# The Einstein field equations Part I: the right-hand side 

Atle Hahn<br>GFM, Universidade de Lisboa

Lisbon, 21st January 2010

Contents:
§1 Einstein field equations: overview
§2 Special relativity: review
§3 Classical and relativistic fluid dynamics
$\S 4$ The stress energy tensor

## References:

- Book by Wald: "General Relativity"
- Wikipedia


## Prerequisites:

- Special relativity (basic results)
- General relativity (vague idea)
- Differential Geometry (basic knowledge) OR

Classical Fluid Dynamics (basic knowledge)
Aims:

- Preparation for future lectures (Big bang, Schwarzschild solution, Gödel cosmos)
- (Hopefully useful) supplement for the study of Wald's book


## 1 Einstein field equations: overview

Let us consider a fixed "space time" $(M, g)$.
We use "abstract index notation":

- We write $g_{a b}$ for the type $(2,0)$ tensor $g$
- $g^{a b}$ denotes the type $(0,2)$ tensor given by $\sum_{b} g_{a b} g^{b c}=\delta_{a}^{c}$
(where $\delta_{c}^{a}:=\delta_{a c}$ Kronecker symbol)
- $R_{a b c}^{d}$ denotes the curvature tensor associated to $(M, g)$
- We set $R_{a b}:=\sum_{c} R_{a c b}^{c} \quad$ ("Ricci tensor")
- We set $R:=\sum_{a, b} R_{a b} g^{a b} \quad$ ("scalar curvature")

Remark 1 Elementary reformulation for $M=\mathbb{R}^{4}$ :
Pseudo-Riemannian metric $g_{a b}$ on $M=\mathbb{R}^{4}$ can be considered as a matrix $\left(g_{a b}\right)_{1 \leq a, b \leq 4}$ of smooth functions $g_{a b}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ such that for each $x \in \mathbb{R}^{4}$

- The matrix $\left(g_{a b}(x)\right)_{a, b}$ is symmetric
- $\left(g_{a b}(x)\right)_{a, b}$ has three (strictly) positive eigenvalues and one (strictly) negative eigenvalue
$\Rightarrow\left(g_{a b}\right)_{1 \leq a, b \leq 4}$ determined by the 10 functions

$$
g_{11}, g_{22}, g_{33}, g_{44}, g_{12}, g_{13}, g_{14}, g_{23}, g_{24}, g_{34}
$$

$\left(g^{a b}\right)_{1 \leq a, b \leq 4}:$ Matrix of functions $g^{a b}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ given by

$$
\left(g^{a b}(x)\right)_{a b}=\left(\left(g_{a b}(x)\right)_{a, b}\right)^{-1} \text { for each } x \in \mathbb{R}^{4}
$$

Curvature tensor $\left(R_{a b c}^{d}\right)_{1 \leq a, b, c, d \leq 4}$ : family of functions $R_{a b c}^{d}: \mathbb{R}^{4} \rightarrow \mathbb{R}$ given explicitly as

$$
R_{a b c}^{d}(x):=\partial_{b} \Gamma_{a c}^{d}(x)-\partial_{a} \Gamma_{b c}^{d}(x)+\sum_{i}\left(\Gamma_{a c}^{i}(x) \Gamma_{i b}^{d}(x)-\Gamma_{b c}^{i}(x) \Gamma_{i a}^{d}(x)\right)
$$

where

$$
\Gamma_{a b}^{c}(x):=\frac{1}{2} \sum_{d} g^{c d}(x)\left(\partial_{a} g_{b d}(x)+\partial_{b} g_{a d}(x)-\partial_{d} g_{a b}(x)\right)
$$

$R_{a b}, a, b \leq 4$, and $R$ are functions on $M=\mathbb{R}^{4}$ given by

$$
R_{a b}(x)=\sum_{c} R_{a c b}^{c}(x), \quad R(x)=\sum_{a, b} R_{a b}(x) g^{a b}(x)
$$

for each $x \in \mathbb{R}^{4}$.

## Convention 1

- Index set $\{1,2,3,4\}$ instead of $\{0,1,2,3\}$
- Einstein sum convention: e.g. we write

$$
\begin{gathered}
R_{a b} g^{a c} \text { instead of } \sum_{a} R_{a b} g^{a c} \\
R_{a}^{a} \text { instead of } \sum_{a} R_{a}^{a}
\end{gathered}
$$

- Normal rules for raising/lowering indices: e.g. we write

$$
\begin{aligned}
R_{b}^{c} \text { instead of } R_{a b} g^{a c} & =\sum_{a} R_{a b} g^{a c} \\
v_{a} v^{a} \text { instead of } g_{a b} v^{b} v^{a} & =\sum_{a, b} g_{a b} v^{b} v^{a}
\end{aligned}
$$

### 1.1 Vacuum case

Basic problem: For given $M$ and $\Lambda \in \mathbb{R}$ ("cosmological constant") find $g_{a b}$ such that

$$
\begin{equation*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=0 \tag{1}
\end{equation*}
$$

is fulfilled.
System of 10 non-linear PDEs of second order!
Example 1 A Schwarzschild black hole solution $g_{a b}$ on $\left.M=\left(\mathbb{R}^{3} \backslash\{0\}\right) \times \mathbb{R}\right)$ :
Solution of Eq. (1) which is "rotation-invariant" and "static".
It is completely specified by a parameter $m \in \mathbb{R}_{+}$(the "mass" of black hole).
Digression 1 If $g_{a b}$ fulfills Eq. (1) then, using $R=R_{a b} g^{a b}$ and $g_{a b} g^{a b}=\delta_{a}^{a}=4$ we obtain

$$
R-\frac{1}{2} R 4+\Lambda 4=0
$$

and therefore

$$
R=4 \Lambda
$$

Thus $R$ is a constant function and

$$
R_{a b}=\Lambda g_{a b}
$$

$\Rightarrow(M, g)$ is a "Einstein manifold".
Special case $\Lambda=0: R_{a b}=0$, i.e. $(M, g)$ is "Ricci flat".

### 1.2 General case

Real space-time contains matter \& radiation. Most important cases:

- A perfect fluid is present ( $\rightarrow$ we have 4 -velocity field $u^{a}$ and a density field $\rho$ )
- Electromagnetic radiation is present $\left(\rightarrow\right.$ we have a 4-potential $\left.A_{a}\right)$

Now consider general situation where (matter or radiation) field $\Psi$ is present, e.g. $\Psi=\left(u^{a}, \rho\right)$ or $\Psi=A_{a}$.
Assumption 1: Equations of motions for $\Psi$ are known, i.e.

$$
F(g, \Psi)=0
$$

for a known function $F$.
Assumption 2: The tensor

$$
T_{a b}=T_{a b}(g, \Psi) \quad(\text { "the stress energy tensor" })
$$

is known explicitly (see Sec. 4.2 for a definition)

Example $2 \Psi$ is a Klein-Gordon field $\phi$ on $(M, g)$, i.e. a field $\phi: M \rightarrow \mathbb{R}$ with equation of motion

$$
F(g, \phi)=\left(\nabla^{a} \nabla_{a}-m^{2}\right) \phi=0, \quad m \in \mathbb{R}
$$

The associated stress energy tensor is (see Digression 5 below)

$$
T(g, \phi)=\nabla_{a} \phi \nabla_{b} \phi-\frac{1}{2} g_{a b}\left(\nabla_{c} \phi \nabla^{c} \phi+m^{2} \phi^{2}\right)
$$

( $\nabla^{a}$ : Levi-Civita connection)

Basic problem: For given $M$ and $\Lambda \in \mathbb{R}$ find $(g, \Phi)$ such that

$$
\begin{gather*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=\frac{8 \pi G}{c^{4}} T_{a b}(g, \Phi)  \tag{2a}\\
F(g, \Phi)=0 \tag{2b}
\end{gather*}
$$

are fulfilled where $c$ is the speed of light and $G$ Newton's gravitational constant.
Remark 2 Eqs. (2a), (2b) is considerably more difficult than Eq. (1). We must find $g$ and $\Phi$ simultaneously!

Convention 2 For most of the talk (exception: Sec. 2) we use physical units such that $c=1$ and $G=1$

Most interesting situations involve matter/radiation

- Friedmann-Robertson-Walker model for the big bang (perfect fluid)
- Schwarzschild solution for a normal star (perfect fluid)
- Gödel cosmos (perfect fluid)
- Black hole with electric charge (electromagnetic field)


## 2 Special relativity: review

Let $c>0$ be speed of light (in this section not necessarily $c=1$ )
Minkowski space: $\left(\mathbb{R}^{4},\langle\cdot, \cdot\rangle_{L}\right)$ where

$$
\langle x, y\rangle_{L}=-x_{0} y_{0}+\sum_{i=1}^{3} x_{i} y_{i}
$$

We set

$$
|x|:=\sqrt{\left|\langle x, x\rangle_{L}\right|}
$$

$O(1,3)$ denotes "Lorentzgroup", i.e. automorphism group of $\left(\mathbb{R}^{4},\langle\cdot, \cdot\rangle_{L}\right)$. Explictly:

$$
O(1,3)=\left\{A \in \mathrm{GL}\left(\mathbb{R}^{4}\right) \mid\langle A x, A y\rangle_{L}=\langle x, y\rangle_{L} \text { for all } x, y \in \mathbb{R}^{4}\right\}
$$

Let us now work with a concrete basis of $\mathbb{R}^{4}$, namely the standard basis $\left(e_{i}\right)_{i}$ of $\mathbb{R}^{4}$. Using the "concrete" index notation w.r.t. this basis we have

$$
\langle x, y\rangle_{L}=\eta_{a b} x^{a} y^{b}=x^{a} y_{a}
$$

where

$$
\left(\eta_{a b}\right)_{a b}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

For a $\vec{v}=\left(v_{1}, v_{2}, v_{3}\right) \in \mathbb{R}^{3}$ we define the corresponding 4 -vector $v_{0}^{a}$ by

$$
v_{0}^{a}=(c, \vec{v})=\left(c, v_{1}, v_{2}, v_{3}\right)
$$

If $|\vec{v}|<c$ we introduce the normalized 4 -vector $v^{a}$ by

$$
v^{a}:=c \frac{v_{0}^{a}}{\left|v_{0}^{a}\right|}=\frac{1}{\sqrt{1-|\vec{v}|^{2} / c^{2}}}\left(c, v_{1}, v_{2}, v_{3}\right)
$$

Clearly, the definitions above imply

$$
\begin{equation*}
\left\langle v^{a}, v^{a}\right\rangle_{L}=v_{a} v^{a}=-c^{2} \tag{3}
\end{equation*}
$$

For a particle of "rest mass" $m$ moving with velocity vector $\vec{v}$ (with respect to the inertial system $\left.\left(e_{i}\right)_{i}\right)$ we call the corresponding normalized 4 -vector the 4 -velocity and introduce the "momentum 4 -vector" $P^{a}$ by

$$
\begin{equation*}
P^{a}:=m v^{a} \tag{4}
\end{equation*}
$$

Digression 2 From definitions

$$
E:=c P^{0}=\frac{1}{\sqrt{1-|\vec{v}|^{2} / c^{2}}} m c^{2}
$$

If particle at rest (in our inertial system) then $\vec{v}=0$ so

$$
E=m c^{2}
$$

Moreover,

$$
P_{a} P^{a}=-c^{2} m^{2}
$$

or, equivalently,

$$
\frac{1}{c^{2}} E^{2}=\left(P^{0}\right)^{2}=c^{2} m^{2}+\sum P^{i} P_{i}
$$

## 3 Classical and relativistic fluid dynamics

### 3.1 Classical fluid dynamics

Consider fluid (liquid or gas) in domain $D \subset \mathbb{R}^{3}$.
For simplicity take $D=\mathbb{R}^{3}$.


Figure 2-A velocity field. Each point stores a velocity.
$\rho(x, t)$ : mass-density of fluid
$\vec{u}(x, t)$ : velocity field of fluid
$T(x, t)$ : temperature distribution of fluid
Assume: Equation of state for fluid is known, i.e.

$$
\begin{equation*}
p=f(\rho, T) \tag{5}
\end{equation*}
$$

where $f$ is a known function.
Example 3 For an ideal gas we have $f(\rho, T)=c \cdot \rho T$ where $c$ is a constant

### 3.1.1 Special case: perfect fluid (situation)

Special case: perfect fluid (situation)

- fluid is inviscid (= has vanishing viscosity)
- fluid in "thermal equilibrium", i.e. we have $T(x, t)=T_{0}$ where $T(x, t)$ is temperature distribution in fluid and $T_{0}$ is a constant

Mass conservation \& momentum conservation $\Rightarrow$

$$
\begin{gather*}
\frac{\partial}{\partial t} \rho+\vec{\nabla}(\rho \vec{u})=0 \quad \text { "continuity equation" }  \tag{6}\\
\rho\left(\frac{\partial}{\partial t} \vec{u}+(\vec{u} \cdot \vec{\nabla}) \vec{u}\right)=-\vec{\nabla} p \quad \text { "Euler equation" } \tag{7}
\end{gather*}
$$

where

$$
\begin{equation*}
p(x, t):=f\left(\rho(x, t), T_{0}\right) \text { for all } x \text { and } t \tag{8}
\end{equation*}
$$

4 PDEs of first order in $t$ for 4 unknown functions $\rho, u_{1}, u_{2}, u_{3}$
One can expect that there exists a unique solution $(\rho, \vec{u})$ for every "nice" initial configurations $\rho(x, 0)$ and $\vec{u}(x, 0)$

## Digression 3

Relation $p=f(\rho, T)$ is invertible for fixed $T$, i.e.

$$
\rho=g(p, T)
$$

for a suitable function $g$.
$\Rightarrow$ We can take $p$ as unknown function (instead of $\rho$ ) and use Euler and continuity equations with Eq. (8) replaced by

$$
\rho(x, t):=g\left(p(x, t), T_{0}\right) \text { for all } x \text { and } t
$$

Useful when fluid is "almost incompressible", i.e.

$$
\rho=g\left(p, T_{0}\right) \approx \rho_{0} \text { where } \rho_{0} \text { is a constant. }
$$

Then use idealization:

$$
\rho=g\left(p, T_{0}\right)=\rho_{0}
$$

(fluid "totally incompressible").
The continuity equation and Euler equation simplify:

$$
\begin{gather*}
\vec{\nabla} \cdot \vec{u}=0  \tag{9}\\
\frac{\partial}{\partial t} \vec{u}+(\vec{u} \cdot \vec{\nabla}) \vec{u}=-\vec{\nabla} p / \rho_{0} \tag{10}
\end{gather*}
$$

4 PDEs of first order in $t$ for 4 unknown functions $p, u_{1}, u_{2}, u_{3}$.

### 3.1.2 The general case

Drop condition that fluid is inviscid $\Rightarrow$
Generalization of Euler equation

$$
\begin{equation*}
\rho\left(\frac{\partial}{\partial t} \vec{u}+(\vec{u} \cdot \vec{\nabla}) \vec{u}\right)=-\vec{\nabla} \mathbb{T}(\vec{u}, \rho) \tag{11}
\end{equation*}
$$

with

$$
\vec{\nabla} \mathbb{T}(\vec{u}, \rho):=\sum_{i, j} \partial_{i} T_{i j}(\vec{u}, \rho) e_{j}
$$

where $T_{i j}(\vec{u}, \rho)$ is the corresponding stress tensor, cf. Sec. 4 below. (if $p$ is considered to be the free variable one uses $\mathbb{T}(\vec{u}, p)$ instead of $\mathbb{T}(\vec{u}, \rho))$.

Special case: fluid is "Newtonian" and incompressible (with constant density $\left.\rho=\rho_{0}\right) \Rightarrow$

$$
\vec{\nabla} \mathbb{T}(\vec{u}, p)=\vec{\nabla} p-\nu \triangle \vec{u}
$$

where $\nu>0$ is viscosity (cf. Sec. 4.1).
$\Rightarrow$ Eq. (11) reads

$$
\begin{equation*}
\rho_{0}\left(\frac{\partial}{\partial t} \vec{u}+(\vec{u} \cdot \vec{\nabla}) \vec{u}\right)=-\vec{\nabla} p+\nu \triangle \vec{u} \quad \text { "Navier Stokes equation" } \tag{12}
\end{equation*}
$$

One expects that there exists a unique solution $(\vec{u}, p)$ for every "nice" initial configurations $\vec{u}(x, 0)$ and $p(x, 0)$

## Digression 4

Most general situation: Drop condition of thermal equilibrium (i.e. condition $\left.T(x, t)=T_{0}\right)$.
$\Rightarrow$ temperature distribution $T(x, t)$ will be additional unknown function.
$\Rightarrow$ we need 5 equations, namely the 4 equations above + an additional equation.
This additional equation is obtained from energy conservation
(This equation will contain additional material constants like specific heat capacity and the thermal conductivity of fluid)

### 3.2 Relativistic fluid dynamics

Consider perfect fluid situation above: velocity field $\vec{u}$, density $\rho$, constant temperature $T_{0}$, equation of state $p=f\left(\rho, T_{0}\right)$.
Question: What is the relativistic modification of the continuity and Euler equation?

Answer: If $u^{a}$ is normalized 4 -vector of $\vec{u}$, i.e.

$$
u^{a}=\frac{1}{\sqrt{1-|\vec{u}|^{2}}}\left(1, u_{1}, u_{2}, u_{3}\right), \quad\left(\text { so } u_{a} u^{a}=-1\right)
$$

then

$$
\begin{gather*}
u_{a} \partial^{a} \rho+(\rho+p) \partial^{a} u_{a}=0  \tag{13}\\
(\rho+p) u_{a} \partial^{a} u_{b}+\left(\eta_{a b}+u_{a} u_{b}\right) \partial^{a} p=0 \tag{14}
\end{gather*}
$$

Exercise 1 Show that $\frac{\partial}{\partial t} \rho+\vec{\nabla}(\rho \vec{u})=0$ is non-relativistic limit of Eq. (13) (note $p \ll \rho$ in non-relativistic limit).
"Miracle": Eqs. (13) and (14) can be rewritten in amazingly short and symmetric form

$$
\begin{gather*}
\partial^{a} S_{a b}=0, \text { where }  \tag{15}\\
S_{a b}:=(\rho+p)\left(u_{a} u_{b}\right)+p \eta_{a b}
\end{gather*}
$$

Exercise 2 Show that Eq. (13) and Eq. (14) are equivalent to

$$
\begin{gathered}
u^{c} \partial^{a} S_{a c}=0, \quad \text { and } \\
\partial^{a} S_{a b}-\left(u^{c} \partial^{a} S_{a c}\right) u_{b}=0
\end{gathered}
$$

Later: we explain "miracle" with the help of "stress energy tensor"

## 4 The stress energy tensor

### 4.1 The classical stress tensor

The "stress tensor" is a concept describing the forces inside a continuous body, like a solid body, a liquid or a gas which are caused by outside forces (like gravity or forces on the surface) and movements inside the body (in the case of a liquid or gas).

Following general features:

- Let $D \subset \mathbb{R}^{3}$ be the space taken by the body. The corresponding stress tensor is a tensor field $T_{i j}$ on $D$.
- $T_{i j}$ is in general time-dependent and depends on the variables describing of the body. For example, in the case of a liquid or gas $T_{i j}=T_{i j}(\vec{u}, \rho, t)$.
- Definition of $T_{i j}$ is based on choosing suitable planes $H$ in $\mathbb{R}^{3}$ (reason, see below)

Question: Why do we have to work with planes $H$ ?

Answer: Assume for simplicity that solid body or liquid considered is in equilibrium

Body in equilibrium $\Rightarrow$ in each point $x \in D$ the net force is zero.
Now let us assume that, for some plane $H$ through $x$, we would suddenly remove the part of the body "to the right" (or "to the left") of $H$. In this moment the forces would no longer be in equilibrium. We would immediately, obtain a non-zero force $\triangle \vec{F}$ acting on some area element $\triangle S$ in $H$ containing $x$


Observation $1 \triangle \vec{F}$ will depend on the area of $\triangle S$.
Observation $2 H$ can be described uniquely by its normal vector $\vec{n}$ in $x$.
Convention 3 The length (resp. area resp. volume) of a time interval $\Delta t$ (resp. area element $\triangle S$ resp. volume element $\triangle V$ ) will also be denoted by $\triangle t$ (resp. $\triangle S$ resp. $\triangle V)$.

Definition 1 i) For each unit vector $\vec{n} \in \mathbb{R}^{3}$ we define:

$$
\vec{T}(\vec{n}):=\lim _{\triangle S \rightarrow 0} \frac{\triangle \vec{F}}{\triangle S}
$$

More precisely: we set

$$
\vec{T}(\vec{n}):=\lim _{\triangle S \rightarrow 0} \frac{\triangle \vec{F}(\vec{n}, \triangle S)}{\triangle S}
$$

where $\triangle \vec{F}(\vec{n}, \triangle S)$ is the force acting on the area element $\triangle S \subset H$ after removing the part of the body on the "positive" side of the plane $H$ (which is the plane through $x$ and orthogonal to $\vec{n}$ ).
ii) We generalize this by setting, for arbitrary $\vec{v}$,

$$
\vec{T}(\vec{v}):=\vec{T}(\vec{v} /|\vec{v}|) \cdot|\vec{v}|
$$

if $|\vec{v}| \neq 0$ and $\vec{T}(\vec{v})=0$ otherwise.
Observation 3 The map $\mathbb{R}^{3} \ni \vec{v} \mapsto \vec{T}(\vec{v}) \in \mathbb{R}^{3}$ is linear. Accordingly, this map is a tensor of type $(1,1)$ and will be denoted by $T_{j}^{i}$ or by $T_{j}^{i}(x)$.

Proof is non-trivial, cf. Wikipedia entry "stress tensor"
Definition 2 The "stress tensor" of the body considered is the tensor field $T_{i j}$ on $D$, which is given by

$$
T_{i j}(x):=g_{i k} T_{j}^{k}(x)
$$

(If $T_{i j}$ are the concrete components w.r.t to standard basis $\left(e_{i}\right)$ of $\mathbb{R}^{3}$ we have

$$
T_{i j}(x)=T_{j}^{i}(x)=\left(\vec{T}\left(e_{j}\right)\right)_{i}
$$

## Observation 4

1. $T_{i j}$ is symmetric.
2. If system in equilibrium then $\sum_{i} \partial_{i} T_{i j}=0$
3. Let $A \in G L(3, \mathbb{R})$ and let $\left(e_{j}^{\prime}\right)_{j}$ be the basis of $\mathbb{R}^{3}$ given by $e_{j}^{\prime}=A e_{j}$. Then if $\left(T_{i j}^{\prime}\right)_{i j}$ are the components of $T_{i j}$ w.r.t. the new basis we have

$$
T_{i j}^{\prime}=A_{i}^{k} A_{j}^{l} T_{k l}
$$

(this follows immediately from the tensor property of $T_{i j}$ ).
Proofs of first two statements: see again Wikipedia article.

Consider fluid situation above: velocity field $\vec{u}$, density $\rho$, constant temperature $T_{0}$, equation of state $p=f\left(\rho, T_{0}\right)$.

## Example 4 (Inviscid fluid)

$$
T_{i j}(\vec{u}, \rho)=p \delta_{i j}=p\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

where $p=f\left(\rho, T_{0}\right)$. (This equation is just the definition of "inviscid")

## Example 5 (Incompressible Newtonian fluid)

$$
T_{i j}(\vec{u}, p)=p \delta_{i j}-\nu\left(\partial_{i} u_{j}+\partial_{j} u_{i}\right)
$$

where $\nu$ is the viscosity.

### 4.2 The stress energy tensor

Aim: Find tensor field $\tilde{T}_{a b}, a, b \in\{0,1,2,3\}$ on $\left(\mathbb{R}^{4},\langle\cdot, \cdot\rangle_{L}\right)$, defined in an analogous way as the classical stress tensor $T_{i j}$ such that "subtensor" field $\tilde{T}_{i j}$, $i, j \in\{1,2,3\}$ coincides with $T_{i j}$ if system is at rest.

More precisely: If $T_{i j}^{(t)}(x)$ is classical stress tensor in $x \in \mathbb{R}^{3}$ at time $t$

$$
\begin{equation*}
\tilde{T}_{i j}(t, x)=T_{i j}^{(t)}(x) \quad \text { for } t \in \mathbb{R}, i, j \in\{1,2,3\} \tag{16}
\end{equation*}
$$

must hold for all $\vec{x} \in D$ in which no movement of the body is present at time $t$.

## Obvious Replacements:

- point $x \in \mathbb{R}^{3} \rightarrow \tilde{x}=(t, x) \in \mathbb{R}^{4}$
- plane $H$ through $x \rightarrow$ hyperplane $\tilde{H}$ through $\tilde{x}$
- area element $\triangle S(\ni x) \rightarrow$ volume element $\triangle V(\ni \tilde{x})$
- unit vectors $\vec{n} \rightarrow$ normalized 4 -vector $n^{a}$ (i.e. $\left|n^{a}\right|=1$ ).


## Non-obvious Replacement:

- Force vector $\triangle \vec{F} \rightarrow$ momentum 4-vector $\triangle P^{a}$.

As a motivation observe that for $\Delta V=\triangle S \times \Delta t$ and $\triangle \vec{F}:=\triangle \vec{P} / \triangle t$ we have

$$
\frac{\Delta \vec{P}}{\Delta V}=\frac{\Delta \vec{P}}{\Delta t} \frac{1}{\Delta S}=\frac{\Delta \vec{F}}{\Delta S}
$$

Naive ansatz:

$$
\begin{equation*}
T^{b}\left(n^{a}\right):=\lim _{\triangle V \rightarrow 0} \frac{\triangle P^{b}}{\triangle V} \tag{17}
\end{equation*}
$$

However: certain difficulties in interpretation of

$$
\triangle P^{b}=\triangle P^{b}\left(n^{a}, \triangle V\right)
$$

(Not all $n^{a}$ can be treated analogously; sometimes "removal argument" is necessary and sometimes not)
$\Rightarrow$ We work with standard basis $\left(e_{i}\right)_{i}$ of $\mathbb{R}^{4}$ and consider only special case $n^{a} \in$ $\left\{e_{0}, e_{1}, e_{2}, e_{3}\right\}$.

- We define $\triangle P^{i}\left(e_{0}, \triangle V\right), i=0,1,2,3$, to be the "amount" of $P^{i}$ contained in the (spacial) volume element $\triangle V$.
- We define $\triangle P^{i}\left(e_{j}, \triangle V\right)$ for $j=1,2,3$ and $\triangle V=\triangle S \times \triangle t$ as the "amount" of $P^{i}$ which is created in the time interval $\Delta t$ inside the spacial volume element

$$
\triangle S \times\left(\mathbb{R}_{+} e_{i}\right) \subset \mathbb{R}^{2} \times\left(\mathbb{R}_{+} \cdot e_{i}\right) \cong \mathbb{R}^{2} \times \mathbb{R}_{+}
$$

provided that at time $t$ we have first removed all of the "amount" of $P^{i}$ in $\mathbb{R}^{2} \times\left(\mathbb{R}_{+} \cdot e_{i}\right)$.
(here we assume that $\Delta t$ was chosen such that $t$ is its left endpoint)

Define $T_{i j}(x)$ by

$$
\begin{equation*}
T_{i j}(x):=T^{i}\left(e_{j}\right):=\lim _{\Delta V \rightarrow 0} \frac{\triangle P^{i}\left(e_{j}, \Delta V\right)}{\triangle V} \tag{18}
\end{equation*}
$$

One can see that

- $T_{i j}$ for $i, j=1,2,3$ indeed coincides with the classical stress tensor
- $T_{i 0}$ is the $P^{i}$-density
- $T_{i j}$ for $j=1,2,3$ is $P^{i}$-flux (density) in the $e_{j}$-direction

We can summarize this in the following picture:


## Observation 5

1. $T_{a b}$ is symmetric
2. We have $\partial^{a} T_{a b}=0$
(this follows from energy momentum conservation)
3. Let $A \in O(1,3)$ and let $\left(e_{i}^{\prime}\right)_{i}$ be the basis of $\mathbb{R}^{4}$ given by $e_{i}^{\prime}=A e_{i}$ where $\left(e_{i}\right)_{i}$ is the standard basis of $\mathbb{R}^{4}$. Let $\left(T_{i j}^{\prime}\right)_{i j}$ denote the family of numbers which we would have got if we had defined the stress energy "tensor" using $\left(e_{i}^{\prime}\right)_{i}$ as our inertial system instead of $\left(e_{i}\right)_{i}$. Then

$$
T_{i j}^{\prime}=A_{i}^{k} A_{j}^{l} T_{k l}
$$

(This implies that $T_{i j}$ really is a tensor)
Remark 3 Definition can be generalized to arbitrary space times $(M, g)$. Generalized $T_{a b}$ will have analogous properties. But one exception: the generalization of $\partial^{a} T_{a b}=0$ will not hold in general.

Example 6 (Perfect fluid) Reconsider situation of Sec. $3.2\left(u^{a}\right.$ is 4-velocity and $\rho$ density function of perfect fluid on $\left(M, g_{a b}\right)$ at temperature $T_{0}$ and equation of state $\left.p=f\left(\rho, T_{0}\right)\right)$ :
i) Special case $\left(M, g_{a b}\right)=\left(\mathbb{R}^{4}, \eta_{a b}\right)$ and fluid at rest, i.e. $u^{a}=(1,0,0,0)$ :

$$
T_{a b}=\left(\begin{array}{cccc}
\rho & 0 & 0 & 0 \\
0 & p & 0 & 0 \\
0 & 0 & p & 0 \\
0 & 0 & 0 & p
\end{array}\right)
$$

(cf. the last figure). Observe that we can rewrite $T_{a b}$ as

$$
T_{a b}=(\rho+p) u_{a} u_{b}+p \eta_{a b}
$$

iii) Special case $\left(M, g_{a b}\right)=\left(\mathbb{R}^{4}, \eta_{a b}\right)$ but $u^{a}$ arbitrary constant field:

$$
T_{a b}:=(\rho+p) u_{a} u_{b}+p \eta_{a b}
$$

This follows from i) by applying the principle of relativity and using the behavior of $T_{a b}$ under a change of the inertial system.
iii) Special case $\left(M, g_{a b}\right)=\left(\mathbb{R}^{4}, \eta_{a b}\right)$ but $u^{a}$ arbitrary:

$$
T_{a b}:=(\rho+p) u_{a} u_{b}+p \eta_{a b}
$$

This follows from ii) by a locality argument
iv) General case: $\left(M, g_{a b}\right)$ and $u^{a}$ arbitrary:

$$
T_{a b}:=(\rho+p) u_{a} u_{b}+p g_{a b}
$$

Example 7 (Electromagnetic field) Let $\left(M, g_{a b}\right)$ and let $A_{a}$ be the 4-potential of a given electromagnetic field.
i) Special case $\left(M, g_{a b}\right)=\left(\mathbb{R}^{4}, \eta_{a b}\right)$ :

$$
T_{a b}=\frac{1}{4 \pi}\left(F_{a c} F_{b}^{c}-\frac{1}{4} \eta_{a b} F_{c d} F^{c d}\right)
$$

where

$$
F_{a b}:=\partial_{a} A_{b}-\partial_{b} A_{a}
$$

ii) General $\left(M, g_{a b}\right)$ :

$$
T_{a b}=\frac{1}{4 \pi}\left(F_{a c} F_{b}^{c}-\frac{1}{4} g_{a b} F_{c d} F^{c d}\right)
$$

where now

$$
F_{a b}:=\nabla_{a} A_{b}-\nabla_{b} A_{a}
$$

(where $\nabla_{a}$ is the Levi-Civita connection associated to $\left(M, g_{a b}\right)$ ).

Digression 5 In fact, there is a heuristic functional derivative formula for an arbitrary field $\Psi$, for which a Lagrangian $\mathcal{L}(g, \Psi)$ is given explicitly:

$$
T(g, \Psi)=-\frac{1}{8 \pi} \frac{1}{\sqrt{-g}} \frac{\delta S(g, \Psi)}{\delta g}
$$

with

$$
S(g, \Psi)=\int_{M} \mathcal{L}(g, \Psi) d v o l_{g}
$$

where $g=\operatorname{det}\left(\left(g_{a b}\right)_{a b}\right)$.
For example, the Klein-Gordon field of mass $m$ has the Lagrangian

$$
\mathcal{L}(g, \phi)=-\frac{1}{2}\left(\nabla_{c} \phi \nabla^{c} \phi+m^{2} \phi^{2}\right)
$$

and heuristically we obtain

$$
T(g, \phi)=\nabla_{a} \phi \nabla_{b} \phi-\frac{1}{2} g_{a b}\left(\nabla_{c} \phi \nabla^{c} \phi+m^{2} \phi^{2}\right)
$$

where $\nabla_{a}$ is the Levi-Civita connection associated to $\left(M, g_{a b}\right)$.

