The Einstein field equations

Part II: The Friedmann model of the Universe

Atle Hahn
GFM, Universidade de Lisboa

Lisbon, 4th February 2010

Contents:

§1 Geometric background
§2 The Einstein field equations for perfect fluids
§3 The Friedmann(-Robertson-Walker) model

References:

- Book by Wald: "General Relativity"
- Wikipedia

1 Geometric background

1.1 Foundations

Recall: Euclidean Geometry is about (straight) lines, planes, lengths, angles, ... in \mathbb{R}^{2} and \mathbb{R}^{3}.

Modern formulation based on
Definition 1 A Euclidean space is a pair $(V,\langle\cdot, \cdot\rangle)$ where

- V is a finite-dimensional real vector space,
- $\langle\cdot, \cdot\rangle: V \times V \rightarrow \mathbb{R}$ a positive-definite (symmetric) bilinear form ("scalar product")
i) V can have arbitrary dimension \rightarrow already a generalization
ii) Without loss of generality: $V=\mathbb{R}^{n}$ where $n:=\operatorname{dim}(V)$.
iii) lines, planes, ...: definition only uses vector space structure
iv) lengths, angles: definition uses $\langle\cdot, \cdot\rangle$

$$
\text { length }(v):=\|v\|:=\sqrt{\langle v, v\rangle}
$$

Angle $\varphi \in[0, \pi]$ between v and w given by

$$
\begin{equation*}
\cos (\varphi)=\frac{\langle v, w\rangle}{\|v\|\|w\|} \tag{1}
\end{equation*}
$$

Convention 1 We often write $g: V \times V \rightarrow \mathbb{R}$ instead of $\langle\cdot, \cdot\rangle$ and call $g=$ $g(\cdot, \cdot)$ a "metric".

Aim: Generalize this to more general spaces where notions like "distance" and "angles" can be defined.
Two of the best generalizations:

- (Pseudo-)Riemannian manifolds
- Metric spaces (with special properties)

Definition 2 A topological manifold M is a topological space which "looks locally like $\mathbb{R}^{n "}$
(formally: M is Hausdorff and every point has a neighborhood which is homeomorphic to \mathbb{R}^{n} for some n).

Example 1 i) Every open subset of \mathbb{R}^{n}
ii) "Curved surfaces" in \mathbb{R}^{3}
iii) S^{n} for arbitrary n
"Non-example" Most non-open subsets of \mathbb{R}^{n} are not topological manifolds.
Problem: A general topological manifold has no vector space structure. How can we define analogue of the metric $g(\cdot, \cdot)$?

Solution: Introduce additional structure \rightarrow
"Definition" 3 A smooth manifold is a topological manifold M equipped with certain extra-structure, called "differentiable structure". Differentiable structure allows definition of
i) the notion of "smoothness" for maps
ii) a "canonical" finite-dim. vector space $T_{x} M$ in each $x \in M$.
iii) structure of a smooth manifold on $T M:=\bigcup_{x \in M} T_{x} M$

Example 2 i) $M=\mathbb{R}^{n}$. Here $T_{x} M$ can be canonically identified with \mathbb{R}^{n}.
ii) M is surface in \mathbb{R}^{3} : Here $T_{x} M$ can be identified with some 2-dimensional subspace V_{x} of \mathbb{R}^{3}.

Definition 4 A tensor field of type (p, q) on a smooth manifold M is a "smooth" family $A=\left(A_{x}\right)_{x \in M}$ s. t. each A_{x} is a multilinear map

$$
A_{x}: T_{x} M \times \ldots \times T_{x} M \times T_{x} M^{*} \times \ldots \times T_{x} M^{*} \rightarrow \mathbb{R}
$$

where $T_{x} M$ appears p times and $T_{x} M^{*}$ appears q times.

Definition 5 i) A pseudo-Riemannian metric on a smooth manifold M is a tensor field $g=\left(g_{x}\right)_{x \in M}$ of type $(2,0)$ on $M \mathrm{~s}$. t. each

$$
g_{x}: T_{x} M \times T_{x} M \rightarrow \mathbb{R}
$$

is symmetric and non-degenerate.
ii) Let $g=\left(g_{x}\right)_{x \in M}$ be a pseudo-Riemannian metric on M. The "signature of g " is the signature of the bilinear form g_{x} for any x (independent of x !)
iii) Riemannian/Lorentzian metric on M is a pseudo-Riemannian metric on M with signature $(n, 0) /(n-1,1)$ where $n=\operatorname{dim}(M)$.

Definition 6 i) A pseudo-Riemannian/Riemannian/Lorentzian manifold is a pair (M, g) where M is a smooth manifold and g is a pseudo-Riemannian/Riemannian/Lorentzian metric on M.
ii) A "spacetime" is a 4-dimensional Lorentzian manifold.

Remark 1 Pseudo-Riemannian metric g on $M=\mathbb{R}^{n}$ can be considered as a matrix $g=\left(g_{a b}\right)_{1 \leq a, b \leq n}$ of smooth functions $g_{a b}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ s. t. for each $x \in \mathbb{R}^{n}$

- matrix $\left(g_{a b}(x)\right)_{a, b}$ is symmetric
- matrix $\left(g_{a b}(x)\right)_{a, b}$ has no zero eigenvalues

Digression 1 A "metric space" is a pair (X, d) where

- X is any set
- $d: X \times X \rightarrow \mathbb{R}_{+}$("distance function" or "metric") s.t.
i) $d(x, y)=0$ if and only if $x=y$.
ii) $d(x, y)=d(y, x)$
iii) $d(x, y) \leq d(x, z)+d(z, y)$

Observation 1: Euclidean space $(V,\langle\cdot, \cdot\rangle) \rightarrow$ metric space $\left(V, d_{V}\right)$ where

$$
d_{V}(v, w):=\sqrt{\langle v-w, v-w\rangle}
$$

Observation 2:

$$
\langle v, w\rangle=\frac{1}{2}\left[d(v, 0)^{2}+d(w, 0)^{2}-d(v, w)^{2}\right]
$$

$\Rightarrow\langle\cdot, \cdot\rangle$ can be reconstructed from d_{V}

$$
\Rightarrow
$$

$$
\cos (\varphi(v, w))=\frac{d(0, v)^{2}+d(0, w)^{2}-d(v, w)^{2}}{2 d(0, v) d(0, w)}
$$

\Rightarrow lengths of vectors and angles between them can be defined using only the metric space structure $\left(V, d_{V}\right)$!
\Rightarrow notions like lengths and angles can be defined in general metric space

1.2 The isometry group

Fix a Riemannian manifold $M=(M, g)$
Definition 7 (Isometry grouop)

$$
\operatorname{Isom}(M):=\{\psi: M \rightarrow M \mid \psi \text { is "bi-smooth" bijection preserving } g\}
$$

($\psi^{\text {"bi-smooth" }}=$ both ψ and ψ^{-1} are smooth).
Definition 8 i) M is "homogeneous" iff for all $x, y \in M$

$$
\exists \psi \in \operatorname{Isom}(M): \quad \psi(x)=y
$$

ii) M is "isotropic" in $x \in M$ iff for all unit vectors $v, w \in T_{x} M$

$$
\exists \psi \in \operatorname{Isom}(M): \quad \psi_{*}(v)=w
$$

where $\psi_{*}: T M \rightarrow T M$ is bi-smooth bijection induced by $\psi: M \rightarrow M$

Digression 2 i) Isom (M) has natural Lie group structure
ii) Every subgroup $\Gamma \subset \operatorname{Isom}(M)$ operates on M. If Γ is discrete and operation on M is "properly-discontinuous" then M / Γ has canonical Riemannian manifold structure.

1.3 Some basic results on curvature

Fix pseudo-Riemannian manifold (M, g).
Recall: we use "abstract index notation"
\rightarrow we write $g_{a b}$ for the type $(2,0)$ tensor g

- $g^{a b}$ is type $(0,2)$ tensor given by $\sum_{b} g_{a b} g^{b c}=\delta_{a}^{c}$
(here δ_{c}^{a} is type $(1,1)$ tensor given by $\delta_{c}^{a}(x)=\delta_{a c}$ for all $x \in M$)
- $R_{a b c}{ }^{d}$ denotes the curvature tensor associated to (M, g)
- We set $R_{a b}:=\sum_{c} R_{a c b}{ }^{c} \quad$ ("Ricci tensor")
- We set $R:=\sum_{a, b} R_{a b} g^{a b} \quad$ ("scalar curvature")

Convention 2 i) Einstein sum convention, i.e. we often drop \sum-signs. E.g. we write $R_{a b} g^{a c}$ instead of $\sum_{a} R_{a b} g^{a c}$.
ii) Normal rules for raising and lowering indices: e.g. we write $R_{b}{ }^{c}$ instead of $R_{a b} g^{a c}$ and $v_{a} v^{a}$ instead of $g_{a b} v^{b} v^{a}$.
iii) Replace index set $\{1,2, \ldots, n\}$ by $\{0,1, \ldots, n-1\}$.

Remark 2 Elementary reformulation in special case $M=\mathbb{R}^{n}$:
Curvature tensor $\left(R_{a b c}{ }^{d}\right)_{1 \leq a, b, c, d \leq n}$ can be considered as a family of functions $R_{a b c}{ }^{d}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ given explicitly as

$$
\begin{equation*}
R_{a b c}^{d}(x)=\partial_{b} \Gamma_{a c}^{d}(x)-\partial_{a} \Gamma_{b c}^{d}(x)+\sum_{i}\left(\Gamma_{a c}^{i}(x) \Gamma_{i b}^{d}(x)-\Gamma_{b c}^{i}(x) \Gamma_{i a}^{d}(x)\right) \tag{2}
\end{equation*}
$$

where

$$
\begin{equation*}
\Gamma_{a b}^{c}(x):=\frac{1}{2} \sum_{d} g^{c d}(x)\left(\partial_{a} g_{b d}(x)+\partial_{b} g_{a d}(x)-\partial_{d} g_{a b}(x)\right) \tag{3}
\end{equation*}
$$

Similarly, $\left(R_{a c}\right)_{a c}$, and R can be considered as (matrix of) functions on $M=\mathbb{R}^{n}$. Explicitly:

$$
\begin{equation*}
R_{a c}(x)=\partial_{b} \Gamma_{a c}^{b}(x)-\partial_{a} \Gamma_{b c}^{b}(x)+\sum_{i}\left(\Gamma_{a c}^{i}(x) \Gamma_{i b}^{b}(x)-\Gamma_{b c}^{i}(x) \Gamma_{i a}^{b}(x)\right) \tag{4}
\end{equation*}
$$

Symmetry properties of $R_{a b c}{ }^{d}, R_{a b c d}, R_{a b}{ }^{c d}$ and $R_{a b}$

Proposition 1

i) $R_{a b c d}=-R_{b a c d}$
ii) $R_{a b c d}=-R_{a b d c}$
iii) $R_{a b c d}+R_{b c a d}+R_{\text {cabd }}=0$ ("1. Bianchi identity")
iv) $R_{a b c d}=R_{c d a b}$
v) $R_{a b}=R_{b a}$
(Similar but not totally analogous statements hold for $R_{a b c}{ }^{d}$ and $R_{a b}{ }^{c d}$)
Proof: i) follows immediately from abstract definition of $R_{\text {abcd }}$ or, for $M=\mathbb{R}^{n}$, from Eqs. (2) and (3) above.
ii) and iii): somewhat more difficult to prove
iv) follows from i)-iii)
v) follows immediately from iv)

Digression 3 i) For $d=2$ all the information in $R_{a b c}{ }^{d}$ is already contained in the scalar curvature R.
ii) For $d=3$ all the information in $R_{a b c}{ }^{d}$ is already contained in the Ricci tensor $R_{a b}$.

1.4 Spaces of constant curvature

Fix Riemannian manifold $M=(M, g)$
Definition $9 M=(M, g)$ has constant curvature iff

$$
R_{a b}{ }^{c d}=K \delta_{a b}{ }^{c d}
$$

for some constant $K \in \mathbb{R}$ where $\delta_{a b}{ }^{c d}$ is tensor field of type $(2,2)$ given by

$$
\delta_{a b}{ }^{c d}:=\delta_{a}{ }^{c} \delta_{b}{ }^{d}-\delta_{a}{ }^{d} \delta_{b}{ }^{c}
$$

Let us assume now that $\operatorname{dim}(M)=3$.
Theorem 1 If $M=(M, g)$ is homogenous and isotropic in some point $x_{0} \in M$ then M has constant curvature.

Sketch of proof:

- View $R_{a b}{ }^{c d}(x)$ and $\delta_{a b}{ }^{c d}(x)$, for $x \in M$, as linear maps

$$
T_{x} M \wedge T_{x} M \rightarrow T_{x} M \wedge T_{x} M
$$

- $\delta_{a b}{ }^{c d}(x)$ is identity on $T_{x} M \wedge T_{x} M$
- $R_{a b}{ }^{c d}(x)$ is symmetric (w.r.t.obvious scalar product) and hence diagonalizable.
- Isotropy of M in x_{0} implies that all eigenvalues of $R_{a b}{ }^{c d}\left(x_{0}\right)$ must be the same, so $R_{a b}{ }^{c d}\left(x_{0}\right)=K \delta_{a b}{ }^{c d}\left(x_{0}\right)$ for some $K \in \mathbb{R}$.
(rigorous treatment uses irreducibility argument, which is straightforward for $\operatorname{dim}(M)=3$)
- Homogeneity of M implies that $R_{a b}{ }^{c d}(x)=K \delta_{a b}{ }^{c d}(x)$ for all $x \in M$.

Let

$$
\mathbb{E}^{n}:=\text { standard n-dimensional Euclidean space }
$$

$$
\begin{aligned}
S^{n} & :=\left\{x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n} x_{i}^{2}+x_{n+1}^{2}=1\right\} \subset \mathbb{E}^{n+1} \\
\mathbb{H}^{n} & :=\left\{x \in \mathbb{R}^{n+1} \mid-\sum_{i=1}^{n} x_{i}^{2}+x_{n+1}^{2}=1\right\} \subset \mathbb{E}^{n+1}
\end{aligned}
$$

(S^{n} and \mathbb{H}^{n} equipped with metric induced by \mathbb{E}^{n+1}).
Remark $3 \mathbb{H}^{n}$ (" n-dimensional hyperbolic space") is homeomorphic to \mathbb{E}^{n} but not isometric!

Theorem 2 Let $M=(M, g)$ be simply-connected (!) n-dimensional (complete) Riemannian manifold with constant curvature $K \in \mathbb{R}$.

Then (M, g) is isometric to suitable rescaling of

$$
\left(N, g_{N}\right):= \begin{cases}\mathbb{E}^{n} & \text { if } K=0 \\ S^{n} & \text { if } K>0 \\ \mathbb{H}^{n} & \text { if } K<0\end{cases}
$$

More precisely:

$$
(M, g) \cong\left(N, a \cdot g_{N}\right) \quad \text { for suitable } a>0
$$

($a=\sqrt{|K|}$ in last two cases; in the first case a can be arbitrary).

Digression 4 If $M=(M, g)$ is a general n-dimensional (complete) Riemannian manifold of constant curvature then

$$
M \cong N / \Gamma
$$

where

$$
N \in\left\{\mathbb{E}^{n}, S^{n}, \mathbb{H}^{n}\right\}, \quad \text { and }
$$

Γ is suitable discrete subgroup of $\operatorname{Isom}(N)$.
Spaces of constant curvature play major role in 2-dim. and 3-dim. Topology/Geometry:

- $d=2$: Classification of Riemannian surfaces can be reduced to classification of all discrete subgroups Γ of $\operatorname{Isom}\left(S^{2}\right)$, $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$, and $\operatorname{Isom}\left(\mathbb{H}^{2}\right)$ which operate properly discontinuously.
- $d=3$: Spaces of constant curvature play a major role in classification of compact 3-dimensional topological/smooth manifolds

2 Einstein field equations for perfect fluids

2.1 Review: The general Einstein field equations

Fix 4-dimensional smooth manifold M and $\Lambda \in \mathbb{R}$ ("the cosmological constant").
Let Φ be matter/radiation field on M. We assume that for every Lorentzian metric g on M

- corresponding "stress energy tensor" $T_{a b}=T_{a b}(g, \Phi)$ is known explicitly
- Equations of motions $F(g, \Phi)=0$ for Φ are known explicitly, i.e. function F given explicitly.

Basic problem: Find (g, Φ) such that

$$
\begin{gather*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=8 \pi T_{a b}(g, \Phi) \tag{5a}\\
F(g, \Phi)=0 \tag{5b}
\end{gather*}
$$

2.2 Review: Perfect fluid in Minkowski space

Recall: (relativistic or non-relativistic) fluid in \mathbb{R}^{3} described by

- mass density distribution $\rho(x, t)$
- temperature distribution $T(x, t)$
- velocity field $\vec{u}(x, t)$

We assume that equation of state $p=f(\rho, T)$ is given explicitly.
In relativistic case introduce " 4 -velocity field" (= vector field in Minkowski space $(M, g)=\left(\mathbb{R}^{4}, \eta\right)$ where $\eta_{a b}= \pm \delta_{a b} ;$ - only for $\left.\eta_{00}\right)$

$$
u^{a}=\frac{1}{\sqrt{1-|\vec{u}|^{2}}}\left(1, u_{1}, u_{2}, u_{3}\right)
$$

Observe that

$$
\begin{equation*}
u_{a} u^{a}=-1 \tag{6}
\end{equation*}
$$

If fluid is a "perfect fluid" (i.e. is "inviscid" and in thermal equilibrium, i.e. $T(x, t)=T_{0}$ for a constant $\left.T_{0}\right)$ then:
"Stress energy tensor" given by

$$
\begin{equation*}
T_{a b}=(\rho+p) u_{a} u_{b}+p \eta_{a b} \tag{7}
\end{equation*}
$$

where $p(x, t)=f\left(\rho(x, t), T_{0}\right)$ and equation of motions are

$$
\partial^{a} T_{a b}=0
$$

2.3 Perfect fluids in a general space time

Fluid in general space time (M, g) described by

- mass density distribution $\rho(x, t)$
- temperature distribution $T(x, t)$
- abstract " 4 -velocity field" $u^{a}(x, t)$, i.e. arbitrary vector field (=tensor field of type (0,1) with

$$
u_{a} u^{a}=-1
$$

Again assume that equation of state $p=f(\rho, T)$ given explicitly.
In "perfect fluid situation" (where fluid is "inviscid" and in thermal equilibrium at temperature T_{0}) stress-energy tensor is given by

$$
\begin{equation*}
T_{a b}=(\rho+p) u_{a} u_{b}+p g_{a b} \tag{8}
\end{equation*}
$$

where $p(x, t)=f\left(\rho(x, t), T_{0}\right)$ and equations of motion are

$$
\nabla^{a} T_{a b}=0
$$

where ∇^{a} is the Levi-Civita connection of $\left(M, g_{a b}\right)$.

2.4 The Einstein field equations for perfect fluids

Taking $\Phi=\left(u^{a}, \rho\right)$ in Eqs. (5a) and (5b) above we see that for a perfect fluid in M (with equation of state $p=f(\rho, T)$ at temperature T_{0}) the corresponding Einstein field equations read

$$
\begin{gather*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=8 \pi T_{a b} \tag{9a}\\
\nabla^{a} T_{a b}=0, \text { with } \tag{9b}
\end{gather*}
$$

where $T_{a b}=(\rho+p) u_{a} u_{b}+p g_{a b}$ and $p(x, t)=f\left(\rho(x, t), T_{0}\right)$.
Observation: We always have

$$
\nabla^{a}\left(R_{a b}-\frac{1}{2} R g_{a b}\right)=0, \quad \nabla^{a} g_{a b}=0,
$$

\Rightarrow Eq. (9a) implies Eq. (9b)!
\Rightarrow Einstein field equations in perfect fluid situation

$$
\begin{align*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b} & =8 \pi\left((\rho+p) u_{a} u_{b}+p g_{a b}\right) \tag{10a}\\
p(x, t) & =f\left(\rho(x, t), T_{0}\right) \tag{10b}
\end{align*}
$$

Special case: Fluid has vanishing pressure, i.e $p=f(\rho, T)=0$ ("Dust situation"):
\Rightarrow Eqs. (10) reduce to

$$
\begin{equation*}
R_{a b}-\frac{1}{2} R g_{a b}+\Lambda g_{a b}=8 \pi \rho u_{a} u_{b} \tag{11}
\end{equation*}
$$

3 The Friedmann(-Robertson-Walker) model

3.1 Assumptions

Consider spacetime $M=(M, g)$ fulfilling:
Assumption 1 (Product Ansatz)
i) $M \cong \mathbb{R} \times \Sigma$
ii) $\Sigma_{t} \cong\{t\} \times \Sigma$ is orthogonal to $\mathbb{R} \times\{\sigma\}, \sigma \in \Sigma$.
iii) $\Sigma_{t} \cong\{t\} \times \Sigma, t \in \mathbb{R}$, is "space-like"
(i.e. restriction g_{t} of g to Σ_{t} is a Riemannian metric)

Assumption 2 Each $\left(\Sigma_{t}, g_{t}\right)$ is homogenous.
Assumption 3 Each $\left(\Sigma_{t}, g_{t}\right)$ is isotropic in each $x \in \Sigma_{t}$.
Assumption $4 M$ is simply-connected
Assumption 5 Only one matter field, namely a perfect fluid
For simplicity:
Assumption 6 i) Perfect fluid is "dust"
ii) Cosmological constant $\Lambda=0$

3.2 The Robertson-Walker metric

Assumption $1 \Rightarrow T_{(t, x)} M \cong T_{t} \mathbb{R} \oplus T_{x} \Sigma$.
For fixed $(t, x) \in \mathbb{R} \times \Sigma \cong M$ we can choose basis $\left(e_{i}\right)_{i=0,1,2,3}$ of $T_{(t, x)} M$ such that $\begin{cases}e_{0} & \in T_{t} \mathbb{R} \subset T_{t} \mathbb{R} \oplus T_{x} \Sigma \\ e_{i} & \in T_{x} \Sigma \subset T_{t} \mathbb{R} \oplus T_{x} \Sigma, i=1,2,3\end{cases}$

Conclusion 1 In basis above we have

$$
\left(g_{i j}\right)_{i j}=\left(g_{i j}(t, x)\right)_{i j}=\left(\begin{array}{cccc}
g_{00} & 0 & 0 & 0 \tag{12}\\
0 & g_{11} & g_{12} & g_{13} \\
0 & g_{21} & g_{22} & g_{23} \\
0 & g_{31} & g_{32} & g_{33}
\end{array}\right)
$$

where $g_{00}<0$. Moreover, by a suitable reparametrization of t we can achieve that $g_{00}=-1$. Finally, $g_{t}=\left(g_{i j}\right)_{i, j=1,2,3}$.

Assumptions 2-4 and Theorem 1
$\Rightarrow\left(\Sigma_{t}, g_{t}\right)$ is simply-connected Riem. manifold of const. curvature \Rightarrow (cf. Theorem 2)
Conclusion $2\left(\Sigma_{t}, g_{t}\right)$ is isometric to $\left(N, g_{N}\right) \in\left\{\mathbb{E}^{3}, S^{3}, \mathbb{H}^{3}\right\}$ after rescaling with suitable $a(t) \in \mathbb{R}_{+}$(i.e. $\left.g_{t}=a(t) \cdot g_{N}\right)$

Remark 4 If $\left(N, g_{N}\right)=\mathbb{E}^{3}$ then (cf. Remark 1)

$$
\left(g_{i j}\right)_{i j}=\left(g_{i j}(t, x)\right)_{i j}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{13}\\
0 & a(t)^{2} & 0 & 0 \\
0 & 0 & a(t)^{2} & 0 \\
0 & 0 & 0 & a(t)^{2}
\end{array}\right)
$$

Remark 5 Metric g written in "standard" local coordinates:

- $N=\mathbb{E}^{3}: g=-d t^{2}+a(t)^{2}\left(d x^{2}+d y^{2}+d z^{2}\right)$
- $N=S^{3}: g=-d t^{2}+a(t)^{2}\left(d \psi^{2}+\sin ^{2}(\psi)\left(d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}\right)\right)$
- $N=\mathbb{H}^{3}: g=-d t^{2}+a(t)^{2}\left(d \psi^{2}+\sinh ^{2}(\psi)\left(d \theta^{2}+\sin ^{2}(\theta) d \varphi^{2}\right)\right)$

Conclusion $3 u^{a}(t, x)=(1,0,0,0)$ and $\rho(t, x)=\rho(t)$. Thus

$$
T_{a b}=T_{a b}(t, x)=\left(\begin{array}{cccc}
\rho(t) & 0 & 0 & 0 \tag{14}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

(recall $T_{a b}=\rho u_{a} u_{b}$ in dust situation).

- Intuitively, Conclusion 3 is "clear"
- Formal proof in general case not too difficult
- In the special case $N=\mathbb{E}^{3}$ it follows easily from computations below

3.3 Reduction of the Einstein field equations

Aim: Simplify Eq. (11) if Assumptions $1-6$ are fulfilled.
For simplicity: consider only $N=\mathbb{E}^{3}$ where

$$
\left(g_{i j}\right)_{i j}=\left(\begin{array}{cccc}
-1 & 0 & 0 & 0 \tag{15}\\
0 & a(t)^{2} & 0 & 0 \\
0 & 0 & a(t)^{2} & 0 \\
0 & 0 & 0 & a(t)^{2}
\end{array}\right)
$$

\Rightarrow non-vanishing components of $\Gamma_{i j}^{k}$ are (cf. Eq. (3))

$$
\begin{align*}
& \Gamma_{11}^{0}=\Gamma_{22}^{0}=\Gamma_{33}^{0}=a^{\prime} a \tag{16}\\
& \Gamma_{10}^{1}=\Gamma_{01}^{1}=\Gamma_{20}^{2}= \Gamma_{02}^{2}=\Gamma_{30}^{3}=\Gamma_{03}^{3}=a^{\prime} / a \tag{17}
\end{align*}
$$

\Rightarrow (cf. Eq. (4))

$$
\left(R_{i j}\right)_{i j}=\left(\begin{array}{cccc}
-3 \frac{a^{\prime \prime}}{a} & 0 & 0 & 0 \\
0 & a^{\prime \prime} a+2\left(a^{\prime}\right)^{2} & 0 & 0 \\
0 & 0 & a^{\prime \prime} a+2\left(a^{\prime}\right)^{2} & 0 \\
0 & 0 & 0 & a^{\prime \prime} a+2\left(a^{\prime}\right)^{2}
\end{array}\right)
$$

and therefore $R=6 \frac{a^{\prime \prime} a+\left(a^{\prime}\right)^{2}}{a^{2}} \Rightarrow$

$$
\left(R_{i j}-\frac{1}{2} R g_{i j}\right)_{i j}=\left(\begin{array}{cccc}
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}} & 0 & 0 & 0 \\
0 & F(a) & 0 & 0 \\
0 & 0 & F(a) & 0 \\
0 & 0 & 0 & F(a)
\end{array}\right) \stackrel{!}{=} 8 \pi\left(T_{i j}\right)_{i j}
$$

where $F(a):=-2 a^{\prime \prime} a-\left(a^{\prime}\right)^{2}$

$$
\left(R_{i j}-\frac{1}{2} R g_{i j}\right)_{i j}=\left(\begin{array}{cccc}
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}} & 0 & 0 & 0 \\
0 & F(a) & 0 & 0 \\
0 & 0 & F(a) & 0 \\
0 & 0 & 0 & F(a)
\end{array}\right) \stackrel{!}{=} 8 \pi\left(T_{i j}\right)_{i j}
$$

\Rightarrow reduces to system of two ODEs for $a=a(t)$ and $\rho=\rho(t)$,

$$
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}}=8 \pi \rho, \quad-2 a^{\prime \prime} a-\left(a^{\prime}\right)^{2}=0
$$

or, equivalently,

$$
\begin{equation*}
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}}=8 \pi \rho, \quad 3 \frac{a^{\prime \prime}}{a}=-4 \pi \rho \tag{18}
\end{equation*}
$$

Similar computation for $N \in\left\{S^{3}, \mathbb{H}^{3}\right\} \quad \Rightarrow$

$$
\begin{equation*}
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}}=8 \pi \rho-\frac{3 k}{a^{2}}, \quad 3 \frac{a^{\prime \prime}}{a}=-4 \pi \rho \tag{19}
\end{equation*}
$$

where $k=1$ for $N=S^{3}$ and $k=-1$ for $N=\mathbb{H}^{3}$

Problem: For $k \in\{-1,0,1\}$ find solutions $(a, \rho)=(a(t), \rho(t)) a(t): I \rightarrow \mathbb{R}_{+}$ and $\rho(t): I \rightarrow \mathbb{R}_{+}$on interval $I \subset \mathbb{R}$

$$
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}}=8 \pi \rho-\frac{3 k}{a^{2}}, \quad 3 \frac{a^{\prime \prime}}{a}=-4 \pi \rho
$$

(a must be C^{2} and ρ must be C^{1})
Temporary assumption: $a^{\prime}(t) \geq 0$ on I

3.4 Explicit solution of the Einstein field equations

We want to solve

$$
3 \frac{\left(a^{\prime}\right)^{2}}{a^{2}}=8 \pi \rho-\frac{3 k}{a^{2}}, \quad 3 \frac{a^{\prime \prime}}{a}=-4 \pi \rho
$$

First note that

$$
\rho^{\prime}+3 \rho \frac{a^{\prime}}{a}=0
$$

and therefore

$$
\left(\rho a^{3}\right)^{\prime}=\left(\rho^{\prime}+3 \rho \frac{a^{\prime}}{a}\right) a^{3}=0
$$

so

$$
\rho=\frac{C}{a^{3}}, \quad \text { for some } C>0
$$

Thus

$$
3\left(a^{\prime}\right)^{2}=8 \pi \frac{C}{a}-3 k
$$

and therefore (recall assumption $a^{\prime} \geq 0$ on I)

$$
\begin{equation*}
\frac{d a}{d t}=a^{\prime}=\sqrt{\frac{C^{\prime}}{a}-k} \quad \text { with } C^{\prime}:=8 \pi C / 3 \tag{20}
\end{equation*}
$$

so

$$
d t=\frac{d a}{\sqrt{\frac{c^{\prime}}{a}-k}}
$$

so

$$
t(a)=\int \frac{1}{\sqrt{\frac{C^{\prime}}{a}-k}} d a+\text { const }
$$

Problem: Find explicit formula for

$$
t(a)=\int \frac{1}{\sqrt{\frac{C^{\prime}}{a}-k}} d a, \quad \text { defined on } \begin{cases}(0, \infty) & \text { if } k=0,-1 \\ \left(0, C^{\prime}\right] & \text { if } k=1\end{cases}
$$

Solution:

$$
t(a)= \begin{cases}\frac{1}{\sqrt{C^{\prime}}} \frac{2}{3} a^{3 / 2}+\text { const } & \text { if } k=0 \\ \frac{C^{\prime}}{2}(\sinh (x)-x)_{\left\lvert\, x=\operatorname{arccosh}\left(\frac{2 a}{C^{C}}+1\right)\right.}+\text { const } & \text { if } k=-1 \\ \frac{C^{\prime}}{2}(x-\sin (x))_{\left\lvert\, x=\arccos \left(1-\frac{2 a}{C^{C}}\right)\right.}+\text { const } & \text { if } k=1\end{cases}
$$

Derivation:

- $k=0$: easy
- $k=-1$: similar to case $k=1$
- $k=1$: Use substitution $x=\arccos \left(1-\frac{2 a}{C^{\prime}}\right) \quad \rightarrow$

$$
\begin{gathered}
\int \frac{1}{\sqrt{\frac{C^{\prime}}{a}}-k} d a \quad \text { transformed into } \\
\int \frac{\frac{C^{\prime}}{2} \sin (x) d x}{\sqrt{1-\cos (x)^{-1}}}=\frac{C^{\prime}}{2} \int(1-\cos (x)) d x=\frac{C^{\prime}}{2}(x-\sin (x))+\text { const }
\end{gathered}
$$

Remark 6 We obtain $a(t)$ by inverting $t(a)$, e.g. for $k=0$

$$
a(t)=c \cdot\left(t-t_{0}\right)^{2 / 3}, \quad c:=\left(\frac{3 \sqrt{C^{\prime}}}{2}\right)^{2 / 3}, \quad t_{0}:=\text { const } .
$$

Observation: Solutions for $k=0,-1$ are "maximal",
Solution for $k=1$ is not maximal.

Recall: We assumed above that $a^{\prime} \geq 0$ on interval I.
Situation $a^{\prime} \leq 0$ can be treated similarly. We obtain

Again the solutions for $k=0,-1$ are maximal but the solution for $k=1$ is not maximal.

However, the two solutions for $k=1$ (the one with $a^{\prime} \geq 0$ and the one with $a^{\prime} \leq 0$) can be "joined" to give a maximal solution.

Full Solutions:

Eiif. 3.3. The dynamics of dust-filled Robertson-Walker universes.

Remark 7 Our universe is expanding at the moment.
"Hubble's constant" $\quad H\left(t_{0}\right):=a^{\prime}\left(t_{0}\right) / a\left(t_{0}\right), \quad t_{0}=$ present time
can be determined experimentally by measuring the "redshift" in the spectral lines of the light coming from distant galaxies. One finds $H\left(t_{0}\right)>0$.

Summary:

- "Big bang" singularity
- Eternal expansion for $k=0,-1 ; \quad$ recollapse ($=$ "big crunch") for $k=1$.
- For $k \in\{-1,0\}: M \cong \mathbb{R} \times \mathbb{R}^{3} \cong \mathbb{R}^{4}$ and each $\left(\Sigma_{t}, g_{t}\right)$ has infinite volume.
- For $k=1: \quad M \cong \mathbb{R} \times S^{3}$ and each $\left(\Sigma_{t}, g_{t}\right)$ has finite volume.

Open problem: $k=-1$ or $k=0$ or $k=1$ for our universe?

