rn−1

)
c1

rn
.

By defining

Λ(x) =
1

2

∫ |x|2
r2
0

λ(
√
ξ)dξ =

∫ |x|
r0

rλ(r)dr ,

we have for x 6= 0 that
b(x) = ∇Λ(x).

Let
w(x, t) = e−Λ(x)σ(x, t).

Then w satisfies

wt −∇ ·
(
A∇w

)
−∇Λ · A∇w = e−Λ∇ · (Ac).
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New system

Define the differential operator

Lw = ∂tw −∇ · (A∇w)− b · A∇w .

Corresponding IBVP for w(x, t) is
Lw = f0 in U × (0,∞),

w(x, 0) = w0(x) in U,

w(x, t) = G (x, t) on Γ× (0,∞),

where w0(x) and G (x, t) are given initial data and boundary data,
respectively, and f0(x, t) is a known function.
• For the velocities, we have

v2 = A
[
∇(eΛw)− eΛwb

]
+ Ac = A

[
eΛ∇w + weΛ∇Λ− eΛwb

]
+ Ac.

Thus,
v2 = eΛA∇w + Ac, v1 = V − v2.
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Lemma of growth in time of Landis type

Barrier function. Define

W (x, t) =

{
t−se−

ϕ(x)
t if t > 0,

0 if t ≤ 0,

where the number s > 0 and the function ϕ(x) > 0 will be decided later.
Then

LW = t−s−2e−
ϕ
t

{
t
(
− s +∇ · (A∇ϕ) + b · A∇ϕ

)
+ ϕ− (A∇ϕ) · ∇ϕ

}
.

Thus, LW ≤ 0 if

s ≥ ∇ · (A∇ϕ) + b · A∇ϕ and ϕ ≤ (A∇ϕ) · ∇ϕ.
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We will choose ϕ to satisfy

A∇ϕ = κ0x,

where κ0 is a positive constant selected later. Equivalently,

∇ϕ = κ0A
−1x = κ0Bx = κ0φ(|x|)x.

Define for x ∈ Ū the function

ϕ(x) = κ0

(
ϕ0 +

∫ |x|
r0

rφ(r)dr
)
, where ϕ0 =

C0r
2
0

2
and κ0 =

C0

2C1
.

Select
s = sR

def
== κ0(n + C2R).

Lemma

The function W (x, t) belongs to C 2,1
x,t (D) ∩ C (D̄) and satisfies LW ≤ 0 in

D.
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Lemma of growth in time

We fix s = sR and also the following two parameters

q =
κ0C0

2s
and η0 =

( r0
R

)2s
,

and denote D1 = U × (0, qR2].

Lemma (Lemma of growth in time)

Assume w(x, t) ∈ C 2,1
x,t (D1) ∩ C (D̄1). If

Lw ≤ 0 on D1 and w ≤ 0 on Γ× (0, qR2),

then

max{0, sup
U

w(x, qR2)} ≤ 1

1 + η0
max{0, sup

U
w(x, 0)}.
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Proof.

Let M = max{0, supŪ w(x , 0)}, W̃ = M[1− ηW ], η > 0 selected later,
t1 = qR2.
Applying maximum principle for W̃ gives

w(x , t1) ≤ W̃ (x , t1) ≤ M(1− ηC (s,R)) = M(1− η0) ≤ M/(1 + η0).
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Proposition (Homogeneous problem)

Assume w(x, t) ∈ C 2,1
x,t (D) ∩ C (D̄) satisfies

Lw = 0 in D and w = 0 on Γ× (0,∞).

Let η1 = ln(1+η0)
qR2 . Then

− e−η1t inf
U
|w(x, 0)| ≤ w(x, t) ≤ (1 + η0)e−η1t sup

U
|w(x, 0)| ∀(x, t) ∈ D.

Proposition (Non-homogeneous problem)

Assume f0 ∈ C (D̄) and

∆1
def
== supU×(0,∞) |f0(x, t)|+ supΓ×(0,∞) |G (x, t)| <∞ The solution

w(x, t) ∈ C 2,1
x,t (D) ∩ C (D̄) satisfies

|w(x, t)| ≤ C
[
e−η1t sup

U
|w0(x)|+ ∆1

]
∀(x, t) ∈ D.
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Bernstein’s estimates

Proposition

Assume f0 ∈ C (D̄), ∇f0 ∈ C (D), ∆1 <∞ and

∆3
def
== sup

D
|∇f0| <∞.

For any U ′ b U there is M̃ > 0 such that if w(x, t) ∈ C 2,1
x,t (D) ∩ C (D̄) is a

solution of (19) that also satisfies w ∈ C 3
x (D) and wt ∈ C 1

x (D), then

|∇w(x, t)| ≤ M̃
[
1+

1√
t

][
e−η1t sup

U
|w(x, 0)|+∆1+

√
∆3

]
∀(x, t) ∈ U ′×(0,∞).

Luan Hoang - Texas Tech Two-Phase Forchheimer Flows Lisbon, July 1, 2014 25



In unbounded domains

Outer domain U = Rn \ B̄r0 .
Notation. For R > r > 0, denote Or = Rn \ B̄r , Or ,R = BR \ B̄r .
Let Γ = ∂U = {x : |x| = r0} and D = U × (0,∞).
Similar IBVP for σ and w .

Luan Hoang - Texas Tech Two-Phase Forchheimer Flows Lisbon, July 1, 2014 26



Maximum principle for unbounded domain

Theorem

Let T > 0 and w(x, t) be a bounded function in C 2,1
x,t (UT ) ∩ C (ŪT ) that

solves Lw = f0 in UT , where f0 ∈ C (ŪT ). Then

sup
ŪT

|w(x, t)| ≤ sup
∂pUT

|w(x, t)|+ (T + 1) sup
ŪT

|f0|.

Barrier function:

W (x, t)
def
== (T − t)−se

ϕ(x)
T−t for (x, t) ∈ Or0,R × (0,T ),

where constant s > 0 and function ϕ(x) > 0 will be decided later.
Elementary calculations give

LW = (T−t)−s−2e
ϕ

T−t

{
(T−t)

(
s−∇·(A∇ϕ)−b·A∇ϕ

)
+ϕ−(A∇ϕ)·∇ϕ

}
.

Then LW ≥ 0 if

s ≥ ∇ · (A∇ϕ) + b · A∇ϕ and ϕ ≥ (A∇ϕ) · ∇ϕ.
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Choose

ϕ(x) = κ1

(
ϕ1 +

∫ |x|
r0

rφ(r)dr
)
,

where ϕ1 =
C1r2

0
2 > 0 and κ1 = C1

2C0
, and

s = sR
def
== C3(1 + R).
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Lemma of growth in spatial variables

Let R > 0 and ` ≥ R + r0. Denote

OR(`) = O`−R,`+R = {x ∈ Rn : ||x|−`| < R} and S` = {x ∈ Rn : |x| = `}.
Define the barrier function of Landis type

W(x, t) =
1

(t + 1)s
e−

ψ(x)
t+1 for |x| ≥ r0, t ≥ 0,

where parameter s > 0 and function ψ > 0. Then LW ≤ 0 if

s ≥ ∇ · (A∇ψ) + b · A∇ψ and ψ ≤ (A∇ψ) · ∇ψ.
We can choose s = C3(1 + R) and

ψ(x , t) = κ2

∫ |x |
`

(r − `)φ(r)dr .

Lemma

Given any R > 0 and ` ≥ R + r0. Then the function W(x, t) in (29)
belongs to C 2,1

x,t (D) ∩ C (D̄) and satisfies LW ≤ 0 on OR(`)× (0,∞).
Luan Hoang - Texas Tech Two-Phase Forchheimer Flows Lisbon, July 1, 2014 29



Lemma (Lemma of growth in spatial variables)

Given T > 0, let

R = R(T ) = C4(1 + T ),

η0 = η0(T ) =
(

1− 1

2C5(T+1)

) 1

(T + 1)2C5(T+1)
,

where C4 = max{1, 8C3
κ2eC0

} and C5 = C3C4. Suppose

w(x, t) ∈ C 2,1
x,t (UT ) ∩ C (ŪT ) satisfies Lw ≤ 0 on UT and w(x, 0) ≤ 0 on

Ū. Let ` be any number such that ` ≥ R + r0, then

max
{

0, sup
S`×[0,T ]

w(x, t)
}
≤ 1

1 + η0
max

{
0, sup
ŌR(`)×[0,T ]

w(x, t)
}
.
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Dichotomies

Lemma

Let T > 0 and R, η0 and w(x, t) be as in Lemma 14. For i ≥ 1, let

m̄i = max
{

0, sup
Sr0+iR×[0,T ]

w(x, t)
}
.

Part A (Dichotomy for one cylinder). Then for any i ≥ 1, we have either
of the following cases.

(a) If m̄i+1 ≥ m̄i−1, then m̄i+1 ≥ (1 + η0)m̄i .

(b) If m̄i−1 ≥ m̄i+1, then m̄i−1 ≥ (1 + η0)m̄i .

Part B (Dichotomy for many cylinders). For any k ≥ 0, we have the
following two possibilities:

(i) There is i0 ≥ k + 1 such that m̄i0+j ≥ (1 + η0)jm̄i0 for all j ≥ 0.

(ii) For all j ≥ 0, m̄k+j ≤ (1 + η0)−jm̄k .
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Theorem

Let w ∈ C 2,1
x,t (UT ) ∩ C (ŪT ) be a bounded solution of the IBVP on UT

with f0 ∈ C (ŪT ). If
lim
|x|→∞

w0(x) = 0,

lim
|x|→∞

sup
0≤t≤T

|f0(x, t))| = 0,

then
lim
r→∞

(
sup

Sr×[0,T ]
|w(x, t)|

)
= 0.
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Corollary

Let w(x, t) ∈ C 2,1
x,t (D) ∩ C (D̄) be a bounded solution of (19) on D with

f0 ∈ C (D̄). Assume w0 ∈ C (Ū), G ∈ C (Γ× [0,∞)) are bounded, satisfy
same conditions as above for each T > 0. Then there exists an increasing,
continuous function r(t) > 0 satisfying limt→∞ r(t) =∞ such that

lim
t→∞

(
sup

x∈Ōr(t)

|w(x, t)|
)

= 0.
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Dealing with weight eΛ(x)

From w(x , t), we return to σ(x , t) = weΛ(x).
• In the case n ≥ 3,

0 < C−1
7 ≤ eΛ(x) ≤ C7 ∀|x| ≥ r0.

• In the case n = 2,
eΛ(x) ≤ C8 ∀|x| ≥ r0.
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Theorem

Let n ≥ 3. Assume (E1) and

∆10
def
== max{sup

U
|σ0(x)|, sup

Γ×[0,∞)
|g(x, t)|} <∞,

∆11
def
== sup

D
|∇ · (A(x)c(x, t))| <∞.

Then,
(i) There exists a solution σ(x, t) ∈ C 2,1

x,t (D) ∩ C (D̄). This solution is
unique in class of solutions σ(x, t) that satisfy

sup
U×[0,T ]

|σ(x, t)| <∞ for any T > 0.

(ii) There is C > 0 such that for (x, t) ∈ D,

|σ(x, t)| ≤ C
[
∆10 + ∆11(t + 1)

]
.
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Theorem (continued)

(iii) In addition, if

lim
|x|→∞

σ0(x) = 0 and lim
|x|→∞

sup
0≤t≤T

|∇·(A(x)c(x, t))| = 0 for each T > 0,

then
lim
r→∞

(
sup

Sr×[0,T ]
|σ(x, t)|

)
= 0 for any T > 0,

and furthermore, there is a continuous, increasing function r(t) > 0 with
limt→∞ r(t) =∞ such that

lim
t→∞

(
sup

x∈Ōr(t)

|σ(x, t)|
)

= 0.
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Theorem

Let n = 2 and Ŝ(r) be a solution (for the steady state) with c1, c2 < 0.
Assume (E1) and

∆12
def
== max{sup

U
e−Λ(x)|σ0(x)|, sup

Γ×[0,∞)
|g(x, t)|} <∞,

∆13
def
== sup

D
e−Λ(x)|∇ · (A(x)c(x, t))| <∞.

Then the following statements hold true.
(i) There exists a solution σ(x, t) ∈ C 2,1

x,t (D) ∩ C (D̄). This solution is
unique in class of solutions σ(x, t) that satisfy

sup
U×[0,T ]

e−Λ(x)|σ(x, t)| <∞ for any T > 0.

(ii) There is C > 0 such that for (x, t) ∈ D,

|σ(x, t)| ≤ C
[
∆12 + ∆13(t + 1)

]
.
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Theorem (continued)

(iii) In addition, if

lim
|x|→∞

e−Λ(x)σ0(x) = 0 and lim
|x|→∞

sup
0≤t≤T

e−Λ(x)|∇ · (A(x)c(x, t))| = 0

for each T > 0, then

lim
r→∞

(
sup

Sr×[0,T ]
|σ(x, t)|

)
= 0 for any T > 0,

and furthermore, there is a continuous, increasing function r(t) > 0 with
limt→∞ r(t) =∞ such that

lim
t→∞

(
sup

x∈Ōr(t)

|σ(x, t)|
)

= 0.
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THANK YOU FOR YOUR ATTENTION!
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