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Velocity equation with additive noise
We consider the following stochastic Navier-Stokes equation in dimension 2:

L) _ yAw(t) + (u”(t) - V)ur(t) + Vp(t) = F(t) + VO W in]0, T[xO
divu” =0 in 10, T[xO
u(0) = ug in O,
uv¥-n=0and 2D(v")n-t+au’-t=0 on |0, T[xI

(1)

O is a bounded simply connected domain in R?, T is sufficiently regular
a € C2(T, R+)

Di(u”) = 3 (9ju”" + 0;u™) is the rate of strain tensor,

n and t are the unit exterior normal and the unit tangent vector,
f(t,x) is a given deterministic force

/O W is the formal derivative of a Gaussian random field in time and
correlated in space that will be set later.
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Velocity equation with additive noise

We introduce the following Hilbert spaces

{vE [Lz((’))]z:divv:OinOand v-n=20on F},

{ve [Hl((’))]z:divv:Oin(’)and v-n=20on F},
2

H
v
W {ve VN [H*(O)]" :2D(v)n-t+av-t=0on r}
:{ve VN [HX(0)]? : curlv = (25 — a)v - t on r},

where « denotes the curvature of I'. We recall that curl v = 9;v? — dpvl.
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Velocity equation with additive noise
V is endowed with the inner product

(u,v),, = (Vu,Vv)

and the associated norm || - ||y.
Let us denote by V' the topological dual of V and by (, ), , the
corresponding duality. We define the operator A : V — V' by

<A“7V>v'.v/ Vu-Vv—/(m—a)u-v,
' @) r

for all u, v € V. Since [(Au,v)\, | < Cllullv||v||v, Ais a continuous
operator from V to V. Moreover A : VW — H coincides with the Stokes
operator —Py /A, where Py denotes the Leray projector. In fact,

(Au,v)yiy = (-Au,v), veW,veV.
We also define B: V — V" as B(u) = (v - V)u, that is,

<B(u>,v>=/o(u-V)u-v,

for all u,v e V.
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Velocity equation with additive noise

We shall also fix in the following Q = A~2™, where m € N will be fixed
later and W(t) = > 77 Br(t)v, t > 0, where {v,} C Wis a
H-orthonormal system of eigenvectors of A with the corresponding
eigenvalues A\, which a basis for V, and {3} is a sequence of standard

Brownian motion mutually independent of some stochastic basis
(Q,F,P,{Fi}t>0). In fact,

VOW(t) =) B(tVQvi = D> A M vieBi(t)
k=1 k=1

is a H-valued centered Wiener process on (€2, F, P), with covariance Q in
H. We take m € N such that

o0

Z}\;2m+3 < oo,
k=1

Then, with this choice of m we have that Q is an operator of trace class.
We denote the trace of O by tr(Q) = 3°7° 1 (Qvp, vik) = > 70 A 2™
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Velocity equation with additive noise

In terms of A, BB and f we can write Equation (1) as the following
stochastic evolution equation in V/’:

du” = F(t,u”(t))dt + /O dW(t) in]0, T[xO,

(2)
u”(0) = up in O,
where F(t,u”) = f — vAu” — B(u").
Definition 1.1

Given uy € L?(Q; H), an adapted stochastic process u” with sample paths
in C([0, T]; H) N L2(0, T; V) is said a weak solution of the stochastic
Navier-Stokes equation (2) if

(W (£), v) = (uo, v) + /Ot (F(s, u"(s)), v} ds + /Ot (V@dw(s).v).

in]0, T, forall ve V and a.e. w € Q.

v
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Velocity equation with additive noise

Our main result is the following:
Theorem 1.1

Let T >0, v9 >0 and p > 2. Suppose that f € L2(0, T; H),

curl f € L1(0, T; LP(O)), up € LP(; H) and curl ug € LP(2; LP(O)).
Then,

(i) For any v €]0,1p], there exists a unique weak solution u” of the
stochastic Navier-Stokes equation (2) such that

u” € LP(Q;C([0, T]; H)) N L2 (Q; L2(0, T; V) N [L* (J0, T[xO x Q)]?,
curl v’ € L2(Q; L°°(0, T; LP(O)).
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Velocity equation with additive noise

(ii) In addition, if curl f € L1 (0, T; L>°(0)), there exists a measurable
stochastic process u that is a solution of the incompressible 2D stochastic
Euler equation (2) (v = 0), in the sense that

(u(t),v) = (uo, v) — /Ot (B(u(s)), v) ds + /Ot (f(s),v) ds
+ / (Vadw(s).v) (3)

t

0

for all v € V and P-a.e. w € Q. Furthermore, taking
curl ug € LP(Q2; L*°(0)), for P-a.e. w € Q

u”(w) = u(w) strongly in C ([0, T]; H), asv — 0.
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© L2 a priori estimates for v’ independent of v
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[? a priori estimates for v” independent of v

We consider the following Faedo-Galerkin approximations of Equation (2).
Let H, = span{vi,..., vy}, where {v;}; is the previous fixed basis for V/.
Define v/ as the solution of the following stochastic differential equation:

For each v € H,,,

d(uy(t),v) = (F(t, up(t)),v) dt + (VQdW(t),v), (4)

with uj(0) = 34 (uo, vie) vk-

Notice that Equation (4) defines a system of stochastic ordinary differential
equations in R” with locally Lipschitz coefficients. Therefore, we need
some a priori estimate to prove the global existence of a solution u”(t) as
an adapted process in the space C(0, T; H,).
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[? a priori estimates for v independent of v
Proposition 2.1

Let T >0 and vy > 0. Suppose that f € L*(0, T; H) and ug € L?(Q; H).

Let u(t) be an adapted process in the space C([0, T|; Hy,) solution of
Equation (4). Then

-

sup sup {E< sup IuZ(r)Iiz> +V/ E (|lus(s)IIy) dS}
O<v<yg n 0<r<T 0
< C(f,Q,10) (E (Jluol?2) +1) .-

Furthermore we have

(5)

u t)||2+2v/ IV ()]

= @) +20 [ ( / (5~ a)us(s) - ui(5) 45 ) s

+2/0 (F(s), u(s)) ds+2/o <\/§dvv(s),ug(s)>+/o tx(Q) ds, (6)

V.
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[? a priori estimates for v independent of v

Corollary 2.1

Assume hypotheses of Proposition 2.1 and ug € LP(S2; H). Then for any
p=4

:
sup p{E( sup HUZ(r)H’Zz>+V | E(leE21 1R ) ds}

O<v<vg n 0<r<T 0

< C(p, f,Q,v0) (E (|lwollf2) +1) - (7)
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[? a priori estimates for v” independent of v

The next lemma gives an important monotonicity property of operator F in
order to prove the existence and uniqueness for the solution to Equation

(2).

Lemma 2.1

For a given r > 0 we consider the following (closed) L*-ball B, in the space
V:

B, = {V e V. ||VH[L4((’))]2 < r} .

Then the nonlinear operator u +— F(t,u), t € [0, T], is monotone in the
convex ball B,, that is, for any u € V/, v € B,, there exists a positive
constant C = C(vy, O, ), depending on vy, the domain O and « such that

4
r
(Fto) - Fe -0 <€ (14 5 ) lo—vi @
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[? a priori estimates for v” independent of v
The following proposition give the pathwise uniquenes of Equation (2).

Proposition 2.2

Assume the hypotheses of Proposition 2.1. Let u” be a solution of
Equation (2), that is, an adapted stochastic process u”(t, x,w) satisfying
(2) and such that

v’ € L2 (Q;C(0, T; H)N L2(0, T; V)) N[L* (J0, T[xO x Q).

If vV is another solution of Equation (2) as an adapted stochastic process
in the space C(0, T; H) N L2(0, T; V), then

v v ‘ 1 v
o) = o) ep { -2€ [ (14 H 1 Gfsione ) o5}
< J|u”(0) — v¥(0)[I3,
with probability 1, for any 0 < t < T, where C is the positive constant

that appears in Lemma 2.1. In particular u¥ = v, if v¥ satisfies the same
initial condition as u".

y
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[? a priori estimates for v independent of v
The existence of solution to Equation (2) is given in the following

proposition

Proposition 2.3

Suppose the hypotheses of Corollary 2.1. Then there exists an adapted

process u”(t, x,w) such that

u” € LP(Q;C(0, T; H)) N L2 (2 L2(0, T; V)) N[L* (]0, T[xO x Q)]?,

and verifying Equation (2). Furthermore,

.
sup E{ sup IIU”(f)||’Zz+1//o lu”(s)II% ds

0<v<vg 0<r<T

.
s [ I ol o
< Clp. £, Quv0) (E (Junlf) +1).

(9)

Ivan Torrecilla On the inviscid limit for SNSE

1st July 2014

16 / 31



© Vorticity equation with additive noise
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Vorticity equation with additive noise

Set ¢ = curl u”. We apply the operator curl to our equation (1),
obtaining the following vorticity equation:

% yaer(t) + (ur(t) - V)EX(t)

= curl £(t) + curl(v/Q W(t)) in]0, T[xO,

£7(0) = curl ug in O,

& =02r—a)u” -t on |0, T[xI
\
Notice that

curl(v/QdW) = " A, Meurl vy d .

k=1
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Vorticity equation with additive noise

In the following we shall denote by H the space L2((’)) endowed with the
[2-norm. We consider the operator A : D(A) ¢ H — H with domain
D(A) = {¢ € L2(0): A€ [2(0)}, defined as A = —~A(. Set

curl vy

Ck =

[[eurl vi|| 12"

where {v,} is the previous fixed H-orthonormal basis for V. In addition,
{¢,} is an L?(O)-orthonormal basis for H that verifies AC, = A\ (. Thus,

curl(vVQ dW) = Z)\k curlvkdﬁk—Z)\ M| curl vie|| 12 Ck dBr

We define O € L(H, H) by
Ok = A s

where 1 = [Jcurl vi|[ 2, and W = >"77; CxfBk is a new Wiener process.
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Vorticity equation with additive noise

In order to obtain LP a priori estimates for the vorticity, we shall need to
o 2
estimate (HQl/z W(l)HL
P
Using the Sobolev Imbedding Theorem

2 2

Zﬁk 1)02 ¢, Zﬁk 1)0Y2 ¢

LpP Ht

Using that [Hl((’))]2 is a Hilbert space and the independence of the
elements of the sequence {(5(1)}«, we only need to show that

o

Z M| curl v || < +oc.
k=
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Vorticity equation with additive noise

In fact, it is possible to prove that

lleurl vi |70y < C(L+ Ai)? [leurl vi|72 < C(L+ Mi)? [l -

Thus, we shall take m € N such that

o0
Z)fz’"ﬁ =M < +o0.
k=1

In addition O'/21V/ is an H-valued centered Wiener process on (Q, F, P),
with covariance Q in H, and O is a trace class operator.

Ivan Torrecilla On the inviscid limit for SNSE 1st July 2014 21 /31




Vorticity equation with additive noise

In terms of A and OY2// we can write the vorticity equation as

.

de¥ (t) + {vAg¥(t) + (u”(t) - V) (1)} dt
= curl £(t) dt + QY2 dW(t) in]0, T[xO,
¢"(0) = curl ug in O,

=02k —a)u” -t on |0, T[xT
(10)
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@ LP a priori estimates for ¢/ independent of v
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LP a priori estimates for £’ independent of v

The improvement on the a priori estimates (9) for the solution of Equation
(2) is given in the following result:

Proposition 4.1
Suppose hypotheses of Corollary 2.1. Assume also that p > 2,

curl f € L1 (0, T; LP(O)) and curl up € LP (Q; LP(O)). Let £ be the
vorticity of u”, then we have

E( sup ||€”(f)|!fp>
0<r<T
< Clewlf, 8, T,p,0,0) {E (luollf2) + E (llcurl wollf,) +1} . (11)
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LP a priori estimates for £’ independent of v
The idea is: Let us denote by w the solution of the following linear equation

dw(t) + {Vflw(t) + (u”(t) - V)w(t)}dt =0 in]0, T[xO,
w(0) =0 in O,
w=(2k —a)u” - t on |0, T[xI
We introduce the process p = £ — w that verifies following s.d.e.:
dp(t) + {vAp(t) + (u”(t) - V)p(t)} dt
= curl f(t) dt + QY2 dW(t) in]0, T[xO,

p(0) = curl ug in O,

p=0 on [0, T[xI
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LP a priori estimates for £’ independent of v

Using Propositions 2.1 and 4.1, we can deduce the following result:

Proposition 4.2

Assume the hypotheses of Proposition 4.1. Then

E (HuVHIZOO(O,T;[Wl’P(O)]Z)> S C7 (12)

with a constant C > 0 independent of viscosity.
W
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e Vanishing viscosity limit
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Vanishing viscosity limit

In the next two Lemmas the Wiener process /O W/(t) has covariance
Q=A"2" m> 4.

Lemma 5.1

Assume that for a.e. w € Q, up € LP(O) and curl f € L1(0, T; L>(O)).
Let u” be the weak solution of (2), then we have

4" (W)l o< (0, 7;wrp(0)) < Cw), (13)

where C(w) does not depend on the viscosity v, for a.e. w in Q but
depends on w. Moreover, if we assume for a.e. w € Q, up € L>(0O), the
estimate (13) holds for p = oc.

Lemma 5.2

Under the assumptions of Lema 5.1. Then exists a stochastic process u
with sample paths in C([0, T]; H) N L>°(0, T; WP(0)), p > 2 that is
solution of the Euler equation in the sense of (3). Moreover, in the case
p = oo, such solution is unique.
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Thank you for your attention!!!
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