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1 Review

1.1 The general Einstein field equations

Fix 4-dimensional smooth manifold M and Λ ∈ R (“the cosmological constant”).

Let Φ be matter/radiation field on M . We assume that for every Lorentzian

metric g on M

• corresponding “stress energy tensor” Tab = Tab(g, Φ) is known explicitly

• Equations of motions F (g, Φ) = 0 for Φ are known explicitly, i.e. function F

given explicitly.

Main problem: For given M and Λ find simultaneous solutions (g, Φ) of

Rab − 1
2Rgab + Λgab = 8πTab(g, Φ) “Einstein field equations” (1a)

F (g, Φ) = 0 “equations of motion” (1b)
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1.2 The Einstein field equations for perfect fluids

Consider fluid in spacetime M = (M, g). The state of fluid described by

• density function ρ : M → R+

• 4-velocity field ua on M

• temperature distribution T : M → R+

We assume that equation of state p = f (ρ, T ) is known explicitly, e.g.,

f (ρ, t) =

{
C · ρT for an ideal gas (C > 0 fixed)

0 for a pressure-less fluid (=“dust”)

In special case where fluid is perfect (i.e. no viscosity and in “thermal equi-

librium”, i.e. ∀x ∈ M : T (x) = T0 for some T0) the stress energy tensor

Tab = Tab(ρ, ua) is given explicitly by

Tab = (ρ + p)uaub + p gab with p(x, t) = f (ρ(x, t), T0)

and equations of motions are just ∇aTab = 0.

Here: ∇a Levi-Civita connection associated to (M, g).
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Observation: Einstein field equations imply ∇aTab = 0

→ in dust situation the system of equations above reduces to

Rab − 1
2Rgab + Λgab = 8πρuaub (2)

Let M be a 4-dimensional smooth manifold and Λ ∈ R.

Definition 1 A dust solution of the Einstein field equations for M and Λ is a

triple (gab, ρ, ua) where

• gab is Lorentzian metric on M

• ρ is smooth positive function on M

• ua is smooth vector field on M with gabu
aub = −1

such that Eq. (2) is fulfilled.

Remark 1

i) If Λ 6= 0 one often calls such a dust solution a lambda dust solution

ii) If (gab, ρ, ua) is a dust solution for M and Λ then ρ and ua are uniquely deter-

mined by gab.
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Digression 1 Compare Wikipedia entry for “dust solutions”:

• Friedmann(-Robertson-Walker) dust

• Kasner dusts

• Bianchi dust models (homogeneous, generalize first two examples)

• LTB dusts (some of the simplest inhomogeneous cosmological models)

• van Stockum dust (a cylindrically symmetric rotating dust)

• Kantowski-Sachs dusts

• the Neugebauer-Meinel dust
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1.3 The Friedmann(-Robertson-Walker) solutions

The Friedmann solutions are special dust solutions. They can be characterized by

the following conditions on M , Λ and g = gab:

Condition 1 Λ = 0

Condition 2

i) M ∼= R× Σ

ii) Σt
∼= {t} × Σ is orthogonal to R× {σ}, σ ∈ Σ.

iii) Σt
∼= {t} × Σ, t ∈ R, is “space-like”

(i.e. restriction gt of g to Σt is a Riemannian metric)

Condition 3 Each (Σt, gt) is homogenous, isotropic, and Σt
∼= Σ is simply-

connected

Remark 2 Condition 2 above is in fact a “causality condition”, the strongest of

a “hierarchy” of causality conditions (see below).

The most famous solutions of the Einstein field equations which violate even the

weakest standard causality condition are the Gödel solution.
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2 The Gödel solutions, part I

2.1 Definition

Let us temporarily use the convention of the previous lectures and consider a pseudo-

Riemannian metric g on R4 as a matrix of funcions (gab(x))ab.

Definition 2 The Gödel solution with parameter ω > 0 is the following dust

solution (gab, ρ, ua) for M = R4 and Λ = −ω2 < 0:

• g = gab = (gab(x))ab is given by

(gab(x))ab =
1

2ω2




−1 − exp(x2) 0 0

− exp(x2) −1
2 exp(2x2) 0 0

0 0 1 0

0 0 0 1




• ρ = ω2/4π

• ua =
√

2ω(−1, 0, 0, 0)

Remark 3 ua looks trivial but ua = gabu
b = 1√

2ω
(1, exp(x2), 0, 0) does not!
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Gödel solutions arise naturally

1) Gödel solutions arise natural from the following simple ansatz for finding a

(lambda) dust solution:

• Take the “nicest” of all smooth 4-dimensional manifold, namely M = R4.

• Take non-diagonal Lorentz metric as close to trivial case as possible, e.g.,

(gab(x))ab =




f (x) h(x) 0 0

h(x) k(x) 0 0

0 0 1 0

0 0 0 1




where f, h, k are unknown functions on M .

• Assume the simplest situation where f , h, and k (and also ρ) only depends

on one of the four variable x0, x1, x2, x3.

• For each of these 24 situations write down the Einstein Field equations to

obtain a system of differential equations for the unknown functions f , h, k

and ρ and ua.

Einstein field equations contain 10 sub equations → enough restrictions

for determining 8 (or rather 7) unknown functions f , h, k and ρ and ua

and constant Λ.

2) Gödel solutions arise “automatically” within the Bianchi classification of 3-

dimensional homogeneous (pseudo-)Riemannian manifolds.
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2.2 Important Properties/Features of the Gödel solutions

• R4 ∼= R× R3 so Condition 2 i) fulfilled.

However, parts ii) and iii) can not be fulfilled.

• The Gödel solutions have no singularities (as opposed to Friedmann or Schwarzschild

solutions)

• Cosmological constant Λ = −ω2 finely balanced to match mass density ρ = 2ω2

(→ somewhat “artificial”)

• Hubble law not satisfied

• Causality violated in strongest possible way

Last 3 observations → Gödel solutions are highly unphysical.

However: high pedagogical value.
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2.3 The Gödel solutions really are solutions

Recall: ρ = ω2/4π ua =
√

2ω(−1, 0, 0, 0)

(gab(x))ab =
1

2ω2




−1 − exp(x2) 0 0

− exp(x2) −1
2 exp(2x2) 0 0

0 0 1 0

0 0 0 1




Thus

ua = gabu
b = 1√

2ω
(1, exp(x2), 0, 0)

and therefore

(Tab)ab = ρ(uaub)ab =
1

8π




1 exp(x2) 0 0

exp(x2) exp(2x2) 0 0

0 0 0 0

0 0 0 0




Inverse gab of gab given by

(gab)ab = 2ω2




1 −2 exp(−x2) 0 0

−2 exp(−x2) 2 exp(−2x2) 0 0

0 0 1 0

0 0 0 1
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Recall:

Rac = ∂bΓ
b
ac − ∂aΓ

b
bc + Γi

acΓ
b
ib − Γi

bcΓ
b
ia (3)

with

Γd
ab := 1

2g
dc

(
∂agbc + ∂bgac − ∂cgab

)
(4)

For the Gödel metric g the non-vanishing Γc
ab are

Γ0
12(x) = Γ0

21(x) = Γ2
01(x) = Γ2

01(x) = 1
2 exp(x2)

Γ1
02(x) = Γ1

20(x) = − exp(−x2)

Γ2
11(x) = 1

2 exp(2x2)

Γ0
02(x) = Γ0

20(x) = 1

Thus we obtain:

(Rab(x))ab =




1 exp(x2) 0 0

exp(x2) exp(2x2) 0 0

0 0 0 0

0 0 0 0




which implies

Rab = 8πTab

On the other hand

R = Rabg
ab = −2ω2

Since Λ = −ω2 we have

Rab − R
2 gab + Λgab = Rab

Thus the assertion follows.
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3 Mathematical Intermezzo

3.1 Manifolds and tensors: the formal definitions

Recall:

• A topological manifold M is a topological space which “looks locally like Rn”.

Examples are

i) Every open subset of Rn

ii) “Curved surfaces” in R3

iii) Sn for arbitrary n

• A smooth manifold is a topological manifold M equipped with certain extra-

structure, called “differentiable structure”. The differentiable structure allows

definition of

i) the notion of “smoothness” for maps (cf. the definition below)

ii) a canonical finite-dimensional real vector space TxM for each x ∈ M (cf.

the definition below)

iii) The structure of a smooth manifold on TM :=
⋃

x∈M TxM
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Here are (most of) the formal definitions:

Definition 3 A topological manifold is a (Hausdorff) topological space M

with the property that every point has a neighborhood U which is is homeomorphic

to Rn for some n.

Definition 4 Let M be a topological space. A chart of M is a pair (U, ψ) where

U is an open subset of M and ψ : U → V a homeomorphism onto an open subset

V of Rn.

Definition 5 Let M be a topological manifold.

i) An atlas of M is a family {(Ui, ψi) | i ∈ I} of charts of M such that M =⋃
i Ui

ii) An atlas of M is smooth iff for all (Ui, ψi) and (Uj, ψj) such that U := Ui∩Uj

is non-empty the map ψi ◦ ψ−1
j : ψj(U) → ψi(U) is smooth

iii) A smooth structure on M is a smooth atlas on M which is a maximal

iv) A differentiable manifold is a topological manifold equipped with a smooth

structure.
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Example 1 Let S2 = {x ∈ R3 | ‖x‖ = 1}.
Smooth atlas A = {(U1, ψ1), (U2, ψ2)} where

U1 := S2\{(1, 0, 0)} and U2 := S2\{(−1, 0, 0)}
and where

ψi : Ui → R2, i = 1, 2 is corresponding “stereographical projection”

Digression 2 Very deep mathematics involved!

• Not every topological manifold has a smooth structure

• Many topological manifolds have several different structures, for example S7

has 15 different smooth structures and R4 infinitely many

• The question if S4 has more than one smooth structure is a major open problem

(the “smooth Poincare conjecture” in 4 dimensions)

Definition 6 Let M1,M2 be two smooth manifolds. A map f : M1 → M2

is smooth iff for all charts (U1, ψ1) resp. (U2, ψ2) of M1 resp. M2 the map

ψ2 ◦ f ◦ ψ−1
1 : ψ1(U1) → ψ2(U2) is smooth.
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Fix n-dim. smooth manifold M , x ∈ M and chart (U, ψ) with x ∈ U .

• Let Γx(M) be set of smooth curves γ : R→ M with γ(0) = x.

• Let ∼ be equivalence relation ∼ on Γx(M) by

γ1 ∼ γ2 ⇔ (ψ ◦ γ1)
′(0) = (ψ ◦ γ2)

′(0) ∀γ1, γ2 ∈ Γx(M)

Definition 7 Set

TxM := {[γ] | γ ∈ Γx(M)}
R-vector space structure on TxM obtained from the one on Rn by transport of

structure using bijection

θ : TxM → Rn given by θ([γ]) = (ψ ◦ γ)′(0)

Observation 1 Relation ∼ and space TxM do not (!) depend on (U, ψ).

Convention 1 Let γ ∈ Γx(M) and s ∈ R. We write

γ′(0) instead of [γ], and

γ′(s) or d
dsγ(s) instead of [γ(· + s)]
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Recall:

• A vector field on M is a “smooth” family (Xx)x∈M where Xx ∈ TxM for

each x ∈ M .

• A co-vector field (or 1-form) on M is a “smooth” family (αx)x∈M where

αx : TxM → R is linear.

• A pseudo-Riemannian metric on M is a “smooth” family (gx)x where

gx : TxM × TxM → R is bilinear and non-degenerate.

• A pseudo Riemannian metric on M with signature (n,0) (resp. (n-1,1)) is called

a Riemannian metric resp. Lorentzian metric

• A tensor field on M of type (p, q) is a “smooth” family (Ax)x where Ax :

TxM
∗ × . . .× TxM

∗ × TxM × . . .× TxM → R is multilinear

Remark 4 Observe that a tensor field of type (1, 0) can be considered as a vector

field in the obvious way.

Definition 8 A spacetime is a 4-dimensional smooth manifold equipped with a

Lorentzian metric.
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3.2 The (abstract) local coordinate formalism

Fix n-dimensional smooth manifold M .

Definition 9 A system of local coordinates on M is an n-tuple of smooth

functions f1, f2, ..., fn of the form fi : Vi → R where Vi ⊂ M are open, such that

there is a chart (U, ψ) of M with U =
⋂

i Vi and fi = ψi on U .

Example 2 For every chart (U, ψ) of M the corresponding components (ψ1, ψ2, . . . , ψn)

form a system of local coordinates.

Example 3 The polar coordinates are/is the system (r, φ) of local coordinates

on R2 where

r : R2\{0} → R, φ : {x ∈ R2 | x1 6= 0} → R

and

r(x) = ‖x‖

φ(x) =





arctan(x2
x1

) if x1 > 0

arctan(x2
x1

) + π/2 if x1 < 0 and x2 ≥ 0

arctan(x2
x1

)− π/2 if x1 < 0 and x2 < 0
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Fix a system (x1, x2, . . . , xn) of local coordinates on M with (joint) domain U .

Definition 10 i) Define dxi, for i ≤ n, as the unique smooth co-vector field on

U given by

dxi(γ
′(0)) = (xi ◦ γ)′(0) for every smooth curve γ in U (5)

ii) Define ∂
∂xi

, for i ≤ n, as the unique smooth vector field on U given by

dxj(
∂

∂xi
) = δij for all j ≤ n. (6)

Observation 2 From the definitions it easily follows that for every smooth curve

γ in U we have

γ′(s) =
∑

i

x′i(s) ∂
∂xi

(γ(s)) (7)

where x′i(s) is a short notation for (xi ◦ γ)′(s).
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Observation 3 Let g be pseudo-Riemannian metric on M . The restriction g|U
of g onto U can be uniquely written as

g|U =
∑
i,j

gijdxidxj (8)

where (gij)ij is a symmetric matrix of smooth functions gij : U → R and where

dxidxj is the type (0, 2)-tensor field on U given by

(dxidxj)(X,Y ) = dxi(X) · dxj(Y ) (9)

for all vector fields X and Y on U .

We can replace the last equation by g|U =
∑

i≤j g̃ijdxidxj if we redefine dxidxj

by

(dxidxj)(X, Y ) = 1
2[dxi(X) · dxj(Y ) + dxi(Y ) · dxj(X)] (10)

Example 4 The standard Euclidean metric on Rn is given by

g = dx2
1 + dx2

2 + . . . + dx2
n

if (x1, x2, . . . , xn) are the standard coordinates.
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It is convenient to generalize the definition of dxi above:

Definition 11 For every function f ∈ C∞(U,R), where U ⊂ M is open, we

introduce the covector field df on U by the condition

df (γ′(0)) = (f ◦ γ)′(0) for every smooth curve γ in U

df is called the total derivative (or exterior derivative) of f .

Calculation rules: For f, g ∈ C∞(M,R) and Φ ∈ C∞(R,R) we have

d(f + g) = df + dg

d(fg) = (df )g + fdg

d(Φ(f )) = Φ′(f )df

Example 5 Euclidean metric g = dx2
1 + dx2

2 on R2 in polar coordinates (r, φ):

x1 = r cos(φ) and x2 = r sin(φ) on U

Calculation rules above ⇒
dx1 = (dr) cos(φ) + rd(cos(φ)) = cos(φ)dr − r sin(φ)dφ

dx2 = (dr) sin(φ) + rd(sin(φ)) = sin(φ)dr + r cos(φ)dφ

Thus on U we have

dx2
1 +dx2

2 =
(
cos(φ)dr−r sin(φ)dφ

)2
+

(
sin(φ)dr+r cos(φ)dφ

)2
= dr2 +r2dφ2
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3.3 Spacetime curves

Let M be a space-time and let γ : R→ M be a smooth curve in M .

Definition 12 i) γ is time-like iff g(γ′(s), γ′(s)) < 0 for all s ∈ R.

ii) γ is null (or light-like) iff g(γ′(s), γ′(s)) = 0 for all s ∈ R.

iii) γ is space-like iff g(γ′(s), γ′(s)) > 0 for all s ∈ R.

iv) γ is causal iff g(γ′(s), γ′(s)) ≤ 0 for all s ∈ R.

Definition 13 γ is a geodesic in M if for every t ∈ R there is a chart (U, ψ)

around γ(t) such that

d2

ds2x
i(s) +

∑

j,k

Γi
jk(γ(s)) d

dsx
j(s) d

dsx
k(s) = 0

for all s sufficiently close to t.

Here: xi(s) := xi(γ(s)) = ψi(γ(s))) and Γi
jk : U → R are as in Sec. 2 above

with (gij)ij given by Observation 3 in Sec. 3.2.

Observation 4 If γ is a geodesic than either γ is time-like or null or space-like.

Physical relevance:

• Light rays “travel” on null geodesics.

• Massive point particles travel on time-like curves (not necessarily geodesics)
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4 The Gödel solutions, part II

4.1 The Gödel metric in the abstract local coordinates

We can rewrite Gödel metric g on M = R4 with parameter ω > 0 as

g =
1

2ω2

(
−dx2

0 − 2 exp(x2)dx0dx1 − 1
2 exp(2x2)dx2

1 + dx2
2 + dx2

3

)
(11)

Set M := (R4, g)

4.2 The (reduced) Gödel metric

The coordinate x3 above is inessential can therefore often be ignored. More pre-

cisely:

M = M′ ×M′′

with M′ := (R3, g′) and M′′ := (R, g′′) where

g′ =
1

2ω2

(
−dx2

0 − 2 exp(x2)dx0dx1 − 1
2 exp(2x2)dx2

1 + dx2
2

)

g′′ = 1
2ω2dx2

3

(x0, x1, x2 are the standard coordinates of R3 and x3 standard coordinate of R)
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4.3 The (reduced) Gödel metric in “cylindrical-type” coordinates

Let (t, r, φ) be the system of coordinates t : U → R, r : U → (0,∞), φ : U →
(−π, π)\{0} with U = R× (R\{0})× R ⊂ R3 which is given uniquely by

x0 =
√

2
(√

2t− φ + 2 arctan
(
e−2r tan(φ/2)

))

x1 =
√

2
sin(φ) sinh(2r)

cosh(2r) + cos(φ) sinh(2r)

x2 = ln
(
cosh(2r) + cos(φ) sinh(2r)

)

Using the computation rules above we find that

dx0 =
√

2

(√
2dt− dφ + 2

(e−2r tan(φ/2))2+1

[(
d(e−2r)

)
tan(φ/2) + e−2r

(
d(tan(φ/2))

)])

= 2dt +
√

2
[−1 + e−2r(1+tan(φ/2)2)

(e−2r tan(φ/2))2+1

]
dφ +

√
2
[ −4e−2r tan(φ/2)

(e−2r tan(φ/2))2+1

]
dr

Making similar computations for

dx1 = ...dr + ...dφ

dx2 = ...dr + ...dφ

we obtain

g′ = 2
ω2

(−dt2 + dr2 − (sinh4(r)− sinh2(r))dφ2 + 2
√

2 sinh2(r)dtdφ
)
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4.4 Existence of closed time-like curves

For fixed r0 ∈ R+ consider the 2π-periodic (and therefore closed) smooth curve in

M′ = (R3, g′) which is given by

t(s) = 0, r(s) = r0, φ(s) = s, s ∈ (−π, π)\{0}
where t(s), r(s), φ(s) is a short notation for t(γ(s)), r(γ(s)), φ(γ(s)).

Observation 2 ⇒ γ′(s) = ∂
∂φ(γ(s))
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Setting ∂
∂φ := ∂

∂φ(γ(s)) we have

dφ2( ∂
∂φ,

∂
∂φ) = dφ( ∂

∂φ) · dφ( ∂
∂φ) = 1 · 1 = 1

dtdφ( ∂
∂φ,

∂
∂φ) = dt( ∂

∂φ) · dφ( ∂
∂φ) = 0 · 1 = 0

dt2( ∂
∂φ,

∂
∂φ) = ... = 0

dr2( ∂
∂φ,

∂
∂φ) = ... = 0

Recalling that

g′ = 2
ω2

(−dt2 + dr2 − (sinh4(r)− sinh2(r))dφ2 + 2
√

2 sinh2(r)dφdt
)

we see that

g′(γ′(s), γ′(s)) = g′( ∂
∂φ,

∂
∂φ) = − 2

ω2

(
sinh4(r0)− sinh2(r0)

)

and therefore

g′(γ′(s), γ′(s)) < 0 for all s ⇔ sinh4(r0)− sinh2(r0) > 0

⇔ sinh2(r0) > 1

⇔ (er0 − e−r0)/2 > 1

⇔ r0 > log(1 +
√

2)

Clearly, if we consider the curve γ in M′ as a curve in M in the obvious way,

we have

g(γ′(s), γ′(s)) = g′(γ′(s), γ′(s)) < 0 for all s

so γ is time-like (and closed).
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4.5 Rejoining of light-rays

The cylindrical-type coordinates (t, r, φ) introduced above are also very useful for

studying another rather counterintuitive property of the Gödel solutions.

Fix point P in M′ ⊂ M on axis r = 0. It turns out that all the light rays

through P which stay in M′ ⊂M′ ×M′′ = M refocus in one point P ′ in M′.

The light-rays “travel” on null geodesics so in order to prove this one will have

to write down and solve the equations for the geodesics in the coordinates (t, r, φ).
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4.6 The isometry group

Recall:

• Isom(M, g) := {ψ ∈ Diff(M) | ψ leaves g fixed } where

Diff(M) := {ψ : M → M | ψ is bijective and ψ and ψ−1 are smooth }

• (M, g) is “homogeneous” iff Isom(M, g) operates transitively on M

• Isom(M, g) has a natural Liegroup structure

Convention: If M is fixed then we can write Isom(g) instead of Isom(M, g) and

use the notion “homogenous” for the metric g.

Observation 5 Both the original Gödel metric and the reduced Gödel metric are

homogeneous.

Observation 6 i) The isometry group of the original Gödel metric (resp. the

reduced Gödel metric) is 5 dimensional (resp. 4-dimensional).

ii) The Gödel solutions are the only dust solutions with a simply-connected

spacetime and a 5-dimensional isometry group.
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Conclusion 1 Recall that above we showed that there are closed time-like curves

in the Gödel universe and that for certain points P the light rays through P rejoin

(in the 3-dimensional reduced setting in M′.)
From Observation 5 it follows that there are closed time-like curves through every

point in the Gödel universe and that the other result mentioned above is true for

every point P .

Conclusion 2 Observation 6 can be used to give an abstract definition of the

Gödel solutions.

Conclusion 3 The homogeneous 3-dimensional Riemannian manifolds have been

completely classified by Bianchi. A similar classification is possible for arbitrary

3-dimensional pseudo-Riemannian manifolds This puts the Gödel solutions in a

systematic framework.
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5 Causality notions: overview

There is the following “hierarchy” of notions of causality for a given space time M :

non-totally vicious (= not through every point there is a closed time-like curve)

chronological (= there are no closed time-like curve)

causal (= there are no non-trivial closed causal curves)

strongly causal (see below)

stably causal (see below)

globally hyperbolic (see below)

Condition 2 (see above)

Remark 5 We emphasize that the notion “globally hyperbolic” has little or noth-

ing to do with the notion of a “hyperbolic manifold” of Lecture 2.
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Let (M, g) be a fixed space-time.

Definition 14 A time orientation on M is a smooth vector field X on M

which is time-like

Assume that there is a time-orientation X on M .

Definition 15 For x, y ∈ M we set

i) x ¿ y iff there is a “future-directed” time-like curve from x to y

ii) x < y iff there is a “future-directed” causal curve from x to y

Definition 16 For each x ∈ M set

I+(x) := {y ∈ M | x ¿ y} (“chronological future”)

I−(x) := .. À .. (“chronological past”)

J+(x) := .. < .. (“causal future”)

J−(x) := .. > .. (“causal past”)

Observe that x ¿ y implies x < y and therefore I±(x) ⊂ J±(x)
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Reformulation/Formal definitions:

Definition 17

i) M is non-totally vicious iff x 6¿ x for some x

ii) M is chronological iff x 6¿ x for all x

iii) M is causal iff x < y and y < x imply x = y

iv) M is strongly causal iff for every x ∈ M and every neighborhood U of x there

is a neighborhood V ⊂ U which is hit by all time-like curves at most once

v) M is stably causal: see Wikipedia or Wald

vi) M is globally hyperbolic iff M is strongly causal and for all x the set J+(x) ∩
J−(x) is compact.

Digression 3 It can be shown that the following statements are equivalent

• M is globally hyperbolic

• M has a “Cauchy-surface” Σ (i.e. Σ is an “achronal” 3-dimensional submani-

fold of M and every “inextendible” time-like curve in M hits Σ exactly once)

• M ∼= R× Σ and each Σt
∼= {t} × Σ is a Cauchy surface.

In view of the last characterization Condition 2 above implies global hyperbolic-

ity.
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