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1 Geometric background

1.1 Foundations

Recall: Euclidean Geometry is about (straight) lines, planes, lengths, angles; ... in

R? and R3.
Modern formulation based on
Definition 1 A Euclidean space is a pair (V, (-, -)) where

e V is a finite-dimensional real vector space,

o (1) : VxV — R a positive-definite (symmetric) bilinear form (“scalar

product”)

i) V' can have arbitrary dimension — already a generalization

ii) Without loss of generality: V = R" where n := dim(V).

)
)
iii) lines, planes, ...: definition only uses vector space structure
iv) lengths, angles: definition uses (-, -)
length(v) := ||v|| == v/ (v, v)
Angle ¢ € [0, 7] between v and w given by

co8(0) = Tl

(1)

Convention 1 We often write g : V x V. — R instead of (-,-) and call g =

g(-,) a “metric”.



Aim: Generalize this to more general spaces where notions like “distance” and
“angles” can be defined.

Two of the best generalizations:

e (Pseudo-)Riemannian manifolds

e Metric spaces (with special properties)

Definition 2 A topological manifold M is a topological space which “looks locally
like R™”

(formally: M is Hausdorft and every point has a neighborhood which is homeo-
morphic to R for some n).

Example 1 i) Fvery open subset of R"

i) “Curved surfaces” in R

iit) S" for arbitrary n

“Non-example” Most non-open subsets of R” are not topological manifolds.

Problem: A general topological manifold has no vector space structure. How can
we define analogue of the metric g(-, -)?



Solution: Introduce additional structure —

“Definition” 3 A smooth manifold is a topological manifold M equipped with
certain extra-structure, called “differentiable structure”. Differentiable structure
allows definition of

i) the notion of “smoothness” for maps
ii) a “canonical” finite-dim. vector space T, M in each x € M.

iii) structure of a smooth manifold on T'M = J,.,, T M

Example 2 i) M =R". Here T,M can be canonically identified with R".

i) M is surface in R3: Here T,M can be identified with some 2-dimensional
subspace V, of R3.

Definition 4 A tensor field of type (p, ¢) on a smooth manifold M is a “smooth”
family A = (A, )zenr s. t. each A, is a multilinear map

A, T M < ... xT,MxT,M"x...xT,M" —R

where T, M appears p times and T, M* appears ¢ times.



Definition 5 i) A pseudo-Riemannian metric on a smooth manifold M is a
tensor field g = (g )zens of type (2,0) on M s. t. each

ge T M <X T, M — R
is symmetric and non-degenerate.

ii) Let g = (gx)zen be a pseudo-Riemannian metric on M. The “signature of g”
is the signature of the bilinear form g, for any = (independent of z!)

iii) Riemannian/Lorentzian metric on M is a pseudo-Riemannian metric on M
with signature (n,0)/(n — 1,1) where n = dim(M).

Definition 6 i) A pseudo-Riemannian/Riemannian/Lorentzian manifold is a
pair (M, g) where M is a smooth manifold and g is a pseudo-Riemannian /Riemannian /Lorentzian
metric on M.

ii) A “spacetime” is a 4-dimensional Lorentzian manifold.

Remark 1 Pseudo-Riemannian metric ¢ on M = R" can be considered as a
matrix ¢ = (gap)1<ab<n 0of smooth functions g, : R” — R s. t. for each z € R”

o matrix (gq())ap is symmetric

o matrix (gup(x))qp has no zero eigenvalues



Digression 1 A “metric space” is a pair (X, d) where
e X is any set
o d: X x X — R, (“distance function” or “metric”) s.t.

i) d(x,y) = 0if and only if z = y.

i) d(z,y) = d(y, z)
i) d(z,y) < d(z, z) + d(z,y)

Observation 1: Euclidean space (V, (-, -)) — metric space (V, dy) where

dy (v, w) = /(v —w,v —w)

Observation 2:

[d(v, 0)? + d(w, 0)* — d(v, w)Q]

N[

<v,w> -

= (-,-) can be reconstructed from dy

=
d(0,v)* +d(0,w)? — d(v, w)?

2d(0,v)d(0, w)

cos(p(v, w)) =

= lengths of vectors and angles between them can be defined using only the
metric space structure (V, dy)!

= notions like lengths and angles can be defined in general metric space



1.2 The isometry group
Fix a Riemannian manifold M = (M, g)
Definition 7 (Isometry grouop)
[som(M) :={¢: M — M | % is “bi-smooth” bijection preserving g}
(¢b “bi-smooth” = both ¢ and ¢)~! are smooth).

Definition 8 i) M is “homogeneous” iff for all x,y € M
dip € Isom(M) :  Y(x) =1y

ii) M is “isotropic” in x € M iff for all unit vectors v, w € T, M
T € Isom(M) 1 Yy (v) =w
where ¥, : T'M — T'M 1is bi-smooth bijection induced by v : M — M

Digression 2 i) Isom(M) has natural Lie group structure

ii) Every subgroup I' C Isom(M) operates on M. If I is discrete and operation
on M is “properly-discontinuous” then M /T" has canonical Riemannian manifold
structure.



1.3 Some basic results on curvature
Fix pseudo-Riemannian manifold (M, g).

Recall: we use “abstract index notation”

— we write gq for the type (2,0) tensor g

e g* is type (0,2) tensor given by >, gug® = 6¢
(here 6% is type (1,1) tensor given by 0%(x) = §, for all x € M)

e R, 9 denotes the curvature tensor associated to (M, g)
o Weset Ry =) . R,,° (“Ricci tensor”)
e Weset R:=5Y , Rypg™ (“scalar curvature”)

Convention 2 i) Einstein sum convention, i.e. we often drop > -signs. E.g. we
write Rqpg®° instead of > R.g.

ii) Normal rules for raising and lowering indices: e.g. we write R, instead of
Rap9%¢ and v,v® instead of ggvPv®.

iii) Replace index set {1,2,...,n} by {0,1,...,n—1}.



Remark 2 Elementary reformulation in special case M = R"™:

Curvature tensor (Rabcd)lga’bﬁ’dén can be considered as a family of functions
Rabcd ' R" — R given explicitly as

Ryl(r) = 9lG(z) — Oulj() Z (2)T(@) — The(2)l(x)) (2)

where

Z 9 () (Bugba() + Opgad(x) — Bugan(z)) (3)

Similarly, (Ruc)ae, and R can be considered as (matrix of) functions on M = R".
Explicitly:

Rac(x) — 8brgc($) b 33’ + Z _ 20(56)1“?&(33)) (4)



Symmetry properties of R, ¢ Ruped. Ralfd and R,

abe

Proposition 1
i) Rabed = — Ryaca
i) Raped = — Rapde
111) Raped + Ricad + Reava = 0 (“1. Bianchi identity”)
) Raped = Redab
v) Ray = Rpa
(Similar but not totally analogous statements hold for R_,.* and R, )

Proof: i) follows immediately from abstract definition of R or, for M = R",
from Egs. (2) and (3) above.

ii) and iii): somewhat more difficult to prove
iv) follows from i)-iii)

v) follows immediately from iv)

Digression 3 i) For d = 2 all the information in R, ¢ is already contained in
the scalar curvature R.

ii) For d = 3 all the information in R,  is already contained in the Ricci tensor

Rap.



1.4 Spaces of constant curvature

Fix Riemannian manifold M = (M, g)
Definition 9 M = (M, g) has constant curvature iff
R, = K§,,
for some constant K € R where ¢ ade is tensor field of type (2,2) given by
5,,¢0 = 55,9 — §.96,°

Let us assume now that dim(M) = 3.

Theorem 1 If M = (M, g) is homogenous and isotropic in some point xo € M
then M has constant curvature.

Sketch of proof:

e View R ,“(x) and § ,°(z), for x € M, as linear maps

T MNTM—T,MNT,M

e §,,°(x) is identity on T, M A T, M
e R “(x)is symmetric (w.r.t.obvious scalar product) and hence diagonalizable.

e [sotropy of M in xy implies that all eigenvalues of Rade(a:O) must be the same,
so R, “(xo) = KJ,°(x0) for some K € R.

(rigorous treatment uses irreducibility argument, which is straightforward for dim(M) = 3)

e Homogeneity of M implies that R ,“(x) = K§,°(z) for all 2 € M.



Let
E" := standard n-dimensional Euclidean space
S" = {x e R"| ijl x;+ai,, =1} CcE"
H' = {z e R =Y a?4al, =1} CE™
(S™ and H" equipped with metric induced by E"*1).

Remark 3 H" (“n-dimensional hyperbolic space”) is homeomorphic to E" but
not isometric!

Theorem 2 Let M = (M, g) be simply-connected (!) n-dimensional (com-
plete) Riemannian manifold with constant curvature K € R.

Then (M, g) is isometric to suitable rescaling of

p

E" if K =0
(N,gN) =< 5" ZfK>0
H" if K <0

\

More precisely:
(M,g) = (N,a-gn) for suitable a >0

(a = \/|K]| in last two cases; in the first case a can be arbitrary).



Digression 4 If M = (M, g) is a general n-dimensional (complete) Riemannian
manifold of constant curvature then

M= N/T

where
N e {E", 5", H"}, and

[" is suitable discrete subgroup of Isom(NV).
Spaces of constant curvature play major role in 2-dim. and 3-dim. Topology/Geometry:

e ( = 2: Classification of Riemannian surfaces can be reduced to classification of
all discrete subgroups I' of Isom(S?), Isom(E?), and Isom(IH?) which operate
properly discontinuously.

e d = 3: Spaces of constant curvature play a major role in classification of
compact 3-dimensional topological /smooth manifolds



2 Einstein field equations for perfect fluids

2.1 Review: The general Einstein field equations

Fix 4-dimensional smooth manifold M and A € R (“the cosmological constant”).

Let @ be matter/radiation field on M. We assume that for every Lorentzian

metric g on M

e corresponding “stress energy tensor” Ty, = Typ(g, ) is known explicitly

e Equations of motions F(g,®) = 0 for ® are known explicitly, i.e. function F
given explicitly.

Basic problem: Find (g, ®) such that
Rab - %Rgab + Agab - 877Tab(ga CD) (5&)
F(g,®) =0 (5b)



2.2 Review: Perfect fluid in Minkowski space

Recall: (relativistic or non-relativistic) fluid in R? described by
e mass density distribution p(x,t)
e temperature distribution T'(x, t)
e velocity field u(x, t)

We assume that equation of state p = f(p,T') is given explicitly.

In relativistic case introduce “4-velocity field” (= vector field in Minkowski space
(M, g) = (R*, n) where 1y, = £04; — only for )

1
“= ——(1,uy, us, u
i
Observe that
uu’ = —1 (6)

If fluid is a “perfect fluid” (i.e. is “inviscid” and in thermal equilibrium, i.e.
T(x,t) = Tp for a constant Tj) then:

“Stress energy tensor” given by
Top = (p =+ P)uatis + P Nab (7)
where p(x,t) = f(p(x,t),Ty) and equation of motions are
0Ty, =0



2.3 Perfect fluids in a general space time
Fluid in general space time (M, g) described by

e mass density distribution p(x,t)

e temperature distribution T'(x, t)

e abstract “4-velocity field” u®(x,t), i.e. arbitrary vector field (=tensor field of
type (0,1)) with
ugut = —1

Again assume that equation of state p = f(p,T) given explicitly.

In “perfect fluid situation” (where fluid is “inviscid” and in thermal equilibrium
at temperature Tp) stress-energy tensor is given by

Tup = (p+ P)uatis + P Yab (8)
where p(z,t) = f(p(x,t), Ty) and equations of motion are
Vi =0

where V* is the Levi-Civita connection of (M, gap).



2.4 The Einstein field equations for perfect fluids

Taking & = (u?, p) in Egs. (5a) and (5b) above we see that for a perfect fluid in M
(with equation of state p = f(p,T) at temperature 1) the corresponding Einstein

field equations read
Ray — $Rgap + Agap = 87Ty (9a)

VT, = 0, with (9b)
where Ty, = (p + p)uquy + p gap and p(x,t) = f(p(x,t), To).
Observation: We always have
V(Rw — 3Rgw) =0,  Vgu =0,
= FEq. (9a) implies Eq. (9b)!

= Einstein field equations in perfect fluid situation

R, — %Rgab + Agayp, = 87?((p + pluguy + p gab) (10a)
p(z,t) = f(p(x,1), Tp) (10b)

Special case: Fluid has vanishing pressure, i.e p = f(p,T) = 0 (“Dust situa-
tion”):

= FEgs. (10) reduce to

R, — %Rgab + Agup = 8mpu,uy (11)



3 The Friedmann(-Robertson-Walker) model

3.1 Assumptions

Consider spacetime M = (M, g) fulfilling;

Assumption 1 (Product Ansatz)
) M2RxY
ii) 3 = {t} x X is orthogonal to R x {¢}, o € 3.
i) X = {t} x 2, t € R, is “space-like”

(i.e. restriction g; of g to ¥ is a Riemannian metric)
Assumption 2 Each (¥, g;) is homogenous.
Assumption 3 Fach (3, g¢) is isotropic in each x € ;.
Assumption 4 M is simply-connected
Assumption 5 Only one matter field, namely a perfect fluid
For simplicity:

Assumption 6 i) Perfect fluid is “dust”

ii) Cosmological constant A = 0



3.2 The Robertson-Walker metric

Assumption 1 = Ty M = TR & T,%.

For fixed (¢,2) € R x X = M we can choose basis (e;)i—0,1,2,3 of Tt ;)M such that
ep €ELRCTIROT,X

{ei ETYCTRGT,, i =123

Conclusion 1 In basis above we have

goo O 0 0
0 g1 912 913
ii)is = (9i(t,x))i5 = 12
(9]) J (9]( ))J 0 g1 oo Go3 ( )
0 g31 932 g33

where goo < 0. Moreover, by a suitable reparametrization of ¢ we can achieve that
goo = —1. Finally, g: = (gij)i j=1.23-

Assumptions 2-4 and Theorem 1

= (X4, g¢) is simply-connected Riem. manifold of const. curvature = (cf.
Theorem 2)

Conclusion 2 (%, g;) is isometric to (N, gn) € {E?, S, H3} after rescaling with
suitable a(t) € Ry (i.e. g = a(t) - gn)

Remark 4 If (N, gy) = E? then (cf. Remark 1)

@)=ttt =| o 0 o (13
0



Remark 5 Metric g written in “standard” local coordinates:
o N =FE g=—dt* + a(t)*(dz* + dy* + dz?)
o N =5% g=—dt? + a(t)*(dy? + sin*(¢)(df* + sin®(0)dp?))
o N =H> g=—dt?+ a(t)’(dy? + sinh®(y)(d6? + sin®(0)d?))

Conclusion 3 u%(t,z) = (1,0,0,0) and p(¢,z) = p(t). Thus

p(t)
Tab = Tab<t, ZE) =

o O O O

0
0
0
(recall Ty, = puguy in dust situation).

e Intuitively, Conclusion 3 is “clear”

e Formal proof in general case not too difficult

e In the special case N = [E3 it follows easily from computations below

(14)



3.3 Reduction of the Einstein field equations
Aim: Simplify Eq. (11) if Assumptions 1 — 6 are fulfilled.

For simplicity: consider only N = E? where

—1 0 0 0
0 at? 0 0
Gidi= 10 o awp o (15
0 0 0 at?
= non-vanishing components of I'}; are (cf. Eq. (3))
[y =Ty =Ty =da, (16)
Mlo=To1 =3 =Gy =5 = I3 = d'/a, (17)

= (cf. Eq. (4))

3 0 0 0
(R,). = 0 a’a+2(a)? 0 0
4] 0 0 a’a + 2(a')? 0

0 0 0 a’a + 2(a’)?

3l o 0 0
1 0 F(a 0 0 !
(s =ha), = | o N o [,
0 0 0 Fla)

where F(a) .= —2a"a — (d')?



= 0 0 0
0 F(a 0 0 !

R e I S B
0 0 0 F(a)

= reduces to system of two ODEs for a = a(t) and p = p(t),

3P 87p, —2a"a — (a')* =0

a

or, equivalently,
(a')?

a?

1

3 = 8mp, 3a = —4mp
a

Similar computation for N € {S% H*} =

N2 3k "
@) =8mp — — 3%:—47,0

3 oL

a2
where k = 1 for N = S% and k = —1 for N = H?

Problem: For k € {—1,0,1} find solutions (a, p) = (a(t), p(t)) a(t)
and p(t) : I — R, on interval I C R
(GQQ 3k a”

=8mp — — 3— = —4dmp
a

3 ol

a?

(a must be C? and p must be C1)

Temporary assumption: a'(t) > 0 on [

(18)

(19)

:]_>R_|_



3.4 Explicit solution of the Einstein field equations

We want to solve

(CL/)Q Sk‘ a//
3 R 8Tp — 7 3; = —Amp
First note that ,
o4 3pL =0
a

and therefore /

a
(pa”) = (p' +3p—)a’ =0

SO

C
p=—, forsomeC >0
a
Thus C
3(a')* = 8m— — 3k
a

and therefore (recall assumption a’ > 0 on 1)

d /
zgzdzd%—k with " := 87C/3

SO

S0 .
tla) = /— da + const
¢ _

(20)



Problem: Find explicit formula for

—/@da

( 1,3 a’/? + const iftk=0

t(a) = - (Slnh( ) )|x:arccosh(%+1) +const it k= —

defined on (
(0

Solution:

&

2
\%/(:c — Sin(x))‘x:amos(l_%) + const if k=1
Derivation:
o k= 0: easy
e k= —1: similar to case k = 1

e k = 1: Use substitution & = arccos(1 — %) —

/ \/Olli da transformed into
&k

l

TSIH & g (1 — cos(z))dx =

\/ T—cos(z) cos(z

& (x — sin(x)) + const

Remark 6 We obtain a(t) by inverting t(a), e.g. for k =0

3VC'\ 23
5)

a(t) =c- (t —ty)*3, ¢ = ( , 1o := const.



BT

Observation: Solutions for £ = 0, —1 are “maximal”,

Solution for k = 1 is not maximal.



Recall: We assumed above that ' > 0 on interval 1.

Situation a’ < 0 can be treated similarly. We obtain

4

a(r) a5 _ ‘

Again the solutions for £k = 0, —1 are maximal but the solution for £ =1 is not
maximal.

However, the two solutions for £ = 1 (the one with @’ > 0 and the one with
a’ < 0) can be “joined” to give a maximal solution.



Full Solutions:

||[l)

Remark 7 Our universe is expanding at the moment.
“Hubble’s constant”  H (tg) := a'(ty) /alty), top = present time

can be determined experimentally by measuring the “redshift” in the spectral lines
of the light coming from distant galaxies. One finds H(ty) > 0.

Summary:
e “Big bang” singularity
e Eternal expansion for k =0, —1; recollapse (=“big crunch”) for k = 1.
o For k € {—1,0}: M @R x R* =@ R* and each (%, g;) has infinite volume.
efork=1 M=R xS and each (3, g;) has finite volume.

Open problem: k= —1or k =0 or k£ = 1 for our universe?



