On the inviscid limit for 2D incompressible stochastic Navier-Stokes equations with friction type boundary conditions

Iván Torrecilla

Grupo de Física Matemática da Universidade de Lisboa

Advances in Mathematical Fluid Mechanics 30 June - 5 July, 2014 This is a joint work with Fernanda Cipriano

2 L^2 a priori estimates for u^{ν} independent of ν

3 Vorticity equation with additive noise

(4) L^p a priori estimates for ξ^{ν} independent of ν

5 Vanishing viscosity limit

We consider the following stochastic Navier-Stokes equation in dimension 2:

$$\frac{\partial u^{\nu}(t)}{\partial t} - \nu \Delta u^{\nu}(t) + (u^{\nu}(t) \cdot \nabla) u^{\nu}(t) + \nabla p(t) = f(t) + \sqrt{Q} \dot{W} \quad \text{in }]0, T[\times \mathcal{O}]$$

div $u^{\nu} = 0$ in $]0, T[\times \mathcal{O}]$
 $u^{\nu}(0) = u_0$ in $\mathcal{O},$
 $u^{\nu} \cdot \mathbf{n} = 0 \text{ and } 2D(u^{\nu})\mathbf{n} \cdot \mathbf{t} + \alpha u^{\nu} \cdot \mathbf{t} = 0$ on $]0, T[\times \Gamma]$
(1)

- O is a bounded simply connected domain in ℝ², Γ is sufficiently regular
 α ∈ C²(Γ, ℝ⁺)
- $D^{ij}(u^{\nu}) = \frac{1}{2} \left(\partial_j u^{\nu,i} + \partial_i u^{\nu,j} \right)$ is the rate of strain tensor,
- n and t are the unit exterior normal and the unit tangent vector,
- f(t, x) is a given deterministic force
- $\sqrt{Q} \dot{W}$ is the formal derivative of a Gaussian random field in time and correlated in space that will be set later.

Iván Torrecilla

On the inviscid limit for SNSE

We introduce the following Hilbert spaces

$$H = \left\{ v \in \left[L^{2}(\mathcal{O}) \right]^{2} : \operatorname{div} v = 0 \text{ in } \mathcal{O} \text{ and } v \cdot \mathbf{n} = 0 \text{ on } \Gamma \right\},\$$

$$V = \left\{ v \in \left[H^{1}(\mathcal{O}) \right]^{2} : \operatorname{div} v = 0 \text{ in } \mathcal{O} \text{ and } v \cdot \mathbf{n} = 0 \text{ on } \Gamma \right\},\$$

$$W = \left\{ v \in V \cap \left[H^{2}(\mathcal{O}) \right]^{2} : 2D(v)\mathbf{n} \cdot \mathbf{t} + \alpha v \cdot \mathbf{t} = 0 \text{ on } \Gamma \right\}\$$

$$= \left\{ v \in V \cap \left[H^{2}(\mathcal{O}) \right]^{2} : \operatorname{curl} v = (2\kappa - \alpha)v \cdot \mathbf{t} \text{ on } \Gamma \right\},\$$

where κ denotes the curvature of Γ . We recall that $\operatorname{curl} v = \partial_1 v^2 - \partial_2 v^1$.

V is endowed with the inner product

 $\langle u, v \rangle_V = \langle \nabla u, \nabla v \rangle$

and the associated norm $\|\cdot\|_{V}$.

Let us denote by V' the topological dual of V and by $\langle \cdot, \cdot \rangle_{V',V}$ the corresponding duality. We define the operator $\mathcal{A} : V \to V'$ by

$$\langle \mathcal{A}u, v \rangle_{V',V} = \int_{\mathcal{O}} \nabla u \cdot \nabla v - \int_{\Gamma} (\kappa - \alpha) u \cdot v,$$

for all $u, v \in V$. Since $|\langle Au, v \rangle_{V',V}| \leq C ||u||_V ||v||_V$, A is a continuous operator from V to V'. Moreover $A : W \to H$ coincides with the Stokes operator $-P_H\Delta$, where P_H denotes the Leray projector. In fact,

$$\langle \mathcal{A}u, v \rangle_{V',V} = \langle -\Delta u, v \rangle, \quad u \in \mathcal{W}, v \in V.$$

We also define $\mathcal{B}: V \to V'$ as $\mathcal{B}(u) = (u \cdot \nabla)u$, that is,

$$\langle \mathcal{B}(u), \mathbf{v} \rangle = \int_{\mathcal{O}} (u \cdot \nabla) u \cdot \mathbf{v},$$

for all $u, v \in V$.

Iván Torrecilla

We shall also fix in the following $Q = A^{-2m}$, where $m \in \mathbb{N}$ will be fixed later and $W(t) = \sum_{k=1}^{\infty} \beta_k(t) v_k$, $t \ge 0$, where $\{v_k\} \subset W$ is a *H*-orthonormal system of eigenvectors of A with the corresponding eigenvalues λ_k which a basis for V, and $\{\beta_k\}$ is a sequence of standard Brownian motion mutually independent of some stochastic basis $(\Omega, \mathcal{F}, \mathbf{P}, \{\mathcal{F}_t\}_{t\ge 0})$. In fact,

$$\sqrt{\mathcal{Q}} W(t) = \sum_{k=1}^{\infty} \beta_k(t) \sqrt{\mathcal{Q}} v_k = \sum_{k=1}^{\infty} \lambda_k^{-m} v_k \beta_k(t)$$

is a *H*-valued centered Wiener process on $(\Omega, \mathcal{F}, \mathsf{P})$, with covariance \mathcal{Q} in *H*. We take $m \in \mathbb{N}$ such that

$$\sum_{k=1}^{\infty} \lambda_k^{-2m+3} < \infty.$$

Then, with this choice of m we have that Q is an operator of trace class. We denote the trace of Q by $\operatorname{tr}(Q) \doteq \sum_{k=1}^{\infty} \langle Q v_k, v_k \rangle = \sum_{k=1}^{\infty} \lambda_k^{-2m}$.

In terms of \mathcal{A} , \mathcal{B} and f we can write Equation (1) as the following stochastic evolution equation in V':

$$\begin{cases} du^{\nu} = F(t, u^{\nu}(t)) dt + \sqrt{\mathcal{Q}} dW(t) & \text{in }]0, T[\times \mathcal{O}, \\ u^{\nu}(0) = u_0 & \text{in } \mathcal{O}, \end{cases}$$
(2)

where $F(t, u^{\nu}) = f - \nu \mathcal{A} u^{\nu} - \mathcal{B}(u^{\nu})$.

Definition 1.1

Given $u_0 \in L^2(\Omega; H)$, an adapted stochastic process u^{ν} with sample paths in $C([0, T]; H) \cap L^2(0, T; V)$ is said a weak solution of the stochastic Navier-Stokes equation (2) if

$$\langle u^{\nu}(t),v\rangle = \langle u_0,v\rangle + \int_0^t \langle F(s,u^{\nu}(s)),v\rangle \,\,ds + \int_0^t \left\langle \sqrt{\mathcal{Q}}\,dW(s),v\right\rangle,$$

in]0, T[, for all $v \in V$ and a.e. $\omega \in \Omega$.

Our main result is the following:

Theorem 1.1

Let T > 0, $\nu_0 > 0$ and p > 2. Suppose that $f \in L^2(0, T; H)$, curl $f \in L^1(0, T; L^p(\mathcal{O}))$, $u_0 \in L^p(\Omega; H)$ and curl $u_0 \in L^p(\Omega; L^p(\mathcal{O}))$. Then,

(i) For any $\nu \in]0, \nu_0]$, there exists a unique weak solution u^{ν} of the stochastic Navier-Stokes equation (2) such that

$$\begin{split} u^{\nu} &\in L^{p}\left(\Omega; \mathcal{C}([0,T];H)\right) \cap L^{2}\left(\Omega; L^{2}(0,T;V)\right) \cap [L^{4}\left(]0,T[\times \mathcal{O} \times \Omega]\right)^{2},\\ \text{curl}\, u^{\nu} &\in L^{2}(\Omega; L^{\infty}(0,T;L^{p}(\mathcal{O})). \end{split}$$

(ii) In addition, if $\operatorname{curl} f \in L^1(0, T; L^{\infty}(\mathcal{O}))$, there exists a measurable stochastic process u that is a solution of the incompressible 2D stochastic Euler equation (2) ($\nu = 0$), in the sense that

$$\langle u(t), v \rangle = \langle u_0, v \rangle - \int_0^t \langle \mathcal{B}(u(s)), v \rangle \, ds + \int_0^t \langle f(s), v \rangle \, ds \\ + \int_0^t \left\langle \sqrt{\mathcal{Q}} \, dW(s), v \right\rangle$$

for all $v \in V$ and \mathbb{P} -a.e. $\omega \in \Omega$. Furthermore, taking $\operatorname{curl} u_0 \in L^p(\Omega; L^{\infty}(\mathcal{O}))$, for \mathbb{P} -a.e. $\omega \in \Omega$

 $u^{\nu}(\omega)
ightarrow u(\omega)$ strongly in $\mathcal{C}([0, T]; H)$, as $\nu
ightarrow 0$.

(3)

2 L^2 a priori estimates for u^{ν} independent of ν

3 Vorticity equation with additive noise

(4) L^p a priori estimates for ξ^{ν} independent of ν

5 Vanishing viscosity limit

We consider the following Faedo-Galerkin approximations of Equation (2). Let $H_n \doteq \operatorname{span} \{v_1, \ldots, v_n\}$, where $\{v_j\}_j$ is the previous fixed basis for V. Define u_n^{ν} as the solution of the following stochastic differential equation: For each $v \in H_n$,

$$d\langle u_n^{\nu}(t), v \rangle = \langle F(t, u_n^{\nu}(t)), v \rangle \, dt + \langle \sqrt{\mathcal{Q}} \, dW(t), v \rangle, \tag{4}$$

with $u_n^{\nu}(0) = \sum_{k=1}^n \langle u_0, v_k \rangle v_k$.

Notice that Equation (4) defines a system of stochastic ordinary differential equations in \mathbb{R}^n with locally Lipschitz coefficients. Therefore, we need some a priori estimate to prove the global existence of a solution $u_n^{\nu}(t)$ as an adapted process in the space $\mathcal{C}(0, T; H_n)$.

Proposition 2.1

Let T > 0 and $\nu_0 > 0$. Suppose that $f \in L^1(0, T; H)$ and $u_0 \in L^2(\Omega; H)$. Let $u_n^{\nu}(t)$ be an adapted process in the space $C([0, T]; H_n)$ solution of Equation (4). Then

$$\sup_{0 < \nu \leq \nu_{0}} \sup_{n} \left\{ \mathbb{E} \left(\sup_{0 \leq r \leq T} \|u_{n}^{\nu}(r)\|_{L^{2}}^{2} \right) + \nu \int_{0}^{T} \mathbb{E} \left(\|u_{n}^{\nu}(s)\|_{V}^{2} \right) ds \right\}$$

$$\leq C(f, \mathcal{Q}, \nu_{0}) \left(\mathbb{E} \left(\|u_{0}\|_{L^{2}}^{2} \right) + 1 \right).$$
(5)

Furthermore we have

$$\begin{aligned} \|u_{n}^{\nu}(t)\|_{L^{2}}^{2} + 2\nu \int_{0}^{t} \|\nabla u_{n}^{\nu}(s)\|_{L^{2}}^{2} ds \\ &= \|u_{n}^{\nu}(0)\|_{L^{2}}^{2} + 2\nu \int_{0}^{t} \left(\int_{\Gamma} (\kappa - \alpha)u_{n}^{\nu}(s) \cdot u_{n}^{\nu}(s) \, dS\right) ds \\ &+ 2 \int_{0}^{t} \langle f(s), u_{n}^{\nu}(s) \rangle \, ds + 2 \int_{0}^{t} \langle \sqrt{\mathcal{Q}} \, dW(s), u_{n}^{\nu}(s) \rangle + \int_{0}^{t} \operatorname{tr}(\mathcal{Q}) \, ds, \end{aligned}$$
(6)

Corollary 2.1

Assume hypotheses of Proposition 2.1 and $u_0 \in L^p(\Omega; H)$. Then for any $p \ge 4$

$$\sup_{0 < \nu \le \nu_0} \sup_{n} \left\{ \mathbb{E} \left(\sup_{0 \le r \le T} \|u_n^{\nu}(r)\|_{L^2}^{p} \right) + \nu \int_0^T \mathbb{E} \left(\|u_n^{\nu}(s)\|_{L^2}^{p-2} \|u_n^{\nu}(s)\|_{V}^{2} \right) ds \right\}$$

$$\leq C(p, f, Q, \nu_0) \left(\mathbb{E} \left(\|u_0\|_{L^2}^{p} \right) + 1 \right).$$
(7)

The next lemma gives an important monotonicity property of operator F in order to prove the existence and uniqueness for the solution to Equation (2).

Lemma 2.1

For a given r > 0 we consider the following (closed) L^4 -ball B_r in the space V:

 $B_r \doteq \left\{ v \in V : \|v\|_{[L^4(\mathcal{O})]^2} \leq r \right\}.$

Then the nonlinear operator $u \mapsto F(t, u)$, $t \in [0, T]$, is monotone in the convex ball B_r , that is, for any $u \in V$, $v \in B_r$, there exists a positive constant $C \doteq C(\nu_0, \mathcal{O}, \alpha)$, depending on ν_0 , the domain \mathcal{O} and α such that

$$\langle F(t,u) - F(t,v), u-v \rangle \leq C \left(1 + \frac{r^4}{\nu^3}\right) \|u-v\|_{L^2}^2.$$
 (8)

The following proposition give the pathwise uniquenes of Equation (2).

Proposition 2.2

Assume the hypotheses of Proposition 2.1. Let u^{ν} be a solution of Equation (2), that is, an adapted stochastic process $u^{\nu}(t, x, \omega)$ satisfying (2) and such that

 $u^{\nu} \in L^{2}\left(\Omega; \mathcal{C}(0, T; H) \cap L^{2}(0, T; V)\right) \cap [L^{4}\left(]0, T[\times \mathcal{O} \times \Omega\right)]^{2}.$

If v^{ν} is another solution of Equation (2) as an adapted stochastic process in the space $C(0, T; H) \cap L^2(0, T; V)$, then

$$\begin{split} \|u^{\nu}(t) - v^{\nu}(t)\|_{L^{2}}^{2} \exp\left\{-2C \int_{0}^{t} \left(1 + \frac{1}{\nu^{3}} \|u^{\nu}(s)\|_{[L^{4}(\mathcal{O})]^{2}}^{4}\right) ds\right\} \\ \leq \|u^{\nu}(0) - v^{\nu}(0)\|_{L^{2}}^{2}, \end{split}$$

with probability 1, for any $0 \le t \le T$, where *C* is the positive constant that appears in Lemma 2.1. In particular $u^{\nu} = v^{\nu}$, if v^{ν} satisfies the same initial condition as u^{ν} .

The existence of solution to Equation (2) is given in the following proposition

Proposition 2.3

Suppose the hypotheses of Corollary 2.1. Then there exists an adapted process $u^{\nu}(t, x, \omega)$ such that

 $u^{\nu} \in L^{p}(\Omega; \mathcal{C}(0, T; H)) \cap L^{2}(\Omega; L^{2}(0, T; V)) \cap [L^{4}(]0, T[\times \mathcal{O} \times \Omega)]^{2},$

and verifying Equation (2). Furthermore,

$$\sup_{0 < \nu \le \nu_{0}} \mathbb{E} \left\{ \sup_{0 \le r \le T} \|u^{\nu}(r)\|_{L^{2}}^{p} + \nu \int_{0}^{T} \|u^{\nu}(s)\|_{V}^{2} ds + \nu \int_{0}^{T} \|u^{\nu}(s)\|_{L^{2}}^{p-2} \|u^{\nu}(s)\|_{V}^{2} ds \right\}$$

$$\leq C(p, f, Q, \nu_{0}) \left(\mathbb{E} \left(\|u_{0}\|_{L^{2}}^{p} \right) + 1 \right).$$
(9)

2 L^2 a priori estimates for u^{ν} independent of ν

3 Vorticity equation with additive noise

(4) L^p a priori estimates for ξ^{ν} independent of ν

5 Vanishing viscosity limit

Set $\xi^{\nu} = \operatorname{curl} u^{\nu}$. We apply the operator curl to our equation (1), obtaining the following vorticity equation:

$$\begin{cases} \frac{\partial \xi^{\nu}(t)}{\partial t} - \nu \Delta \xi^{\nu}(t) + (u^{\nu}(t) \cdot \nabla) \xi^{\nu}(t) \\ = \operatorname{curl} f(t) + \operatorname{curl}(\sqrt{\mathcal{Q}} \dot{W}(t)) & \text{in }]0, T[\times \mathcal{O}, \\ \xi^{\nu}(0) = \operatorname{curl} u_{0} & \text{in } \mathcal{O}, \\ \xi^{\nu} = (2\kappa - \alpha)u^{\nu} \cdot \mathbf{t} & \text{on }]0, T[\times \Gamma] \end{cases}$$

Notice that

$$\operatorname{curl}(\sqrt{\mathcal{Q}}\,dW) = \sum_{k=1}^{\infty} \lambda_k^{-m} \operatorname{curl} \mathbf{v}_k\,d\beta_k.$$

In the following we shall denote by \tilde{H} the space $L^2(\mathcal{O})$ endowed with the L^2 -norm. We consider the operator $\tilde{\mathcal{A}} : D(\tilde{\mathcal{A}}) \subset \tilde{H} \to \tilde{H}$ with domain $D(\tilde{\mathcal{A}}) = \{\zeta \in L^2(\mathcal{O}) : \Delta \zeta \in L^2(\mathcal{O})\}$, defined as $\tilde{\mathcal{A}}\zeta = -\Delta \zeta$. Set

$$\zeta_k = \frac{\operatorname{curl} v_k}{\|\operatorname{curl} v_k\|_{L^2}},$$

where $\{v_k\}$ is the previous fixed *H*-orthonormal basis for *V*. In addition, $\{\zeta_k\}$ is an $L^2(\mathcal{O})$ -orthonormal basis for \tilde{H} that verifies $\tilde{\mathcal{A}}\zeta_k = \lambda_k\zeta_k$. Thus,

$$\operatorname{curl}(\sqrt{\mathcal{Q}}\,dW) = \sum_{k=1}^{\infty} \lambda_k^{-m} \operatorname{curl} v_k \,d\beta_k = \sum_{k=1}^{\infty} \lambda_k^{-m} \|\operatorname{curl} v_k\|_{L^2} \zeta_k \,d\beta_k.$$

We define $\tilde{\mathcal{Q}} \in L(\tilde{H}, \tilde{H})$ by

$$\tilde{\mathcal{Q}}\zeta_k = \lambda_k^{-2m} \mu_k^2 \zeta_k,$$

where $\mu_k = \|\operatorname{curl} \mathbf{v}_k\|_{L^2}$, and $\tilde{W} = \sum_{k=1}^{\infty} \zeta_k \beta_k$ is a new Wiener process.

In order to obtain L^p a priori estimates for the vorticity, we shall need to estimate $\mathbb{E}\left(\left\|\tilde{\mathcal{Q}}^{1/2}\tilde{W}(1)\right\|_{L^p}^2\right)$. Using the Sobolev Imbedding Theorem

$$\mathbb{E}\left(\left\|\sum_{k=1}^{\infty}\beta_{k}(1)\tilde{\mathcal{Q}}^{1/2}\zeta_{k}\right\|_{L^{p}}^{2}\right)\leq\mathbb{E}\left(\left\|\sum_{k=1}^{\infty}\beta_{k}(1)\tilde{\mathcal{Q}}^{1/2}\zeta_{k}\right\|_{H^{1}}^{2}\right).$$

Using that $[H^1(\mathcal{O})]^2$ is a Hilbert space and the independence of the elements of the sequence $\{\beta_k(1)\}_k$, we only need to show that

$$\sum_{k=1}^{\infty} \lambda_k^{-2m} \|\operatorname{curl} \mathbf{v}_k\|_{H^1} < +\infty.$$

In fact, it is possible to prove that

 $\| \operatorname{curl} v_k \|_{H^1(\mathcal{O})}^2 \leq C (1 + \lambda_k)^2 \| \operatorname{curl} v_k \|_{L^2}^2 \leq C (1 + \lambda_k)^3 \| v_k \|_{L^2}^2.$

Thus, we shall take $m \in \mathbb{N}$ such that

$$\sum_{k=1}^{\infty} \lambda^{-2m+3} := \mathcal{M} < +\infty.$$

In addition $\tilde{\mathcal{Q}}^{1/2}\tilde{W}$ is an \tilde{H} -valued centered Wiener process on $(\Omega, \mathcal{F}, \mathbf{P})$, with covariance $\tilde{\mathcal{Q}}$ in \tilde{H} , and $\tilde{\mathcal{Q}}$ is a trace class operator.

In terms of $\tilde{\mathcal{A}}$ and $\tilde{\mathcal{Q}}^{1/2}\tilde{\mathcal{W}}$ we can write the vorticity equation as

$$\begin{cases} d\xi^{\nu}(t) + \left\{\nu\tilde{\mathcal{A}}\xi^{\nu}(t) + (u^{\nu}(t)\cdot\nabla)\xi^{\nu}(t)\right\}dt \\ = \operatorname{curl} f(t) dt + \tilde{\mathcal{Q}}^{1/2} d\tilde{W}(t) & \text{in }]0, T[\times\mathcal{O}, \\ \xi^{\nu}(0) = \operatorname{curl} u_{0} & \text{in } \mathcal{O}, \\ \xi^{\nu} = (2\kappa - \alpha)u^{\nu} \cdot \mathbf{t} & \text{on }]0, T[\times\Gamma \\ (10) \end{cases}$$

2 L^2 a priori estimates for u^{ν} independent of ν

3 Vorticity equation with additive noise

4 L^p a priori estimates for ξ^{ν} independent of ν

5 Vanishing viscosity limit

The improvement on the a priori estimates (9) for the solution of Equation (2) is given in the following result:

Proposition 4.1

Suppose hypotheses of Corollary 2.1. Assume also that p > 2, curl $f \in L^1(0, T; L^p(\mathcal{O}))$ and curl $u_0 \in L^p(\Omega; L^p(\mathcal{O}))$. Let ξ^{ν} be the vorticity of u^{ν} , then we have

$$\mathbb{E}\left(\sup_{0\leq r\leq T} \|\xi^{\nu}(r)\|_{L^{p}}^{p}\right) \leq C(\operatorname{curl} f, \tilde{\mathcal{Q}}, T, p, \mathcal{O}, \alpha) \left\{\mathbb{E}\left(\|u_{0}\|_{L^{2}}^{p}\right) + \mathbb{E}\left(\|\operatorname{curl} u_{0}\|_{L^{p}}^{p}\right) + 1\right\}. \quad (11)$$

The idea is: Let us denote by w the solution of the following linear equation

$$dw(t) + \{\nu \tilde{\mathcal{A}}w(t) + (u^{\nu}(t) \cdot \nabla)w(t)\} dt = 0 \quad \text{in }]0, T[\times \mathcal{O},$$
$$w(0) = 0 \qquad \qquad \text{in } \mathcal{O},$$
$$w = (2\kappa - \alpha)u^{\nu} \cdot \mathbf{t} \qquad \qquad \text{on }]0, T[\times \Gamma]$$

We introduce the process $\rho = \xi^{\nu} - w$ that verifies following s.d.e.:

$$d\rho(t) + \left\{\nu \tilde{\mathcal{A}}\rho(t) + (u^{\nu}(t) \cdot \nabla)\rho(t)\right\} dt$$

= curl f(t) dt + $\tilde{\mathcal{Q}}^{1/2} d\tilde{W}(t)$ in]0, T[× \mathcal{O} .
 $\rho(0) =$ curl u_0 in \mathcal{O} ,
 $\rho = 0$ on]0, T[× Γ

1

Using Propositions 2.1 and 4.1, we can deduce the following result:

Proposition 4.2

Assume the hypotheses of Proposition 4.1. Then

$$\mathbb{E}\left(\|u^{\nu}\|_{L^{\infty}(0,T;[W^{1,p}(\mathcal{O})]^2)}^p\right) \le C,\tag{1}$$

with a constant C > 0 independent of viscosity.

12)

2 L^2 a priori estimates for u^{ν} independent of ν

3 Vorticity equation with additive noise

(4) L^p a priori estimates for ξ^{ν} independent of ν

5 Vanishing viscosity limit

Vanishing viscosity limit

In the next two Lemmas the Wiener process $\sqrt{\mathcal{Q}} W(t)$ has covariance $\mathcal{Q} = \mathcal{A}^{-2m}$, m > 4.

Lemma 5.1

Assume that for a.e. $\omega \in \Omega$, $u_0 \in L^p(\mathcal{O})$ and $\operatorname{curl} f \in L^1(0, T; L^{\infty}(\mathcal{O}))$. Let u^{ν} be the weak solution of (2), then we have

$$\|u^{\nu}(\omega)\|_{L^{\infty}(0,T;W^{1,p}(\mathcal{O}))} \leq C(\omega), \tag{13}$$

where $C(\omega)$ does not depend on the viscosity ν , for a.e. ω in Ω but depends on ω . Moreover, if we assume for a.e. $\omega \in \Omega$, $u_0 \in L^{\infty}(\mathcal{O})$, the estimate (13) holds for $p = \infty$.

Lemma 5.2

Under the assumptions of Lema 5.1. Then exists a stochastic process u with sample paths in $C([0, T]; H) \cap L^{\infty}(0, T; W^{1,p}(\mathcal{O}))$, p > 2 that is solution of the Euler equation in the sense of (3). Moreover, in the case $p = \infty$, such solution is unique.

References

- Clopeau, T., Mikelic, A., Robert, R. (1998): On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions. Nonlinearity, **11**.
- Lopes Filho, M. C., Nussenzveig Lopes, H. J., Planas, G. (2005): On the inviscid limit for two-dimensional incompressible flow with navier friction condition. SIAM J. Math. Anal. Vol. **36**, No. 4.
- Kelliher, J. P. (2006): Navier-Stokes equations with Navier boundary conditions for a bounded domain in the plane. SIAM J. Math. Anal. Vol. **38**, No. 1.

References

- Menaldi, J-L., Sritharan, S. S. (2002): *Stochastic 2-D Navier-Stokes Equation.* Appl. Math. Optim **46**.
- Sritharan, S. S., Sundar, P. (2006): Large deviations for the two-dimensional Navier-Stokes equations with multiplicative noise. Stochastic Processes and their Applications **116**.
- Barbu, V., Da Prato, G. (2008): The Kolmogorov equation for a 2D-Navier-Stokes stochastic flow in a channel. Nonlinear Analysis, 69.
- Bessaih, H., Flandoli, F. (1999): 2-D Euler equation perturbed by noise. NoDEA Nonlinear differ. equ. appl. **6**.
- Brzezniak, Z., Peszat, S. (2001): *Stochastic two dimensional Euler equations.* The Annals of Probability. **29**, No. 4, 1796-1832.
- Bessaih, H., Millet, A. (2012): Inviscid large deviation principle and the 2D Navier-Stokes equations with a free boundary coondition. SIAM J. Math. Anal. Vol. 44, No. 3.
- Srivastava, S. M. (1998): *A course on Borel sets.* Graduate Texts in Mathematics, **180**, Springer-Verlag, New York.

Thank you for your attention!!!