
The Einstein field equations
Part I: the right-hand side

Atle Hahn
GFM, Universidade de Lisboa

Lisbon, 21st January 2010

Contents:

§1 Einstein field equations: overview

§2 Special relativity: review

§3 Classical and relativistic fluid dynamics

§4 The stress energy tensor

1



References:

• Book by Wald: “General Relativity”

• Wikipedia

Prerequisites:

• Special relativity (basic results)

• General relativity (vague idea)

• Differential Geometry (basic knowledge) OR

Classical Fluid Dynamics (basic knowledge)

Aims:

• Preparation for future lectures (Big bang, Schwarzschild solution, Gödel cos-

mos)

• (Hopefully useful) supplement for the study of Wald’s book
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1 Einstein field equations: overview

Let us consider a fixed “space time” (M, g).

We use “abstract index notation”:

• We write gab for the type (2,0) tensor g

• gab denotes the type (0,2) tensor given by
∑

b gabg
bc = δc

a

(where δa
c := δac Kronecker symbol)

• Rd
abc denotes the curvature tensor associated to (M, g)

• We set Rab :=
∑

c Rc
acb (“Ricci tensor”)

• We set R :=
∑

a,b Rabg
ab (“scalar curvature”)

Remark 1 Elementary reformulation for M = R4 :

Pseudo-Riemannian metric gab on M = R4 can be considered as a matrix

(gab)1≤a,b≤4 of smooth functions gab : R4 → R such that for each x ∈ R4

• The matrix (gab(x))a,b is symmetric

• (gab(x))a,b has three (strictly) positive eigenvalues and one (strictly) negative

eigenvalue

⇒ (gab)1≤a,b≤4 determined by the 10 functions

g11, g22, g33, g44, g12, g13, g14, g23, g24, g34
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(gab)1≤a,b≤4: Matrix of functions gab : R4 → R given by

(gab(x))ab =
(
(gab(x))a,b

)−1
for each x ∈ R4

Curvature tensor (Rd
abc)1≤a,b,c,d≤4: family of functions Rd

abc : R4 → R given explic-

itly as

Rd
abc(x) := ∂bΓ

d
ac(x)− ∂aΓ

d
bc(x) +

∑
i

(
Γi

ac(x)Γd
ib(x)− Γi

bc(x)Γd
ia(x)

)

where

Γc
ab(x) :=

1

2

∑

d

gcd(x)
(
∂agbd(x) + ∂bgad(x)− ∂dgab(x)

)

Rab, a, b ≤ 4, and R are functions on M = R4 given by

Rab(x) =
∑

c

Rc
acb(x), R(x) =

∑

a,b

Rab(x)gab(x)

for each x ∈ R4.
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Convention 1

• Index set {1, 2, 3, 4} instead of {0, 1, 2, 3}
• Einstein sum convention: e.g. we write

Rabg
ac instead of

∑
a

Rabg
ac

Ra
a instead of

∑
a

Ra
a

• Normal rules for raising/lowering indices: e.g. we write

Rc
b instead of Rabg

ac =
∑

a

Rabg
ac

vav
a instead of gabv

bva =
∑

a,b

gabv
bva
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1.1 Vacuum case

Basic problem: For given M and Λ ∈ R (“cosmological constant”) find gab such

that

Rab − 1
2Rgab + Λgab = 0 (1)

is fulfilled.

System of 10 non-linear PDEs of second order!

Example 1 A Schwarzschild black hole solution gab on M = (R3\{0}) × R):

Solution of Eq. (1) which is “rotation-invariant” and “static”.

It is completely specified by a parameter m ∈ R+ (the “mass” of black hole).

Digression 1 If gab fulfills Eq. (1) then, using R = Rabg
ab and gabg

ab = δa
a = 4

we obtain

R− 1
2R4 + Λ4 = 0

and therefore

R = 4Λ

Thus R is a constant function and

Rab = Λgab

⇒ (M, g) is a “Einstein manifold”.

Special case Λ = 0: Rab = 0, i.e. (M, g) is “Ricci flat”.
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1.2 General case

Real space-time contains matter & radiation. Most important cases:

• A perfect fluid is present (→ we have 4-velocity field ua and a density field ρ)

• Electromagnetic radiation is present (→ we have a 4-potential Aa)

Now consider general situation where (matter or radiation) field Ψ is present, e.g.

Ψ = (ua, ρ) or Ψ = Aa.

Assumption 1: Equations of motions for Ψ are known, i.e.

F (g, Ψ) = 0

for a known function F .

Assumption 2: The tensor

Tab = Tab(g, Ψ) (“the stress energy tensor”)

is known explicitly (see Sec. 4.2 for a definition)

Example 2 Ψ is a Klein-Gordon field φ on (M, g), i.e. a field φ : M → R with

equation of motion

F (g, φ) = (∇a∇a −m2)φ = 0, m ∈ R
The associated stress energy tensor is (see Digression 5 below)

T (g, φ) = ∇aφ∇bφ− 1
2gab(∇cφ∇cφ + m2φ2)

(∇a: Levi-Civita connection)
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Basic problem: For given M and Λ ∈ R find (g, Φ) such that

Rab − 1
2Rgab + Λgab = 8πG

c4
Tab(g, Φ) (2a)

F (g, Φ) = 0 (2b)

are fulfilled where c is the speed of light and G Newton’s gravitational constant.

Remark 2 Eqs. (2a), (2b) is considerably more difficult than Eq. (1). We must

find g and Φ simultaneously!

Convention 2 For most of the talk (exception: Sec. 2) we use physical units such

that c = 1 and G = 1

Most interesting situations involve matter/radiation

• Friedmann-Robertson-Walker model for the big bang (perfect fluid)

• Schwarzschild solution for a normal star (perfect fluid)

• Gödel cosmos (perfect fluid)

• Black hole with electric charge (electromagnetic field)
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2 Special relativity: review

Let c > 0 be speed of light (in this section not necessarily c = 1)

Minkowski space: (R4, 〈·, ·〉L) where

〈x, y〉L = −x0y0 +

3∑
i=1

xiyi

We set

|x| :=
√
|〈x, x〉L|

O(1, 3) denotes “Lorentzgroup”, i.e. automorphism group of (R4, 〈·, ·〉L). Ex-

plictly:

O(1, 3) = {A ∈ GL(R4) | 〈Ax,Ay〉L = 〈x, y〉L for all x, y ∈ R4}

Let us now work with a concrete basis of R4, namely the standard basis (ei)i of

R4. Using the “concrete” index notation w.r.t. this basis we have

〈x, y〉L = ηabx
ayb = xaya

where

(ηab)ab =




−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1
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For a ~v = (v1, v2, v3) ∈ R3 we define the corresponding 4-vector va
0 by

va
0 = (c, ~v) = (c, v1, v2, v3)

If |~v| < c we introduce the normalized 4-vector va by

va := c
va

0

|va
0|

=
1√

1− |~v|2/c2
(c, v1, v2, v3)

Clearly, the definitions above imply

〈va, va〉L = vav
a = −c2 (3)

For a particle of “rest mass” m moving with velocity vector ~v (with respect to the

inertial system (ei)i) we call the corresponding normalized 4-vector the 4-velocity

and introduce the “momentum 4-vector” P a by

P a := mva (4)

Digression 2 From definitions

E := cP 0 =
1√

1− |~v|2/c2
mc2

If particle at rest (in our inertial system) then ~v = 0 so

E = mc2

Moreover,

PaP
a = −c2m2

or, equivalently,
1
c2

E2 = (P 0)2 = c2m2 +
∑

i

P iPi
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3 Classical and relativistic fluid dynamics

3.1 Classical fluid dynamics

Consider fluid (liquid or gas) in domain D ⊂ R3.

For simplicity take D = R3.

ρ(x, t): mass-density of fluid

~u(x, t): velocity field of fluid

T (x, t): temperature distribution of fluid

Assume: Equation of state for fluid is known, i.e.

p = f (ρ, T ) (5)

where f is a known function.

Example 3 For an ideal gas we have f (ρ, T ) = c · ρ T where c is a constant
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3.1.1 Special case: perfect fluid (situation)

Special case: perfect fluid (situation)

• fluid is inviscid (= has vanishing viscosity)

• fluid in “thermal equilibrium”, i.e. we have T (x, t) = T0 where T (x, t) is

temperature distribution in fluid and T0 is a constant

Mass conservation & momentum conservation ⇒
∂

∂t
ρ + ~∇(ρ~u) = 0 “continuity equation” (6)

ρ
( ∂

∂t
~u + (~u · ~∇)~u

)
= −~∇p “Euler equation” (7)

where

p(x, t) := f (ρ(x, t), T0) for all x and t (8)

4 PDEs of first order in t for 4 unknown functions ρ, u1, u2, u3

One can expect that there exists a unique solution (ρ, ~u) for every “nice” initial

configurations ρ(x, 0) and ~u(x, 0)
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Digression 3

Relation p = f (ρ, T ) is invertible for fixed T , i.e.

ρ = g(p, T )

for a suitable function g.

⇒ We can take p as unknown function (instead of ρ) and use Euler and continuity

equations with Eq. (8) replaced by

ρ(x, t) := g(p(x, t), T0) for all x and t

Useful when fluid is “almost incompressible”, i.e.

ρ = g(p, T0) ≈ ρ0 where ρ0 is a constant.

Then use idealization:

ρ = g(p, T0) = ρ0

(fluid “totally incompressible”).

The continuity equation and Euler equation simplify:

~∇ · ~u = 0 (9)

∂

∂t
~u + (~u · ~∇)~u = −~∇p/ρ0 (10)

4 PDEs of first order in t for 4 unknown functions p, u1, u2, u3.
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3.1.2 The general case

Drop condition that fluid is inviscid ⇒
Generalization of Euler equation

ρ
( ∂

∂t
~u + (~u · ~∇)~u

)
= −~∇T(~u, ρ) (11)

with
~∇T(~u, ρ) :=

∑
i,j

∂iTij(~u, ρ)ej

where Tij(~u, ρ) is the corresponding stress tensor, cf. Sec. 4 below. (if p is consid-

ered to be the free variable one uses T(~u, p) instead of T(~u, ρ)).

Special case: fluid is “Newtonian” and incompressible (with constant density

ρ = ρ0) ⇒

~∇T(~u, p) = ~∇p− ν4~u

where ν > 0 is viscosity (cf. Sec. 4.1).

⇒ Eq. (11) reads

ρ0

( ∂

∂t
~u + (~u · ~∇)~u

)
= −~∇p + ν4~u “Navier Stokes equation” (12)

One expects that there exists a unique solution (~u, p) for every “nice” initial

configurations ~u(x, 0) and p(x, 0)
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Digression 4

Most general situation: Drop condition of thermal equilibrium (i.e. condition

T (x, t) = T0).

⇒ temperature distribution T (x, t) will be additional unknown function.

⇒ we need 5 equations, namely the 4 equations above + an additional equation.

This additional equation is obtained from energy conservation

(This equation will contain additional material constants like specific heat capacity

and the thermal conductivity of fluid)
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3.2 Relativistic fluid dynamics

Consider perfect fluid situation above: velocity field ~u, density ρ, constant temper-

ature T0, equation of state p = f (ρ, T0).

Question: What is the relativistic modification of the continuity and Euler equa-

tion?

Answer: If ua is normalized 4-vector of ~u, i.e.

ua =
1√

1− |~u|2(1, u1, u2, u3), (so uau
a = −1)

then

ua∂
aρ + (ρ + p)∂aua = 0 (13)

(ρ + p)ua∂
aub + (ηab + uaub)∂

ap = 0 (14)

Exercise 1 Show that ∂
∂tρ+ ~∇(ρ~u) = 0 is non-relativistic limit of Eq. (13) (note

p ¿ ρ in non-relativistic limit).

“Miracle”: Eqs. (13) and (14) can be rewritten in amazingly short and symmetric

form

∂aSab = 0, where (15)

Sab := (ρ + p)(uaub) + p ηab

Exercise 2 Show that Eq. (13) and Eq. (14) are equivalent to

uc∂aSac = 0, and

∂aSab −
(
uc∂aSac)ub = 0

Later: we explain “miracle” with the help of “stress energy tensor”
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4 The stress energy tensor

4.1 The classical stress tensor

The “stress tensor” is a concept describing the forces inside a continuous body, like

a solid body, a liquid or a gas which are caused by outside forces (like gravity or

forces on the surface) and movements inside the body (in the case of a liquid or

gas).

Following general features:

• Let D ⊂ R3 be the space taken by the body. The corresponding stress tensor

is a tensor field Tij on D.

• Tij is in general time-dependent and depends on the variables describing of the

body. For example, in the case of a liquid or gas Tij = Tij(~u, ρ, t).

• Definition of Tij is based on choosing suitable planes H in R3 (reason, see

below)

Question: Why do we have to work with planes H?
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Answer: Assume for simplicity that solid body or liquid considered is in equi-

librium

Body in equilibrium ⇒ in each point x ∈ D the net force is zero.

Now let us assume that, for some plane H through x, we would suddenly remove

the part of the body “to the right” (or “to the left”) of H . In this moment the

forces would no longer be in equilibrium. We would immediately, obtain a non-zero

force 4~F acting on some area element 4S in H containing x

Observation 1 4~F will depend on the area of 4S.

Observation 2 H can be described uniquely by its normal vector ~n in x.

Convention 3 The length (resp. area resp. volume) of a time interval 4t (resp.

area element4S resp. volume element4V ) will also be denoted by4t (resp. 4S

resp. 4V ).

Definition 1 i) For each unit vector ~n ∈ R3 we define:

~T (~n) := lim
4S→0

4~F

4S
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More precisely: we set

~T (~n) := lim
4S→0

4~F (~n,4S)

4S

where 4~F (~n,4S) is the force acting on the area element 4S ⊂ H after

removing the part of the body on the “positive” side of the plane H (which is

the plane through x and orthogonal to ~n).

ii) We generalize this by setting, for arbitrary ~v,

~T (~v) := ~T (~v/|~v|) · |~v|
if |~v| 6= 0 and ~T (~v) = 0 otherwise.

Observation 3 The map R3 3 ~v 7→ ~T (~v) ∈ R3 is linear. Accordingly, this map

is a tensor of type (1,1) and will be denoted by T i
j or by T i

j (x).

Proof is non-trivial, cf. Wikipedia entry “stress tensor”

Definition 2 The “stress tensor” of the body considered is the tensor field Tij on

D, which is given by

Tij(x) := gikT
k
j (x)

(If Tij are the concrete components w.r.t to standard basis (ei) of R3 we have

Tij(x) = T i
j (x) = (~T (ej))i
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Observation 4

1. Tij is symmetric.

2. If system in equilibrium then
∑

i ∂iTij = 0

3. Let A ∈ GL(3,R) and let (e′j)j be the basis of R3 given by e′j = Aej. Then if

(T ′
ij)ij are the components of Tij w.r.t. the new basis we have

T ′
ij = Ak

i A
l
jTkl

(this follows immediately from the tensor property of Tij).

Proofs of first two statements: see again Wikipedia article.
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Consider fluid situation above: velocity field ~u, density ρ, constant temperature

T0, equation of state p = f (ρ, T0).

Example 4 (Inviscid fluid)

Tij(~u, ρ) = p δij = p




1 0 0

0 1 0

0 0 1




where p = f (ρ, T0). (This equation is just the definition of “inviscid”)

Example 5 (Incompressible Newtonian fluid)

Tij(~u, p) = p δij − ν(∂iuj + ∂jui)

where ν is the viscosity.
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4.2 The stress energy tensor

Aim: Find tensor field T̃ab, a, b ∈ {0, 1, 2, 3} on (R4, 〈·, ·〉L), defined in an

analogous way as the classical stress tensor Tij such that “subtensor” field T̃ij,

i, j ∈ {1, 2, 3} coincides with Tij if system is at rest.

More precisely: If T
(t)
ij (x) is classical stress tensor in x ∈ R3 at time t

T̃ij(t, x) = T
(t)
ij (x) for t ∈ R, i, j ∈ {1, 2, 3} (16)

must hold for all ~x ∈ D in which no movement of the body is present at time t.

Obvious Replacements:

• point x ∈ R3 → x̃ = (t, x) ∈ R4

• plane H through x → hyperplane H̃ through x̃

• area element 4S (3 x) → volume element 4V (3 x̃)

• unit vectors ~n → normalized 4-vector na (i.e. |na| = 1).

Non-obvious Replacement:

• Force vector 4~F → momentum 4-vector 4P a.

As a motivation observe that for 4V = 4S × 4t and 4~F := 4~P/4t we

have
4~P
4V = 4~P

4t
1
4S = 4~F

4S

Naive ansatz:

T b(na) := lim
4V→0

4P b

4V
(17)
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However: certain difficulties in interpretation of

4P b = 4P b(na,4V )

(Not all na can be treated analogously; sometimes “removal argument” is necessary

and sometimes not)

⇒ We work with standard basis (ei)i of R4 and consider only special case na ∈
{e0, e1, e2, e3}.
• We define 4P i(e0,4V ), i = 0, 1, 2, 3, to be the “amount” of P i contained in

the (spacial) volume element 4V .

• We define 4P i(ej,4V ) for j = 1, 2, 3 and 4V = 4S ×4t as the “amount”

of P i which is created in the time interval4t inside the spacial volume element

4S × (R+ei) ⊂ R2 × (R+ · ei) ∼= R2 × R+

provided that at time t we have first removed all of the “amount” of P i in

R2 × (R+ · ei).

(here we assume that 4t was chosen such that t is its left endpoint)
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Define Tij(x) by

Tij(x) := T i(ej) := lim
4V→0

4P i(ej,4V )

4V
(18)

One can see that

• Tij for i, j = 1, 2, 3 indeed coincides with the classical stress tensor

• Ti0 is the P i-density

• Tij for j = 1, 2, 3 is P i-flux (density) in the ej-direction

We can summarize this in the following picture:
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Observation 5

1. Tab is symmetric

2. We have ∂aTab = 0

(this follows from energy momentum conservation)

3. Let A ∈ O(1, 3) and let (e′i)i be the basis of R4 given by e′i = Aei where (ei)i
is the standard basis of R4. Let (T ′

ij)ij denote the family of numbers which we

would have got if we had defined the stress energy “tensor” using (e′i)i as our

inertial system instead of (ei)i. Then

T ′
ij = Ak

i A
l
jTkl

(This implies that Tij really is a tensor)

Remark 3 Definition can be generalized to arbitrary space times (M, g). Gener-

alized Tab will have analogous properties. But one exception: the generalization of

∂aTab = 0 will not hold in general.
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Example 6 (Perfect fluid) Reconsider situation of Sec. 3.2 (ua is 4-velocity

and ρ density function of perfect fluid on (M, gab) at temperature T0 and equation

of state p = f (ρ, T0)):

i) Special case (M, gab) = (R4, ηab) and fluid at rest, i.e. ua = (1, 0, 0, 0):

Tab =




ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p




(cf. the last figure). Observe that we can rewrite Tab as

Tab = (ρ + p)uaub + p ηab

iii) Special case (M, gab) = (R4, ηab) but ua arbitrary constant field:

Tab := (ρ + p)uaub + p ηab

This follows from i) by applying the principle of relativity and using the be-

havior of Tab under a change of the inertial system.

iii) Special case (M, gab) = (R4, ηab) but ua arbitrary:

Tab := (ρ + p)uaub + p ηab

This follows from ii) by a locality argument

iv) General case: (M, gab) and ua arbitrary:

Tab := (ρ + p)uaub + p gab

26



Example 7 (Electromagnetic field) Let (M, gab) and let Aa be the 4-potential

of a given electromagnetic field.

i) Special case (M, gab) = (R4, ηab):

Tab =
1

4π

(
FacF

c
b − 1

4ηabFcdF
cd

)

where

Fab := ∂aAb − ∂bAa

ii) General (M, gab):

Tab =
1

4π

(
FacF

c
b − 1

4gabFcdF
cd

)

where now

Fab := ∇aAb −∇bAa

(where ∇a is the Levi-Civita connection associated to (M, gab)).
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Digression 5 In fact, there is a heuristic functional derivative formula for an

arbitrary field Ψ, for which a Lagrangian L(g, Ψ) is given explicitly:

T (g, Ψ) = − 1

8π

1√−g

δS(g, Ψ)

δg

with

S(g, Ψ) =

∫

M

L(g, Ψ)dvolg

where g = det((gab)ab).

For example, the Klein-Gordon field of mass m has the Lagrangian

L(g, φ) = −1
2(∇cφ∇cφ + m2φ2)

and heuristically we obtain

T (g, φ) = ∇aφ∇bφ− 1
2gab(∇cφ∇cφ + m2φ2)

where ∇a is the Levi-Civita connection associated to (M, gab).
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