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Introduction: Darcy's and Forchheimer’s flows

Fluid flows in porous media with velocity u and pressure p:

@ Darcy’s Law:
au = —Vp,

@ Forchheimer's “two term” law
au+ Blulu=-Vp,
@ Forchheimer's “three term” law
Au+ Blu|u+Clul?u=—Vp.
@ Forchheimer's “power” law
au+ c"|u|"tu=—Vp,

Here «, 3, a,¢c,n, A, B, and C are empirical positive constants.
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Generalized Forchheimer equations

[Aulisa-Bloshanskaya-H.-Ibragimov 2009]
Generalizing the above equations as follows

g(Ju)u=—-Vp.
Let G(s) = sg(s). Then G(|u|) = |Vp| = |u| = G~}(|Vp]|). Hence
Vp
=P = K(IVp)Vp,
g(6=1(IVpl)
1 1

K(&) = K, (€) = = , sg(s)=¢&.

O == s @y *

Class FP(N,@). Let N>0,0=ay< a1 <a2 <...<ap,
FP(N,d) = {g(s) = 305" 4 a1 + aps? + ... + aNsa’V},

where ag,ay > 0, a1, ... aN 1 > 0. Notation: aN deg(g),
a=(ap,a1,...,an), a= aN+1 €(0,1), b= o +2 € (0,1).

Luan Hoang - Texas Tech Two-Phase Forchheimer Flows Lisbon, July 1, 2014



Historical remarks

Darcy-Dupuit: 1865
Forchheimer: 1901
Other nonlinear models: 1940s—1960s

Incompressible fluids: Payne, Straughan and collaborators since
1990's, Celebi-Kalantarov-Ugurlu since 2005 (Brinkman-Forchheimer)

@ Derivation of non-Darcy, non-Forchheimer flows: Marusic-Paloka and
Mikelic 2009 (homogenization for Navier—Stokes equations), Balhoff
et. al. 2009 (computational)
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Works on generalized Forchheimer flows

A. Single-phase flows.

@ 1990's Numerical study
@ L[2-theory (for slightly compressible flows):
Aulisa-Bloshanskaya-H.-Ibragimov (2009), H.-Ibragimov: Dirichlet
B.C. (2011), H.-lbragimov Flux B.C. (2012),
Aulisa-Bloshanskaya-Ibragimov total flux, productivity index (2011,
2012), Inhomogeneous media Celik-H.(in preparation).
@ [“theory: H.-lIbragimov-Kieu-Sobol (2012-preprint)
o L, WLP-theory: H.-Kieu-Phan (2014-to appear), Celik-H.(in
preparation).
o W1>_theory: interior H.-Kieu (2014-preprint), global Celik-H.-Kieu
(in preparation).
B. Multi-phase flows.
@ One-dimensional case: H.-Ibragimov-Kieu (2013).
e Multi-dimensional case: H.-lIbragimov-Kieu (this talk-preprint).
Note: there are more works on Forchheimer flows (2-terms or 3 terms).
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A. Single-phase Forchheimer flows

Let p be the density. Continuity equation

% + V- (pu)=0.
For slightly compressible fluid:
dp 1
dp K"

where k > 1. Then
dp
& = k- (K(Vp)Vp) + K(IVp)) Vol
Since k > 1, we neglect the last terms, after scaling the time variable:
dp
@ g (k(vp)T)
= =V (K(Vp)Vp
Degeneracy

_ —a _ an
KE)=@1+¢)77 = i1
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B. Two-phase incompressible Forchheimer flows

For each ith-phase (i = 1,2), saturation S; € [0, 1], density p; > 0,
velocity u; € R", and , and pressure p; € R. The saturations satisfy

S51+5=1.

Each phase’s velocity obeys the generalized Forchheimer equation.
Conservation of mass holds for each of the phases:

0t(ppiSi) + div(pju;) =0, i=1,2.
Due to incompressibility of the phases, i.e. p; = const. > 0, it is reduced to
$0:Si +divu; =0, i=12.
Let p. be the capillary pressure between two phases, more specifically,
P1— P2 = Pc-

Darcy’s flows. Kruzkov, Sukorjanski, Alt, DiBenedetto, Cances, Mikelic,
Galusinski, Saad, Chemetov, Neves ...
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Denote S = S; and p. = pc(S). Then

gi(|luiu; = —£(S)Vp;, i=1,2,

Vp1— Vp2 = pc(S)VS.

Hence
F2(S)&2(Juz2|)uz — F1(S)g1(|ui|)ur = VS,
where 1
F, 5 - s | = 1,2
B)= 0 9)53)
In summary,

0<S=Sxt)<l,
St = —div uq,

St = div uy,

VS = F(5)G2(u2) — F1(S)G1(uy).
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One-dimensional problem

Assumption A.
fi, & € C([0,1]) N C}((0,1)),

f(0)=0, £(1)=0,
f(S) >0, £(S)<O0on(0,1).

Assumption B.

Pe € CH((0,1)), pL(S)>0o0n (0,1).

Theorem (H.-Kieu-Ibragimov 2013)

e There are 16 types of non-constant steady states (based on their
monotonicity and asymptotic behavior as x — 4+00).
e The steady states which are never zero nor one are linearly stable.
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Multi-dimensional problem

In R", steady states:
divu; =divuy =0, VS = Fy(S5)Ga(uz2) — F1(S)G1(u1).
Steady states with geometric constraints:
ui(x) = cilx| %, us(x) = alx| %, S.(x) = S(Ix|).
where c1, ¢z are constants and S(r) is a solution of the following ODE:
S'=F(r,S(r)) forr>ry, S(n)=s, 0<S(r)<1l.
where s is always a number in (0, 1) and

F(r, S(r)) = G2(C2r1_")F2(5) — Gl(clrl_”)Fl(S).
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Theorem

There exists a maximal interval of existence [ry, Rmax), where
Ruax € (ro,00], and a unique solution S € C([ry, Rmax); (0,1)).
Moreover, if Rmax IS finite then either

lim S(r)=0 or lim S(r)=1.

r—Rmax r—Rmax

| A

Theorem

If solution S(r) exists in [ry, 00), then it eventually becomes monotone
and, consequently, so, = lim,_,o S(r) exists.

In case n =2 and ¢ + c3 > 0, let s* = (fl/@)_:l(z:g)

(i) If 1 <0 and ¢ > 0 then sy, = 1.

(ii) If c1 > 0 and ¢ < 0 then sy, = 0.

(iii) If c1,co < O then sy, = s*.

(iv) If c1,¢2 > 0 then so € {0,1,5*}.
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Linearized problem
5(x), S(x)) is

The formal linearized system at the steady state (uj(x), u}
oy = —div vy, oy =div vy,
Vo = Fy(8:)G(u3)va + F5(S+)0Ga(us)

~ (A(S)Gi (v + F(S)oGa(u]) ).

(
Let v =vi + vp. Then div v =0. Assume v = V(x,t) is given . Let
(

t
B(x) = F2(S:)G5(u3) + F1(S:)Gy

uz),

b = b(x) = F;(S5,)G2(u3) — F{(5+)G1(u7),
c = c(x, t) = F1(S5,)G)(u)V(x, t).

Decoupling the linearized system:
oe=V- [A(vg - ob)} +V - (Ac),
:A(VU—Ub)+AC, V1:V—V2.

Two-Phase Forchheimer Flows
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For any ¢? + c3 > 0 and x # 0, matrices B(x) and A(x) are symmetric,
invertible and positive definite.

Also, matrix B has the following special property:

2
Bx)x = >_ { Fi(S (1)) [gi(lcil IxI*") + g (leilIx*)leilIx* "] }x
i=1
= o(Ix)x,
where
2
o(r) = 3 F(S(0) [gilleilr ™) + gl (leilr el 7]
i=1

Now consider “good” steady states.
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In Bounded domains

Let R>1rp >0, UcC UL Bg\ B,. Denote T = dU, D = U x (0, 0)
and D =U x (0, c0).

Initial-boundary value problem (IBVP):

o=V - [A(Va - ab)} +V-(Ac) on U x(0,00),
o=g(x,t) on I x (0,00),
o = oo(x) on U x {t =0}.
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Condition (E1). Fi, /€ C7((0,1)) and V € C8(D); Vi € C3(D).

Theorem

Assume (E1) and Ay d:efsupD(|V(x, )|+ |VV(x, t)]) +supry[o,00) 18(X; t)]
is finite. Then the solution o(x,t) of the linearized equation satisfies

sup |o(x, t)| < C[e’mtsup loo(x)| + A4] for all t > 0.
xelU U

Moreover,

lim sup [sup lo(x, t)|] < CAs,

t—o00 xeU

where
A5 = IimsuPtﬁoo |:Supxeu(|V(X, t)| + |VV(X, t)|) + SUPxer |g(x, t)|] :
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Theorem

Assume (E1), and Dg 2L supp(IV(x, t)| + [VV(x, t)| + [V2V(x, t)|) and

Ay L SUPrx[0,00) 18(X; t)| are finite. Then for any U’ € U, there is M >0
such that fori = 1,2, x € U and t > 0,

1
sup |vi(x, 1)] < M(1+ %) [t sup 70(x)] + As + VB + A7 |.

xeU’

Consequently, if

lim {SUP(!V(XJ)H!VV(XJ)IHVz (<, £)1) + sup g (x, t)!}z
t—=oo Lycy

xel

then for any x € U,

tILn;ovl( t) = Il)moovz( t) =0.
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Structure and Transformation

Rewrite vector function b(x) explicitly as

b(x) = (.0l ) 25~ FS- (WDl o) 8 )x = A
where

M) = A5 2D 2 — FS(Ma(12) 2
By defining

we have for x # 0 that
b(x) = VA(x).

Let
w(x, t) = e M¥g(x, t).

Then w satisfies
we— V- (AVW) ~ VA-AVw = e MV - (Ac).
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Define the differential operator
Lw=0w—V-(AVw)—b-AVw.
Corresponding IBVP for w(x, t) is
Lw = fy in U x (0, 00),

w(x,0) = wp(x) in U,
w(x,t) = G(x,t) on T x (0,00),

where wy(x) and G(x, t) are given initial data and boundary data,
respectively, and fy(x, t) is a known function.
e For the velocities, we have

vo = A[V(e*w) — e"wb] + Ac = A[e"Vw + we"VA — e"wb] + Ac.

Thus,
vo = e AVw +Ac, vi=V —vs.
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Lemma of growth in time of Landis type

Barrier function. Define

Wi, ) = tse= % ift>0,
’ 0 ift<o0,

where the number s > 0 and the function ¢(x) > 0 will be decided later.
Then

cM/:t—yﬂaé{tp—s+t%(Av¢)+b-Ava+¢—(Av¢yww§.
Thus, LW <0 if

s>V -(AVyp)+b-AVy and ¢ < (AVy)- V.
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We will choose ¢ to satisfy
AV = Kox,
where kg is a positive constant selected later. Equivalently,
Vo = koA x = koBx = koo (|x|)x.

Define for x € U the function

¢(x) = Ko (800 + /

o

x|

Cor? C
0’ and kg = %.
1

rqﬁ(r)dr), where o =

Select .
s=sp L ko(n+ GR).

The function W(x, t) belongs to sztl(D) N C(D) and satisfies LW < 0 in
D.
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Lemma of growth in time

We fix s = sg and also the following two parameters

_ roCo and = <@>2s
q= 2 o = R ;

and denote D; = U x (0, gR?].

Lemma (Lemma of growth in time)

Assume w(x,t) € C)i’g(Dl) N C(Dy). If
Lw<0onD; and w<0onT x(0,qR?),

then

1
max{0, sup w(x, gR?)} < max{0, sup w(x,0)}.
U o U

1+
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Let M = max{0, supy w(x,0)}, W = M[1 — nW], n > 0 selected later,
t1 = qR2.
Applying maximum principle for W gives

w(x, t1) < W(x, t1) < M(1—nC(s,R)) = M(1—mn9) <M/(1+n).
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Proposition (Homogeneous problem)
Assume w(x,t) € sz,,_}(D) N C(D) satisfies

Lw=0inD and w=0onT x(0,00).

—e Minf|w(x,0)] < w(x,t) < (1+mo)e ™" sup|w(x,0)| V(x,t) € D.
U

V.

Proposition (Non-homogeneous problem)

Assume fy € C(D) and

Ay 2L SUP U x(0,00) 0 (X, t) + SUPF«(0,00) | G (%, t)| < 00 The solution
w(x, t) € Cftl(D) N C(D) satisfies

lw(x,t)] < Cle ™ sup |wo(x)| + A1]  V(x,t) € D.
u

A,
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Bernstein’'s estimates

Proposition

Assume fy € C(D), Vfy € C(D), A1 < o and

g E5 sup |Vfy| < oo.
D

For any U’ € U there is M > 0 such that if w(x, t) € sztl(D) NC(D)is a
solution of (19) that also satisfies w € C2(D) and w; € C}(D), then

(@)

~ 1
IVw(x, t)| < M[H—} [e*mfsup\w(x, 0)|[+A1+VAs| V(x,t) € U'x(0,
Vit U

v
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In unbounded domains

Outer domain U =R"\ B,,.

Notation. For R > r > 0, denote O, = R"\ B,, Orr=Br\ B,.
Let T =0U ={x:|x| =r} and D = U x (0, c0).

Similar IBVP for ¢ and w.
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Maximum principle for unbounded domain

Let T >0 and w(x, t) be a bounded function in sz”tl(UT) N C(U7t) that
solves Lw = fy in Ut, where fy € C(Ut). Then

sup [w(x, t)| < sup |w(x, )| + (T + 1) sup|fy.

UT ap UT UT

Barrier function:
def _s £
W(x,t) = (T —t) *eTt for (x,t) € Oy r x(0,T),

where constant s > 0 and function ¢(x) > 0 will be decided later.
Elementary calculations give

LW = (T—t) = 2e75{(Tt) (s V-(AV)-b-AV () +o—(AVy)-Ves |
Then LW >0 if
s>V (AVp)+b-AVyp and ¢ > (AVyp)- V.
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Choose "

P(x) = K1 (sol + /

i ro(r) dr) ,

G r?
where 1 = 1Tro > 0and k1 = 2LC10 and

SZSRd:ef C3(1+ R)
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Lemma of growth in spatial variables

Let R >0 and £ > R + ry. Denote
Or(l) =Op—rysr ={x € R" 1 ||x|=¢| < R} and Sy={xeR":|x|=1¢}
Define the barrier function of Landis type
W(x,t) = m_ll)seﬂxl) for [x| > ry, t >0,
where parameter s > 0 and function ¢y > 0. Then LW < 0 if
s> V- (AVY)+b-AVY and o < (AVY)- Vi
We can choose s = C3(1 4+ R) and

x|
P(x,t) = nz/g (r—20)o(r)dr.

Given any R > 0 and £ > R + ro. Then the function W(x, t) in (29)
belongs to sztl(D) N C(D) and satisfies LYV < 0 on Or(¥) x (0, 0).
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Lemma (Lemma of growth in spatial variables)

Given T > 0, let

R=R(T)=C(1+T),
1 1
no =no(T) = (1 - 2c5(r+1)> (T + 126G+

where C4 = max{1, ég%o} and Cs = (3C4. Suppose

w(x,t) € C,i’tl(UT) N C(Ut) satisfies Lw < 0 on Ut and w(x,0) < 0 on

U. Let ¢ be any number such that £ > R + ry, then

1
max {0, sup  w(x, t)} < max {O, sup  w(x, t)}
Sex[0,T] L +mno Or(0)x[0,T]

Luan Hoang - Texas Tech Two-Phase Forchheimer Flows Lisbon, July 1, 2014 30



Dichotomies

Lemma
Let T >0 and R, 9 and w(x,t) be as in Lemma 14. For i > 1, let

m; = max {0, sup  w(x, t)}
S,OJr,'RX[O,T]

Part A (Dichotomy for one cylinder). Then for any i > 1, we have either
of the following cases.

(a) If miy1 > mMi_1, then Mmiy1 > (1 + T]o)ﬁ);.

(b) If mj_1 > n_1,~+1, then mj_1 > (1 + 770)[‘7‘);.

Part B (Dichotomy for many cylinders). For any k > 0, we have the
following two possibilities:

(i) There is ip > k + 1 such that mj,4; > (1 + no) mj, for all j > 0.

(ii) Forall j >0, Myyj < (1+m0)~ M.
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Theorem

Let w € G271 (Ur) N C(Ur) be a bounded solution of the IBVP on Ut
with fy € C(Ut). If

lim wp(x) =0,
|x]—o00

lim  sup [fo(x,t))] =0,
[x|—oco<t<T
then

lim sup |w(x,t)| ) =0.
r—>OO(Sr><[0,T]| ( )|>
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Corollary

Let w(x,t) € sztl(D) N C(D) be a bounded solution of (19) on D with

fo € C(D). Assume wy € C(U), G € C(I' x [0,00)) are bounded, satisfy
same conditions as above for each T > 0. Then there exists an increasing,
continuous function r(t) > 0 satisfying lim;_,. r(t) = co such that

lim ( sup |w(x, t)|) = 0.
t—o0 xe@r(t)
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Dealing with weight e"(*)

From w(x, t), we return to o(x, t) = we"()
e In the case n > 3,

0<Gl<eMW<G Vx>

e |n the case n = 2,
¥ < G Vx| > n.
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Theorem

Let n > 3. Assume (E1) and

def
A1o 2 max{sup |oo(x)|, sup |g(x,t)|} < oo,
U % [0,00)

A11 2L sup |V - (A(x)e(x, )] < 0o.
D

Then,
(i) There exists a solution o(x, t) € Cf”tl(D) N C(D). This solution is
unique in class of solutions o(x, t) that satisfy

sup |o(x,t)| < oo forany T > 0.
Ux[0,T]

(ii) There is C > 0 such that for (x,t) € D,

lo(x, t)] < C[Alo + Aqp(t+ 1)]

v
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Theorem (continued)
(iii) In addition, if
lim oo(x) =0 and lim sup |V-(A(x)c(x,t))| =0 foreach T >0,

x| =00 x| o0 0<t<T

then

lim ( sup |o(x, t)|) =0 forany T >0,

=0\ s, x[0,T]
and furthermore, there is a continuous, increasing function r(t) > 0 with
lim¢_o0 r(t) = 0o such that

lim ( sup |o(x, t)|> = 0.

t—00 XEO,(t)
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Theorem

Let n =2 and 5(r) be a solution (for the steady state) with c1, ¢y < 0.
Assume (E1) and

A1 def max{sup e "®|og(x)|, sup |g(x, )|} < oo,
U Ix[0,00)

A13 g sup e_/\(x)’v ° (A(X)C(X, t))’ < 0.
D

Then the following statements hold true. B
(i) There exists a solution o(x, t) € Cf,’tl(D) N C(D). This solution is
unique in class of solutions o(x, t) that satisfy

sup e "X|o(x,t)] < oo forany T > 0.
Ux[0,T]

(ii) There is C > 0 such that for (x,t) € D,

‘U(X, t)’ < C[Alg T A13(t T 1)] .
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Theorem (continued)
(iii) In addition, if

lim e Mog(x) =0 and lim sup e V. (A(x)c(x,t))] =0

|x|—o00 x| =00 0<t< T
for each T > 0, then

lim ( sup |o(x, t)\) =0 forany T >0,
r=00 A 8, x[0,T]

and furthermore, there is a continuous, increasing function r(t) > 0 with
lim¢_o0 r(t) = 0o such that

lim ( sup |o(x, t)|> = 0.

t—o00 XE(’),(t)
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THANK YOU FOR YOUR ATTENTION!
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