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Porous Media



Porous Media



Intended Application - Geoscience



The Beginnings: Darcy’s Law



Henry Darcy’s experiments (1856)

Cross section of the Paris Basin

Grenelle artesian well in Paris
R. Ritzi, P. Bobeck, Comprehensive principles of quantative hydrogeology established by Darcy and Dupuit, Water Resources
Research, V 44, W10402, 2008



Darcy’s Law, 1856

Homogeneous, 1D, single-phase flow:

Q = −kA

µ

p2 − p1

L

Q − rate of flow
A − cross-section
k − permeability of porous media
µ − viscosity of the fluid

p2 − p1 − pressure drop
L − flow path length

u = −k

µ
∇p

u =
Q

φ
− pore velocity (through pores)

φ − porosity of porous media (φ = Ve/Vt)
p − pressure function



About Darcy’s Law

Darcy’s Law: u = −α∇p (hydrogeology)

Fick’s Law: J = −D∇φ (population dynamics)
J - diffusion flux; D - diffusivity; φ - concentration

Fourier’s Law: q = −K∇T (heat conduction)
q - local heat flux; K - material conductivity; T - temperature

Ohm’s Law: J = σE (electrodynamics)
J - current density; σ - conductivity; E - electric field

Homogenization of Stokes equations in inhomogeneous domain



Linear parabolic equation for pressure only

The Darcy’s Law u = −k

µ
∇p

The continuity equation (conservation law)

φ(x)
∂ρ

∂t
= −∇ · (ρu) ρ(p, t) - density

The equation of state for slightly compressible fluids [Bear, Muskat]

∂ρ

∂p
= γρ or ρ(p) = ρ0eγp

[
γ ∼ 10−8

]

Obtain
∂p

∂t
=

1

γ
∇ ·
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Nonlinearity of the Flow



Range of validity of Darcy law

Darcy: “below a certain velocity threshold, the pressure drop is linearly

proportional to velocity, and above that threshold, the pressure drop is

proportional to velocity squared”

−∆P = αq and −∆P = αq + βq2

Reynolds number

Re =
inertial forces

viscous forces

M. Muskat, Flow of Homogeneous Fluids Through Porous Media, Springer, 1982
R. Ritzi, P. Bobeck, Comprehensive principles of quantitative hydrogeology established by Darcy and Dupuit, Water Resources
Research, V 44, W10402, 2008



Various factors contributing to nonlinearity

inertial forces

high velocity in
fractures and near wells

friction in a pipe

high viscosity of the
fluid

not clear

J. Bear, Dynamics of Fluids in Porous Media, Dover, 1988



Experimental observations - Philipp Forchheimer

∆P = p2 − p1 - pressure difference; q - rate of flow

Darcy’s law (1856): −∆P = αq

Forchheimer “two terms” law (1901): −∆P = αq + βq2

Forchheimer “three terms” law (1901): −∆P = Aq + Bq2 + Cq3

Forchheimer “power” law (1930): −∆P = αq + βqm

1.6 ≤ m ≤ 2

P. Forchheimer, Wasserbewegung durch Boden Zeit, 45, 1782, Ver. Deut. Ing., 1901



Recent advances on nonlinearity of the flow

Even for low Re it is possible |∇p| ∼ |u|3
(Balhoff&Wheeler, 2010; Wodie&Levy, 1991; Auriault, 1991)

In a presence of fractures Darcy’s law is not valid even for Re ≈ 1
(Tavera et al, 2006)

Forchheimer law needs correction (Marus̆ić-Paloka&Mikelić, 2000)

Generalized Forchheimer equation
(Aulisa, Bloshanskaya, Hoang, Ibragimov, 2009)



Generalized Forchheimer equation [ABHI09]

g(|u|)u = −∇p

Function g(s) is a GPPC:

g(s) = a0 +
k∑

j=1

aj (x)sαj =

>0︷︸︸︷
a0 +

≥0︷︸︸︷
a1 sα1 +

≥0︷︸︸︷
a2 sα2 + . . .+

≥0︷︸︸︷
ak sαk

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.
Math. Phys. 50, 103102 (2009), 44 pp



Generalized Forchheimer equation [ABHI09]

g(|u|)u = −∇p

Function g(s) is a GPPC:

g(s) = a0 +
k∑

j=1

aj (x)sαj =

>0︷︸︸︷
a0 +

≥0︷︸︸︷
a1 sα1 +

≥0︷︸︸︷
a2 sα2 + . . .+

≥0︷︸︸︷
ak sαk

Darcy: αu = −∇p: a0 = α, aj = 0, j ≥ 1

2Forch: (α + β|u|)u = −∇p: a0 = α, a1 = β, α1 = 1; aj = 0, j ≥ 2

Power: (α + β|u|m−1)u = −∇p:
a0 = α, a1 = β, α1 = m − 1, aj = 0, j ≥ 2

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.
Math. Phys. 50, 103102 (2009), 44 pp



Two equivalent forms of g-Forchheimer equation

g(|u|)u = −∇p ⇐⇒ u = −K (|∇p|)∇p

g -Forchheimer eq. generalized (nonlinear) Darcy eq.

Aulisa, Ibragimov, Valko, Walton Mathematical framework ... for Forchheimer flows in porous media, WSPC, 2008

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.

Math. Phys. 50, 103102 (2009), 44 pp



Two equivalent forms of g-Forchheimer equation

g(|u|)u = −∇p ⇐⇒ u = −K (|∇p|)∇p

g -Forchheimer eq. generalized (nonlinear) Darcy eq.

In general K (ξ) is not analytic

For Forchheimer two-terms law: αu + β|u|u = −∇p

K (|∇p|) =
2

α +
√
α2 + 4β|∇p|

Aulisa, Ibragimov, Valko, Walton Mathematical framework ... for Forchheimer flows in porous media, WSPC, 2008

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.

Math. Phys. 50, 103102 (2009), 44 pp



Features of nonlinear permeability K (|∇p|)

Degeneracy similar to p-Laplace equations

C1

(1 + ξ)a
≤ K (ξ) ≤ C2

(1 + ξ)a
where a = a(deg(g)) < 1

Strict weighted monotonicity:∫
U

(K (|∇u1|)∇u1 − K (|∇u1|)∇u1) · ∇(u1 − u2) dx ≥ CΦ‖∇(u1 − u2)‖2
H

CΦ = C0(1 + max(‖∇u1‖L2−a , ‖∇u1‖L2−a ))−a

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math.
Phys. 50, 103102 (2009), 44 pp



Nonlinear parabolic equation for pressure only

((((
((((hhhhhhhhThe Darcy’s Law Nonlinear Darcy eq. u = −K (|∇p|)∇p

The continuity equation (conservation law) φ(x)
∂ρ

∂t
= −∇ · (ρu)

The equation of state
∂ρ

∂p
= γρ

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.
Math. Phys. 50, 103102 (2009), 44 pp



Nonlinear parabolic equation for pressure only

(((
((((

(hhhhhhhhThe Darcy’s Law Nonlinear Darcy eq. u = −K (|∇p|)∇p

The continuity equation (conservation law) φ(x)
∂ρ

∂t
= −∇ · (ρu)

The equation of state
∂ρ

∂p
= γρ

Obtain

γ · ∂p

∂t
= ∇ · (K (|∇p|)∇p)

Aulisa, Bloshanskaya, Hoang, Ibragimov, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J.
Math. Phys. 50, 103102 (2009), 44 pp



IBVP( Prescribed Pointwise Flux or Pressure on the
Boundary)

∂p

∂t
= ∇ · (K (|∇p|)∇p) inU

on Γi

− K (|∇p|)∇p · N = q(x , t) Neumann BC

or

p(x , t) = Ψ(x , t) Dirichlet BC

∂p

∂N

∣∣∣∣
Γe

= 0 Non-flow BC

p(x , 0) = p0(x)

In case of Dirchlet we are interesting in the BD which growing to ∞ at
time-infinity. It is expected that if Ψ(x , t) is stabilizing to ”regular
function” problem is reducing to Darcy case.

Akif Ibragimov Qualitative properties of the non-linear flow



Diffusive Capacity/Productivity Index

Engineering parameters of well capacity Productivity Index (PI) at time of
observation

PI =
Hydrocarbon Production

Reservoir Pressure – Well Pressure
Averages over the domain and on the boundary

pU(t) =
1

|U|

∫
U

p(x , t) dx pΓi
(t) =

1

|Γi |

∫
Γi

p(x , t) ds

PDD(t) = pU(t)− pΓi
(t) pressure drawdown in the domain U

Q(t) =

∫
Γi

u · N ds total flux through Γi

Diffusive Capacity Jg (Γi )(t) =
Q(t)

PDD(t)

(
PI =

d

dt
ln(

∫
pdx)

)
Important feature of diffusive capacity: in case of PSS regime Jg (Γi )(t)
is time invariant, a.e. PI is constant and for this reason is used by
engineers to evaluate well capacity
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Time Independent Diffusive Capacity/Productivity
Index, Linear Darcy Case

Productivity Index (PI) in long time observation
Prescribed constant pressure on the well

PI1 = λ|U|

Prescribed constant rate

PI2 =
|U|∫

W (x)dx

Here λ first eigenvalue for Laplace equation with corresponding boundary
conditions, and

− A =
Qs

|U|
= ∆W , W (x)|Γi

= 0,
∂W

∂N

∣∣∣
Γe

= 0

Mathematical inequality (originally observed by engineers)

PI2 > PI1

A.I., D. Khalmanova, P.Valko, J.Walton, 2005, SIAM, JAM,, 65(6).
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IBVP-I( Given Total Flux on the Boundary)

∂p

∂t
= ∇ · (K (|∇p|)∇p)

−
∫

Γi

K (|∇p|)∇p · N ds = Q(t)

∂p

∂N

∣∣∣∣
Γe

= 0

p(x , 0) = p0(x)

No uniqueness =⇒ additional constraints on the boundary data

Akif Ibragimov Qualitative properties of the non-linear flow



Constraint on the Boundary Data

Solution p(x , t) of IBVP-I:

Define trace p(x , t)|Γi
= ψ0(x , t) = γ(t)+ψ(x , t)

Assume ∫
Γi

ψ(x , t) ds = 0,

Uniqueness:

If p1(x , t) and p2(x , t) are solut-s of IBVP-I with the same ψ(x , t), then

p1(x , t) = p2(x , t)

Akif Ibragimov Qualitative properties of the non-linear flow



PSS Profile

Our intention is qualitative analysis of the solution of IBVP-I in case when
total flux Q(t)→ Qs ≡ const:
PSS regime characterizes by two parameters on the boundary:
I. Profile of the pressure ϕ0(x), and II. Total flux Qs .
These two parameters defines the PSS profile/regime:

ps(x , t) = −Qs

|U|
t + W (x)

where basic profile W (x) is a solution of BVP

− A =
Qs

|U|
= ∇ · (K (|∇W |)∇W )

W (x)|Γi
= ϕ0(x)

∂W

∂N

∣∣∣
Γe

= 0

for known function ϕ0(x)
Akif Ibragimov Qualitative properties of the non-linear flow



Boundary Data Comparison

Q(t) vs Qs

and

ψ(x , t) vs ϕ(x) = ϕ0(x)− 1

|Γi |

∫
Γi

ϕ0(s) ds

Extensions Ψ(x , t), Φ(x) defined on the whole domain U such that:

Ψ(x , t)|Γi
= ψ(x , t) Φ(x)|Γi

= ϕ(x)

Ψ(x , t),Ψt(x , t),Φ(x) ∈W 1
2 (U)
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!!! No conditions on the average

γ(t) =
1

|Γi |

∫
Γi

ψ0(x , t) ds

Results are obtained under some constraints on two parameters

∆Q(t) = Q(t)− Qs ∆Ψ(x , t) = Ψ(x , t)− Φ(x)
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Aim:
the comparison of fully transient solution p(x , t) with PSS solution
ps(x , t) in terms of Diffusive Capacity Jg (t)

Main result:

Jg (t)− Jg ,PSS → 0 as t →∞

under certain assumptions on the differences in boundary data

∆Q(t) and ∆Ψ(x , t)

Akif Ibragimov Qualitative properties of the non-linear flow



Proof of Asymptotic Convergence of Transient Diffusive
Capacity based on Qualitative Property of the Solution

Long term dynamics of the characteristics of the solution as t →∞

I ‖∇p‖L2−a(U)

?
≤ C

I
∫

U
|p|α dx

?−→

I
∫

U
|pt |2dx

?−→

I
∫

U
|∇(p)|2−a dx

?−→

I · · · ?−→
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Lemma

The difference between transient and PSS PI’s

Jg (t)− Jg ,PSS → 0 if ‖∇(p − ps)‖L2−a → 0 and ∆Q(t)→ 0 (1)

Proof: Observe

∆p(t) =
1

|Γi |

∫
Γi

(p − ps) ds − 1

|U|

∫
U

(p − ps) dx =
1

|Γi |

∫
Γi

z̃ ds,

where

z̃(x , t) = p − ps −
1

|U|

∫
U

(p − ps) dx

Applying Trace theorem and Poincaré inequality, as

∫
U

z̃ dx = 0, one has

|∆p(t)|2−a ≤ C

∫
U
|∇(p − ps)|2−a dx .
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Lemma

Let

F1(t) = −A0 +
1

|U|

∫ t

0
∆Q(τ) dτ +

1

|U|

∫
U

∆Ψ dx .

Then
‖∇(p − ps)‖L2−a → 0 (2)

If

I lim
t→∞

(∆Q(t) + ‖∇(∆Ψ)‖L2 + |F1(t)∆Q(t)|) = 0

I ‖∇ps‖L2−a(U) ≤ C

I
∫

U
|pt−ps,t |2dx → 0 as t →∞

I
∫

U
|p−ps−B.C .|2 dx → 0 as t →∞
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Theorem

If Q(t) and Ψ(x , t) satisfy assumptions A4

lim sup
t→∞

∫
U
|pt − ps,t |2 dx = lim sup

t→∞

∫
U
|pt + A|2 dx = 0 (3)

Proof.

Proof follows from the following differential inequality, which we obtained

for the solution of our IBVP for the functional y(t) =

∫
U
|pt + A|2 dx . If

p(x , t) is a solution of IBVP with given total fluxes, then under constraint
on structure of the trace on the boundary

y ′(t) ≤ −Cf (y(t)) + CA3(t) (4)

where

f (s) = sθ − εps2θ − ε2s (5)
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Assumption 1:

(|∆Q(t)|+ |Q ′(t)|) ·
∫ t

0
|∆Q(τ)| dτ + | (∆Q(t))′ | ≤ C∫

U
(|∆Ψ|+ |∇(∆Ψ)|2−a + |(∆Ψ(x , t))t |b + |∇ (∆Ψ(x , t))t |

2) dx ≤ C

Assumption 2:

lim
t→∞

|∆Q(t)| ·
∫ t

0
|∆Q(τ)| dτ = 0

lim
t→∞

∫
U

(|∆Ψ|2 + |∇(∆Ψ)|2 dx + |(∆Ψ(x , t))t |2) dx = 0

Assumption 3:

lim
t→∞

[∫
U

(|∇(∆Ψ(x , t))t |2 + |(∆Ψ(x , t))tt |2) dx + (∆Q(t))′
]

= 0
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What is Next?

1. Ideal Gas ρ = Mp

∂p

∂t
= ∇ · (K (p, |∇p|)p∇p)

−
∫

Γi

K (|∇p|)p∇p · N ds = Q(t)

∂p

∂N

∣∣∣∣
Γe

= 0

p(x , 0) = p0(x)

PI =
d

dt
ln(

∫
p2dx)

2. Dynamic Boundary Conditions

∂p

∂N
= Apt + B

p

t
− q0t−a

3. Fluctuations in boundary data, which naturally lead to equations of
stochastic type
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