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1 Review

1.1 The general Einstein field equations

Fix 4-dimensional smooth manifold M and A € R (“the cosmological constant”).

Let @ be matter/radiation field on M. We assume that for every Lorentzian

metric g on M

e corresponding “stress energy tensor” Ty, = Typ(g, ) is known explicitly

e Equations of motions F(g,®) = 0 for ® are known explicitly, i.e. function F

given explicitly.
Main problem: For given M and A find simultaneous solutions (g, ®) of
R, — %Rgab + Agay = 87Ty (g, P)  “Einstein field equations” (1a)
F(g,®) =0 ‘“equations of motion” (1b)



1.2 The Einstein field equations for perfect fluids

Consider fluid in spacetime M = (M, g). The state of fluid described by
e density function p: M — R
e 4-velocity field u® on M
e temperature distribution T': M — R,

We assume that equation of state p = f(p, T') is known explicitly, e.g.,

C-pT for an ideal gas (C' > 0 fixed)
flp,t) =

U for a pressure-less fluid (=“dust”)

In special case where fluid is perfect (i.e. no viscosity and in “thermal equi-
librium”, i.e. Vo € M : T(x) = T, for some Tj) the stress energy tensor
Ty = Top(p, u®) is given explicitly by

Tab - (10 +p)uaub + P Gab with p(xa t) — f(p(xa t)? TO)
and equations of motions are just VT, = 0.

Here: V® Levi-Civita connection associated to (M, g).



Observation: Einstein field equations imply V*T,;, = 0
— in dust situation the system of equations above reduces to

Ray — %Rgab + Agab = 8T puUqUp (2)
Let M be a 4-dimensional smooth manifold and A € R.

Definition 1 A dust solution of the Einstein field equations for M and A is a
triple (gap, p, u®) where

® g, is Lorentzian metric on M
e p is smooth positive function on M
e 1% is smooth vector field on M with ggpu®u’ = —1

such that Eq. (2) is fulfilled.

Remark 1
i) If A # 0 one often calls such a dust solution a lambda dust solution

i) If (g, p, u®) is a dust solution for M and A then p and u® are uniquely deter-
mined by ggp.



Digression 1 Compare Wikipedia entry for “dust solutions”:
e Friedmann(-Robertson-Walker) dust
e Kasner dusts
e Bianchi dust models (homogeneous,  generalize first two examples)
e LTB dusts (some of the simplest inhomogeneous cosmological models)
e van Stockum dust (a cylindrically symmetric rotating dust)
e Kantowski-Sachs dusts

e the Neugebauer-Meinel dust



1.3 The Friedmann(-Robertson-Walker) solutions

The Friedmann solutions are special dust solutions. They can be characterized by
the following conditions on M, A and g = gu:

Condition 1 A =0

Condition 2
) MR xY
ii) ¥ = {t} x X is orthogonal to R x {c}, 0 € %.
i) X = {t} x 3, t € R, is “space-like”
(i.e. restriction g; of g to 3 is a Riemannian metric)

Condition 3 Fach (¥, g;) is homogenous, isotropic, and ¥ = ¥ is simply-
connected

Remark 2 Condition 2 above is in fact a “causality condition”, the strongest of
a “hierarchy” of causality conditions (see below).

The most famous solutions of the Einstein field equations which violate even the
weakest standard causality condition are the Godel solution.



2 The (odel solutions, part I

2.1 Definition

Let us temporarily use the convention of the previous lectures and consider a pseudo-
Riemannian metric g on R* as a matrix of funcions (g.y())ap-

Definition 2 The Godel solution with parameter w > 0 is the following dust
solution (gap, p, u®) for M = R* and A = —w? < 0:

® g = guw = (gur())ap is given by

—1 —exp(za) 0 0

1 | —exp(za) —fexp(2zy) 0 0

gl =351 0 10
0 0 0 1

o p=w?/4m
o u’ = +/2w(—1,0,0,0)

Remark 3 u® looks trivial but u, = ggpu’ = ﬁ(l, exp(z2),0,0) does not!



Godel solutions arise naturally

1) Godel solutions arise natural from the following simple ansatz for finding a
(lambda) dust solution:

e Take the “nicest” of all smooth 4-dimensional manifold, namely M = R*.

e Take non-diagonal Lorentz metric as close to trivial case as possible, e.g.,

f(x) h(z) 0 O
(G (@) )ty = h<0-f> k(0x> ? 8
0 0 0 1

where f, h, k are unknown functions on M.

e Assume the simplest situation where f, h, and k£ (and also p) only depends
on one of the four variable xg, x1, z2, T3.

e For each of these 24 situations write down the Einstein Field equations to
obtain a system of differential equations for the unknown functions f, h, k
and p and u“.

Einstein field equations contain 10 sub equations —  enough restrictions
for determining 8 (or rather 7) unknown functions f, h, k and p and u®
and constant A.

2) Godel solutions arise “automatically” within the Bianchi classification of 3-
dimensional homogeneous (pseudo-)Riemannian manifolds.



2.2 Important Properties/Features of the Godel solutions
o R* = R x R? so Condition 2 i) fulfilled.
However, parts ii) and iii) can not be fulfilled.

e The Godel solutions have no singularities (as opposed to Friedmann or Schwarzschild
solutions)

e Cosmological constant A = —w? finely balanced to match mass density p = 2w?
(— somewhat “artificial”)

e Hubble law not satisfied

e Causality violated in strongest possible way

Last 3 observations —  Godel solutions are highly unphysical.

However: high pedagogical value.



2.3 The Godel solutions really are solutions

Recall: p = w?/41r  u® = 2w(—1,0,0,0)

—1 — exp(x2)
1 [ —explzr)  —jexp(2as)
0 0

Thus
= gt T(l exp(z2),0,0)

and therefore

1 exp(xs)
L | exp(x ex 2:U
(Tab)ab - p(uaub)ab - = p( 2 p 2)
3T 0
0
Inverse g® of g, given by
1 —2 exp(—x9)
—2 — 2 —2
(g™ = 2w” eXlg( ) GXP(O )

0 0

S = O O

o = O O

o O O O

_ O O O

_ O O O

o O O O



Recall:
Roe = Olge = Oaly, + T T — T I,
with
L% = 59" (Ougbe + Ogac — OcGan)

For the Godel metric g the non-vanishing I'¢, are

F?z(l') = Fg1( ) r01( ) Fg1(33> Xp<l’2)
F(1)2( ) F%o(x) exp(—azg)
F%l(@ % p(2x2)
ng( ) = Fgo(5’3> 1
Thus we obtain:
1 exp(za) 0 0
exp(x exp(2x 0 0
(R () o = é . E) . 0 0
0 0 0 0
which implies
Rab = 87TTab

On the other hand
R = Ryg"™ = —2u*

Since A = —w? we have
Rapy — Zgap + Agap = Rap

Thus the assertion follows.



3 Mathematical Intermezzo

3.1 Manifolds and tensors: the formal definitions

Recall:

e A topological manifold M is a topological space which “looks locally like R™”.
Examples are
i) Every open subset of R”
i) “Curved surfaces” in R3
iii) S™ for arbitrary n
e A smooth manifold is a topological manifold M equipped with certain extra-
structure, called “differentiable structure”. The differentiable structure allows
definition of
i) the notion of “smoothness” for maps (cf. the definition below)

ii) a canonical finite-dimensional real vector space T,,M for each x € M (cf.
the definition below)

iii) The structure of a smooth manifold on TM = {J ., To M



Here are (most of) the formal definitions:

Definition 3 A topological manifold is a (Hausdorff) topological space M
with the property that every point has a neighborhood U which is is homeomorphic
to R"™ for some n.

Definition 4 Let M be a topological space. A chart of M is a pair (U, v) where
U is an open subset of M and ¢ : U — V' a homeomorphism onto an open subset

V of R™,

Definition 5 Let M be a topological manifold.

i) An atlas of M is a family {(U;,;) | ¢ € I} of charts of M such that M =
Ui Ui

ii) An atlas of M is smooth iff for all (U;, ¢;) and (U}, 1;) such that U := U;NU;
is non-empty the map ; o wj_l 2 (U) — ¢;(U) is smooth

iii) A smooth structure on M is a smooth atlas on M which is a maximal

iv) A differentiable manifold is a topological manifold equipped with a smooth
structure.



Example 1 Let S* = {z € R? | ||z]| = 1}.
Smooth atlas A = {(Uy, ¢1), (Us, 12) } where

Uy = S*\{(1,0,0)} and Us := S*\{(—1,0,0)}

and where
Y Uy — R?, i =1,2is corresponding “stereographical projection”

Digression 2 Very deep mathematics involved!

e Not every topological manifold has a smooth structure

e Many topological manifolds have several different structures, for example S”
has 15 different smooth structures and R* infinitely many

e The question if S* has more than one smooth structure is a major open problem
(the “smooth Poincare conjecture” in 4 dimensions)

Definition 6 Let M, Ms be two smooth manifolds. A map f : My — M,
is smooth iff for all charts (U, 1) resp. (Us,1bo) of My resp. My the map

Yoo foaptiah(Up) — 1e(Us) is smooth.



Fix n-dim. smooth manifold M, x € M and chart (U, ¢) with x € U.

o Let I',(M) be set of smooth curves v : R — M with ~(0) = .

e Let ~ be equivalence relation ~ on I';(M) by

N~Ye & (om)(0)=(Woy)(0) Yy, e l(M)

Definition 7 Set
T, M :={[y]|vel.(M)}

R-vector space structure on T, M obtained from the one on R” by transport of
structure using bijection

6:T,M—R" givenby 6([y])= (vpo~)(0)
Observation 1 Relation ~ and space T, M do not (!) depend on (U, ).

Convention 1 Let v € I',(M) and s € R. We write

7'(0) instead of [¢], and

' (s) or L~(s) instead of [y(- + s)]



Recall:

e A vector field on M is a “smooth” family (X, ).en where X, € T, M for
each x € M.

e A co-vector field (or 1-form) on M is a “smooth” family (ay).crs where
o T.M — R is linear.

e A pseudo-Riemannian metric on M is a “smooth” family (g,), where
gr T M x T, M — R is bilinear and non-degenerate.

e A pseudo Riemannian metric on M with signature (n,0) (resp. (n-1,1)) is called
a Riemannian metric resp. Lorentzian metric

e A tensor field on M of type (p,q) is a “smooth” family (A,), where A,
T.M*x ... xT,M*"xT,Mx...xT,M — R is multilinear

Remark 4 Observe that a tensor field of type (1,0) can be considered as a vector
field in the obvious way:.

Definition 8 A spacetime is a 4-dimensional smooth manifold equipped with a
Lorentzian metric.



3.2 The (abstract) local coordinate formalism

Fix n-dimensional smooth manifold M.

Definition 9 A system of local coordinates on M is an n-tuple of smooth
functions fi, fo, ..., f, of the form f; : V; — R where V; C M are open, such that
there is a chart (U,4) of M with U = (", V; and f; = ; on U.

Example 2 For every chart (U, 1)) of M the corresponding components (1)1, s, . . . , ¥y,
form a system of local coordinates.

Example 3 The polar coordinates are/is the system (7, ¢) of local coordinates
on R? where

r: R\ {0} — R, ¢ {xrcR* |2, #£0} - R
and

r(z) = [l
(
arctan(32) if x1 >0

¢(x) = q arctan(32) +7/2  if a1 <0and 25 > 0

arctan(=2) — /2 if x1 <0 and 23 < 0

L2
\ 1



Fix a system (xy, zo, ..., x,) of local coordinates on M with (joint) domain U.

Definition 10 i) Define dx;, for i < n, as the unique smooth co-vector field on

U given by
dz;(7'(0)) = (z;07)'(0)  for every smooth curve v in U (5)
ii) Define 8%2” for 1 < n, as the unique smooth vector field on U given by
dxj(a%i) = 9;; for all j < m. (6)

Observation 2 From the definitions it easily follows that for every smooth curve

v in U we have
7'(s) = Z 7i(s)g5: (1(s)) (7)

where z/(s) is a short notation for (x; o v)'(s).



Observation 3 Let g be pseudo-Riemannian metric on M. The restriction g
of g onto U can be uniquely written as

glu = Z gijdz;dz; (8)
i,]
where (g;;)i; is a symmetric matrix of smooth functions g;; : U — R and where
dx;dx; is the type (0, 2)-tensor field on U given by

for all vector fields X and Y on U.

We can replace the last equation by gy = ), < Gijdzidz; if we redefine dx;dz;
by
(dridx;)(X,Y) = %[dazz(X) dx;(Y) +dzi(Y) - do; (X)) (10)
Example 4 The standard Euclidean metric on R" is given by
g =dz*+dos+ ... +d2’

if (z1,x9,...,x,) are the standard coordinates.



[t is convenient to generalize the definition of dx; above:

Definition 11 For every function f € C®(U,R), where U C M is open, we
introduce the covector field df on U by the condition

df (7/(0)) = (f o7)'(0)  for every smooth curve  in U

df is called the total derivative (or exterior derivative) of f.

Calculation rules: For f,g € C*°(M,R) and ® € C*(R,R) we have
d(f +9) =df +dg

d(fg) = (df)g + fdg
d(®(f)) = O'(f)df

Example 5 Euclidean metric ¢ = dx? + dx3 on R* in polar coordinates (r, ¢):

x1 = rcos(¢) and x9 = rsin(¢) on U

Calculation rules above =

dxi = (dr) cos(¢) + rd(cos(¢)) = cos(@)dr — rsin(¢p)deo
dxy = (dr)sin(¢) + rd(sin(¢)) = sin(¢)dr 4 r cos(¢)d¢

Thus on U we have

dz? +dx = (cos(@)dr —rsin(¢)dd)” + (sin(@)dr+r cos(@)de)” = dr? +r>de?



3.3 Spacetime curves

Let M be a space-time and let v : R — M be a smooth curve in M.

Definition 12 i) ~ is time-like iff g(7'(s),~'(s)) < 0 for all s € R.
ii) v is null (or light-like) iff g(7'(s),v/(s)) =0 for all s € R.

iii) ~v is space-like iff g(7'(s),~/(s)) > 0 for all s € R.

iv) v is causal iff g(7/(s),7'(s)) < 0 for all s € R.

Definition 13 7 is a geodesic in M if for every t € R there is a chart (U, )
around ~y(t) such that

de' —i—ZF )jsxk(s)—o

for all s sufficiently close to t.

Here: a'(s) := 24(y(s)) = 1i(7(s))) and T, : U — R are as in Sec. 2 above
with (g;;)i; given by Observation 3 in Sec. 3.2.

Observation 4 If v is a geodesic than either 7 is time-like or null or space-like.

Physical relevance:
e Light rays “travel” on null geodesics.

e Massive point particles travel on time-like curves (not necessarily geodesics)



4 The Godel solutions, part 11

4.1 The Godel metric in the abstract local coordinates

We can rewrite Godel metric g on M = R* with parameter w > 0 as

1
9= 5.2 (—da:% — 2exp(x2)dzodrr — 5 exp(2x2)dat + das + dm%) (1)
Set M := (R", g)

4.2 The (reduced) Godel metric

The coordinate x3 above is inessential can therefore often be ignored. More pre-

cisely:
M — M/ % M”
with M’ := (R3,¢') and M" := (R, ¢"") where
p 2 1 2 2
9=55 —dxy — 2exp(x)drodr) — 5 exp(2w9)dry + drs
g = sydas

(zg, 71, T2 are the standard coordinates of R? and w3 standard coordinate of R)



4.3 The (reduced) Godel metric in “cylindrical-type” coordinates

Let (t,7,¢) be the system of coordinates t : U — R, r : U — (0,00), ¢ : U —
(—m,m)\{0} with U = R x (R\{0}) x R C R? which is given uniquely by

Ty = \/5(\/575 — ¢ + 2 arctan (6_27" tan(¢/2)))

sin(¢) sinh(2r)
\/icosh(%) + cos(¢) sinh(2r)
Ty = In(cosh(2r) + cos(¢) sinh(2r))

T =

Using the computation rules above we find that

dg — f<\/dt —d + el -1 (d(e7®) tan(¢/2) + e (d(tan(¢/2)))])

"(14+tan(¢/2) —4e2" tan(¢/2)
= 2dt + \/7[ 27" tan(¢/2)) 2+1] d¢ + \/_[ —27 tan ¢/2))2+1] dr

Making similar computatlons for
dry = ...dr +...do
dxo = ...dr + ...do

we obtain

g = %(—dt2 + dr? — (sinh?(r) — sinh?(r))d¢? + 2v/2 sinhQ(r)dtdgb)



4.4 Existence of closed time-like curves

For fixed 7y € R, consider the 27-periodic (and therefore closed) smooth curve in
M’ = (R?, ¢') which is given by

t(s)=0, r(s)=my ¢(s)=s, s € (—m,m)\{0}
where t(s), r(s), ¢(s) is a short notation for t(v(s)), r(y(s)), ¢((s)).

rT= ﬂ
(coordinate axis)

__Matter world-line
" (r,¢ constant)

r > log (l+:.’2)
(closed timelike , — log (1442)

|
curve) 1 (closed null curve)
!

r < log (142
(closed spacelike

curve)

Observation 2 = ~/(s) = a%(’y(s))



Setting a% = 75(7(s)) we have

Recalling that
g/ _ 2 (_dtZ 4+ d?“2 _ (Sinh4(T) — Sinh2(”f‘))d¢2 + 2\/5 SlﬂhQ(T)d¢dt)

W2
we see that

9 (s),7'(s)) = ¢ (55 a5) = — 2= (sinh’(ro) — sinh*(rp))
and therefore
sinh* (1) — sinh?(ry) > 0
sinh?(rg) > 1
(e —e )2 >1
ro > log(1 + V/2)

g (+(s),7'(s)) < 0 for all s

Tt

Clearly, if we consider the curve ~ in "as a curve in M in the obvious wa;
i i

we have
g (s),7'(s)) = ¢d'(7/(s),7'(s)) <0 forall s

so v is time-like (and closed).



4.5 Rejoining of light-rays
The cylindrical-type coordinates (¢, r, ¢) introduced above are also very useful for
studying another rather counterintuitive property of the Godel solutions.

Fix point P in M’ C M on axis r = 0. It turns out that all the light rays
through P which stay in M’ C M’ x M" = M refocus in one point P" in M’.

r=10
{coordinate axis)

__Matter world-line
" (r, ¢ constant)

Null geodesics
|

The light-rays “travel” on null geodesics so in order to prove this one will have
to write down and solve the equations for the geodesics in the coordinates (¢, r, ¢).



4.6 The isometry group
Recall:
e Isom(M, g) := {1 € Diff(M) | ¢ leaves g fixed } where
Diff (M) := {¢p : M — M | 1 is bijective and v and ) are smooth }

e (M, g)is “homogeneous” iff Isom(M, g) operates transitively on M
e [som(M, g) has a natural Liegroup structure

Convention: If M is fixed then we can write Isom(g) instead of Isom(M, g) and
use the notion “homogenous” for the metric g.

Observation 5 Both the original Godel metric and the reduced Godel metric are
homogeneous.

Observation 6 i) The isometry group of the original Godel metric (resp. the
reduced Godel metric) is 5 dimensional (resp. 4-dimensional).

ii) The Godel solutions are the only dust solutions with a simply-connected
spacetime and a b-dimensional isometry group.



Conclusion 1 Recall that above we showed that there are closed time-like curves
in the Godel universe and that for certain points P the light rays through P rejoin
(in the 3-dimensional reduced setting in M".)

From Observation 5 it follows that there are closed time-like curves through every
point in the Godel universe and that the other result mentioned above is true for
every point P.

Conclusion 2 Observation 6 can be used to give an abstract definition of the
Godel solutions.

Conclusion 3 The homogeneous 3-dimensional Riemannian manifolds have been
completely classified by Bianchi. A similar classification is possible for arbitrary
3-dimensional pseudo-Riemannian manifolds This puts the Godel solutions in a
systematic framework.



5 Causality notions: overview

There is the following “hierarchy” of notions of causality for a given space time M:

non-totally vicious (= not through every point there is a closed time-like curve)
chronological = there are no closed time-like curve)
= there are no non-trivial closed causal curves)

see below)

causal
strongly causal

stably causal see below

(
(
(
( )
globally hyperbolic (see below)
( )

Condition 2 see above

Remark 5 We emphasize that the notion “globally hyperbolic” has little or noth-
ing to do with the notion of a “hyperbolic manifold” of Lecture 2.



Let (M, g) be a fixed space-time.

Definition 14 A time orientation on M is a smooth vector field X on M
which is time-like

Assume that there is a time-orientation X on M.
Definition 15 For z,y € M we set

i) © < y iff there is a “future-directed” time-like curve from z to y

ii) z < y iff there is a “future-directed” causal curve from x to y

Definition 16 For ecach x € M set

I"(z) ={ye M|z <y} (“chronological future”)
I (x): > .. (“chronological past”)
JT(x) = . <. (“causal future”)

J (x) = . > .. (“causal past”)

Observe that r < y implies < y and therefore I=(z) C J*(z)



Reformulation/Formal definitions:

Definition 17
i) M is non-totally vicious iff z & z for some x
ii) M is chronological iff x &« z for all x

)
iii) M is causal iff x < y and y < x imply = =y
)

iv) M is strongly causal iff for every x € M and every neighborhood U of = there
is a neighborhood V' C U which is hit by all time-like curves at most once

v) M is stably causal: see Wikipedia or Wald

vi) M is globally hyperbolic iff M is strongly causal and for all = the set J*(x) N
J~(x) is compact.

Digression 3 It can be shown that the following statements are equivalent
e )M is globally hyperbolic

e M has a “Cauchy-surface” ¥ (i.e. X is an “achronal” 3-dimensional submani-
fold of M and every “inextendible” time-like curve in M hits 3 exactly once)

o M =R x X and each ¥; = {t} x ¥ is a Cauchy surface.

In view of the last characterization Condition 2 above implies global hyperbolic-
ity.



