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1 Geometric background

1.1 Foundations

Recall: Euclidean Geometry is about (straight) lines, planes, lengths, angles, ... in

R2 and R3.

Modern formulation based on

Definition 1 A Euclidean space is a pair (V, 〈·, ·〉) where

• V is a finite-dimensional real vector space,

• 〈·, ·〉 : V × V → R a positive-definite (symmetric) bilinear form (“scalar

product”)

i) V can have arbitrary dimension → already a generalization

ii) Without loss of generality: V = Rn where n := dim(V ).

iii) lines, planes, ...: definition only uses vector space structure

iv) lengths, angles: definition uses 〈·, ·〉

length(v) := ‖v‖ :=
√
〈v, v〉

Angle ϕ ∈ [0, π] between v and w given by

cos(ϕ) = 〈v,w〉
‖v‖‖w‖ (1)

Convention 1 We often write g : V × V → R instead of 〈·, ·〉 and call g =

g(·, ·) a “metric”.



Aim: Generalize this to more general spaces where notions like “distance” and

“angles” can be defined.

Two of the best generalizations:

• (Pseudo-)Riemannian manifolds

• Metric spaces (with special properties)

Definition 2 A topological manifold M is a topological space which “looks locally

like Rn”

(formally: M is Hausdorff and every point has a neighborhood which is homeo-

morphic to Rn for some n).

Example 1 i) Every open subset of Rn

ii) “Curved surfaces” in R3

iii) Sn for arbitrary n

“Non-example” Most non-open subsets of Rn are not topological manifolds.

Problem: A general topological manifold has no vector space structure. How can

we define analogue of the metric g(·, ·)?



Solution: Introduce additional structure →
“Definition” 3 A smooth manifold is a topological manifold M equipped with

certain extra-structure, called “differentiable structure”. Differentiable structure

allows definition of

i) the notion of “smoothness” for maps

ii) a “canonical” finite-dim. vector space TxM in each x ∈ M .

iii) structure of a smooth manifold on TM :=
⋃

x∈M TxM

Example 2 i) M = Rn. Here TxM can be canonically identified with Rn.

ii) M is surface in R3: Here TxM can be identified with some 2-dimensional

subspace Vx of R3.

Definition 4 A tensor field of type (p, q) on a smooth manifold M is a “smooth”

family A = (Ax)x∈M s. t. each Ax is a multilinear map

Ax : TxM × . . .× TxM × TxM
∗ × . . .× TxM

∗ → R

where TxM appears p times and TxM
∗ appears q times.



Definition 5 i) A pseudo-Riemannian metric on a smooth manifold M is a

tensor field g = (gx)x∈M of type (2, 0) on M s. t. each

gx : TxM × TxM → R

is symmetric and non-degenerate.

ii) Let g = (gx)x∈M be a pseudo-Riemannian metric on M . The “signature of g”

is the signature of the bilinear form gx for any x (independent of x!)

iii) Riemannian/Lorentzian metric on M is a pseudo-Riemannian metric on M

with signature (n, 0)/(n− 1, 1) where n = dim(M).

Definition 6 i) A pseudo-Riemannian/Riemannian/Lorentzian manifold is a

pair (M, g) where M is a smooth manifold and g is a pseudo-Riemannian/Riemannian/Lorentzian

metric on M .

ii) A “spacetime” is a 4-dimensional Lorentzian manifold.

Remark 1 Pseudo-Riemannian metric g on M = Rn can be considered as a

matrix g = (gab)1≤a,b≤n of smooth functions gab : Rn → R s. t. for each x ∈ Rn

• matrix (gab(x))a,b is symmetric

• matrix (gab(x))a,b has no zero eigenvalues



Digression 1 A “metric space” is a pair (X, d) where

• X is any set

• d : X ×X → R+ (“distance function” or “metric”) s.t.

i) d(x, y) = 0 if and only if x = y.

ii) d(x, y) = d(y, x)

iii) d(x, y) ≤ d(x, z) + d(z, y)

Observation 1: Euclidean space (V, 〈·, ·〉) → metric space (V, dV ) where

dV (v, w) :=
√
〈v − w, v − w〉

Observation 2:

〈v, w〉 = 1
2

[
d(v, 0)2 + d(w, 0)2 − d(v, w)2

]

⇒ 〈·, ·〉 can be reconstructed from dV

⇒
cos(ϕ(v, w)) =

d(0, v)2 + d(0, w)2 − d(v, w)2

2d(0, v)d(0, w)

⇒ lengths of vectors and angles between them can be defined using only the

metric space structure (V, dV )!

⇒ notions like lengths and angles can be defined in general metric space



1.2 The isometry group

Fix a Riemannian manifold M = (M, g)

Definition 7 (Isometry grouop)

Isom(M) := {ψ : M → M | ψ is “bi-smooth” bijection preserving g}
(ψ “bi-smooth” = both ψ and ψ−1 are smooth).

Definition 8 i) M is “homogeneous” iff for all x, y ∈ M

∃ψ ∈ Isom(M) : ψ(x) = y

ii) M is “isotropic” in x ∈ M iff for all unit vectors v, w ∈ TxM

∃ψ ∈ Isom(M) : ψ∗(v) = w

where ψ∗ : TM → TM is bi-smooth bijection induced by ψ : M → M

Digression 2 i) Isom(M) has natural Lie group structure

ii) Every subgroup Γ ⊂ Isom(M) operates on M . If Γ is discrete and operation

on M is “properly-discontinuous” then M/Γ has canonical Riemannian manifold

structure.



1.3 Some basic results on curvature

Fix pseudo-Riemannian manifold (M, g).

Recall: we use “abstract index notation”

→ we write gab for the type (2,0) tensor g

• gab is type (0,2) tensor given by
∑

b gabg
bc = δc

a

(here δa
c is type (1,1) tensor given by δa

c (x) = δac for all x ∈ M)

• R d
abc denotes the curvature tensor associated to (M, g)

• We set Rab :=
∑

c R c
acb (“Ricci tensor”)

• We set R :=
∑

a,b Rabg
ab (“scalar curvature”)

Convention 2 i) Einstein sum convention, i.e. we often drop
∑

-signs. E.g. we

write Rabg
ac instead of

∑
a Rabg

ac.

ii) Normal rules for raising and lowering indices: e.g. we write R c
b instead of

Rabg
ac and vav

a instead of gabv
bva.

iii) Replace index set {1, 2, . . . , n} by {0, 1, . . . , n− 1}.



Remark 2 Elementary reformulation in special case M = Rn:

Curvature tensor (R d
abc )1≤a,b,c,d≤n can be considered as a family of functions

R d
abc : Rn → R given explicitly as

R d
abc (x) = ∂bΓ

d
ac(x) − ∂aΓ

d
bc(x) +

∑
i

(
Γi

ac(x)Γd
ib(x) − Γi

bc(x)Γd
ia(x)

)
(2)

where

Γc
ab(x) :=

1

2

∑

d

gcd(x)
(
∂agbd(x) + ∂bgad(x)− ∂dgab(x)

)
(3)

Similarly, (Rac)ac, and R can be considered as (matrix of) functions on M = Rn.

Explicitly:

Rac(x) = ∂bΓ
b
ac(x) − ∂aΓ

b
bc(x) +

∑
i

(
Γi

ac(x)Γb
ib(x) − Γi

bc(x)Γb
ia(x)

)
(4)



Symmetry properties of R d
abc , Rabcd, R cd

ab and Rab

Proposition 1

i) Rabcd = −Rbacd

ii) Rabcd = −Rabdc

iii) Rabcd + Rbcad + Rcabd = 0 (“1. Bianchi identity”)

iv) Rabcd = Rcdab

v) Rab = Rba

(Similar but not totally analogous statements hold for R d
abc and R cd

ab )

Proof: i) follows immediately from abstract definition of Rabcd or, for M = Rn,

from Eqs. (2) and (3) above.

ii) and iii): somewhat more difficult to prove

iv) follows from i)–iii)

v) follows immediately from iv)

Digression 3 i) For d = 2 all the information in R d
abc is already contained in

the scalar curvature R.

ii) For d = 3 all the information in R d
abc is already contained in the Ricci tensor

Rab.



1.4 Spaces of constant curvature

Fix Riemannian manifold M = (M, g)

Definition 9 M = (M, g) has constant curvature iff

R cd
ab = Kδ cd

ab

for some constant K ∈ R where δ cd
ab is tensor field of type (2, 2) given by

δ cd
ab := δ c

a δ d
b − δ d

a δ c
b

Let us assume now that dim(M) = 3.

Theorem 1 If M = (M, g) is homogenous and isotropic in some point x0 ∈ M

then M has constant curvature.

Sketch of proof:

• View R cd
ab (x) and δ cd

ab (x), for x ∈ M , as linear maps

TxM ∧ TxM → TxM ∧ TxM

• δ cd
ab (x) is identity on TxM ∧ TxM

• R cd
ab (x) is symmetric (w.r.t.obvious scalar product) and hence diagonalizable.

• Isotropy of M in x0 implies that all eigenvalues of R cd
ab (x0) must be the same,

so R cd
ab (x0) = Kδ cd

ab (x0) for some K ∈ R.

(rigorous treatment uses irreducibility argument, which is straightforward for dim(M) = 3)

• Homogeneity of M implies that R cd
ab (x) = Kδ cd

ab (x) for all x ∈ M .



Let

En := standard n-dimensional Euclidean space

Sn := {x ∈ Rn+1 |
∑n

i=1
x2

i + x2
n+1 = 1} ⊂ En+1

Hn := {x ∈ Rn+1 | −
∑n

i=1
x2

i + x2
n+1 = 1} ⊂ En+1

(Sn and Hn equipped with metric induced by En+1).

Remark 3 Hn (“n-dimensional hyperbolic space”) is homeomorphic to En but

not isometric!

Theorem 2 Let M = (M, g) be simply-connected (!) n-dimensional (com-

plete) Riemannian manifold with constant curvature K ∈ R.

Then (M, g) is isometric to suitable rescaling of

(N, gN) :=





En if K = 0

Sn if K > 0

Hn if K < 0

More precisely:

(M, g) ∼= (N, a · gN) for suitable a > 0

(a =
√
|K| in last two cases; in the first case a can be arbitrary).



Digression 4 If M = (M, g) is a general n-dimensional (complete) Riemannian

manifold of constant curvature then

M ∼= N/Γ

where

N ∈ {En, Sn,Hn}, and

Γ is suitable discrete subgroup of Isom(N).

Spaces of constant curvature play major role in 2-dim. and 3-dim. Topology/Geometry:

• d = 2: Classification of Riemannian surfaces can be reduced to classification of

all discrete subgroups Γ of Isom(S2), Isom(E2), and Isom(H2) which operate

properly discontinuously.

• d = 3: Spaces of constant curvature play a major role in classification of

compact 3-dimensional topological/smooth manifolds



2 Einstein field equations for perfect fluids

2.1 Review: The general Einstein field equations

Fix 4-dimensional smooth manifold M and Λ ∈ R (“the cosmological constant”).

Let Φ be matter/radiation field on M . We assume that for every Lorentzian

metric g on M

• corresponding “stress energy tensor” Tab = Tab(g, Φ) is known explicitly

• Equations of motions F (g, Φ) = 0 for Φ are known explicitly, i.e. function F

given explicitly.

Basic problem: Find (g, Φ) such that

Rab − 1
2Rgab + Λgab = 8πTab(g, Φ) (5a)

F (g, Φ) = 0 (5b)



2.2 Review: Perfect fluid in Minkowski space

Recall: (relativistic or non-relativistic) fluid in R3 described by

• mass density distribution ρ(x, t)

• temperature distribution T (x, t)

• velocity field ~u(x, t)

We assume that equation of state p = f (ρ, T ) is given explicitly.

In relativistic case introduce “4-velocity field” (= vector field in Minkowski space

(M, g) = (R4, η) where ηab = ±δab; − only for η00)

ua =
1√

1− |~u|2(1, u1, u2, u3)

Observe that

uau
a = −1 (6)

If fluid is a “perfect fluid” (i.e. is “inviscid” and in thermal equilibrium, i.e.

T (x, t) = T0 for a constant T0) then:

“Stress energy tensor” given by

Tab = (ρ + p)uaub + p ηab (7)

where p(x, t) = f (ρ(x, t), T0) and equation of motions are

∂aTab = 0



2.3 Perfect fluids in a general space time

Fluid in general space time (M, g) described by

• mass density distribution ρ(x, t)

• temperature distribution T (x, t)

• abstract “4-velocity field” ua(x, t), i.e. arbitrary vector field (=tensor field of

type (0,1)) with

uau
a = −1

Again assume that equation of state p = f (ρ, T ) given explicitly.

In “perfect fluid situation” (where fluid is “inviscid” and in thermal equilibrium

at temperature T0) stress-energy tensor is given by

Tab = (ρ + p)uaub + p gab (8)

where p(x, t) = f (ρ(x, t), T0) and equations of motion are

∇aTab = 0

where ∇a is the Levi-Civita connection of (M, gab).



2.4 The Einstein field equations for perfect fluids

Taking Φ = (ua, ρ) in Eqs. (5a) and (5b) above we see that for a perfect fluid in M

(with equation of state p = f (ρ, T ) at temperature T0) the corresponding Einstein

field equations read

Rab − 1
2Rgab + Λgab = 8πTab (9a)

∇aTab = 0, with (9b)

where Tab = (ρ + p)uaub + p gab and p(x, t) = f (ρ(x, t), T0).

Observation: We always have

∇a
(
Rab − 1

2Rgab

)
= 0, ∇agab = 0,

⇒ Eq. (9a) implies Eq. (9b)!

⇒ Einstein field equations in perfect fluid situation

Rab − 1
2Rgab + Λgab = 8π

(
(ρ + p)uaub + p gab

)
(10a)

p(x, t) = f (ρ(x, t), T0) (10b)

Special case: Fluid has vanishing pressure, i.e p = f (ρ, T ) = 0 (“Dust situa-

tion”):

⇒ Eqs. (10) reduce to

Rab − 1
2Rgab + Λgab = 8πρuaub (11)



3 The Friedmann(-Robertson-Walker) model

3.1 Assumptions

Consider spacetime M = (M, g) fulfilling:

Assumption 1 (Product Ansatz)

i) M ∼= R× Σ

ii) Σt
∼= {t} × Σ is orthogonal to R× {σ}, σ ∈ Σ.

iii) Σt
∼= {t} × Σ, t ∈ R, is “space-like”

(i.e. restriction gt of g to Σt is a Riemannian metric)

Assumption 2 Each (Σt, gt) is homogenous.

Assumption 3 Each (Σt, gt) is isotropic in each x ∈ Σt.

Assumption 4 M is simply-connected

Assumption 5 Only one matter field, namely a perfect fluid

For simplicity:

Assumption 6 i) Perfect fluid is “dust”

ii) Cosmological constant Λ = 0



3.2 The Robertson-Walker metric

Assumption 1 ⇒ T(t,x)M ∼= TtR⊕ TxΣ.

For fixed (t, x) ∈ R×Σ ∼= M we can choose basis (ei)i=0,1,2,3 of T(t,x)M such that{
e0 ∈ TtR ⊂ TtR⊕ TxΣ

ei ∈ TxΣ ⊂ TtR⊕ TxΣ, i = 1, 2, 3

Conclusion 1 In basis above we have

(gij)ij = (gij(t, x))ij =




g00 0 0 0

0 g11 g12 g13

0 g21 g22 g23

0 g31 g32 g33


 (12)

where g00 < 0. Moreover, by a suitable reparametrization of t we can achieve that

g00 = −1. Finally, gt = (gij)i,j=1,2,3.

Assumptions 2–4 and Theorem 1

⇒ (Σt, gt) is simply-connected Riem. manifold of const. curvature ⇒ (cf.

Theorem 2)

Conclusion 2 (Σt, gt) is isometric to (N, gN) ∈ {E3, S3,H3} after rescaling with

suitable a(t) ∈ R+ (i.e. gt = a(t) · gN)

Remark 4 If (N, gN) = E3 then (cf. Remark 1)

(gij)ij = (gij(t, x))ij =




−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2


 (13)



Remark 5 Metric g written in “standard” local coordinates:

• N = E3: g = −dt2 + a(t)2(dx2 + dy2 + dz2)

• N = S3: g = −dt2 + a(t)2
(
dψ2 + sin2(ψ)(dθ2 + sin2(θ)dϕ2)

)

• N = H3: g = −dt2 + a(t)2
(
dψ2 + sinh2(ψ)(dθ2 + sin2(θ)dϕ2)

)

Conclusion 3 ua(t, x) = (1, 0, 0, 0) and ρ(t, x) = ρ(t). Thus

Tab = Tab(t, x) =




ρ(t) 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (14)

(recall Tab = ρuaub in dust situation).

• Intuitively, Conclusion 3 is “clear”

• Formal proof in general case not too difficult

• In the special case N = E3 it follows easily from computations below



3.3 Reduction of the Einstein field equations

Aim: Simplify Eq. (11) if Assumptions 1 – 6 are fulfilled.

For simplicity: consider only N = E3 where

(gij)ij =




−1 0 0 0

0 a(t)2 0 0

0 0 a(t)2 0

0 0 0 a(t)2


 (15)

⇒ non-vanishing components of Γk
ij are (cf. Eq. (3))

Γ0
11 = Γ0

22 = Γ0
33 = a′a, (16)

Γ1
10 = Γ1

01 = Γ2
20 = Γ2

02 = Γ3
30 = Γ3

03 = a′/a, (17)

⇒ (cf. Eq. (4))

(
Rij

)
ij

=




−3a′′
a 0 0 0

0 a′′a + 2(a′)2 0 0

0 0 a′′a + 2(a′)2 0

0 0 0 a′′a + 2(a′)2




and therefore R = 6a′′a+(a′)2
a2 ⇒

(
Rij − 1

2Rgij

)
ij

=




3(a′)2
a2 0 0 0

0 F (a) 0 0

0 0 F (a) 0

0 0 0 F (a)




!
= 8π

(
Tij

)
ij

where F (a) := −2a′′a− (a′)2



(
Rij − 1

2Rgij

)
ij

=




3(a′)2
a2 0 0 0

0 F (a) 0 0

0 0 F (a) 0

0 0 0 F (a)




!
= 8π

(
Tij

)
ij

⇒ reduces to system of two ODEs for a = a(t) and ρ = ρ(t),

3(a′)2
a2 = 8πρ, −2a′′a− (a′)2 = 0

or, equivalently,

3
(a′)2

a2
= 8πρ, 3

a′′

a
= −4πρ (18)

Similar computation for N ∈ {S3,H3} ⇒

3
(a′)2

a2
= 8πρ− 3k

a2
, 3

a′′

a
= −4πρ (19)

where k = 1 for N = S3 and k = −1 for N = H3

Problem: For k ∈ {−1, 0, 1} find solutions (a, ρ) = (a(t), ρ(t)) a(t) : I → R+

and ρ(t) : I → R+ on interval I ⊂ R

3
(a′)2

a2
= 8πρ− 3k

a2
, 3

a′′

a
= −4πρ

(a must be C2 and ρ must be C1)

Temporary assumption: a′(t) ≥ 0 on I



3.4 Explicit solution of the Einstein field equations

We want to solve

3
(a′)2

a2
= 8πρ− 3k

a2
, 3

a′′

a
= −4πρ

First note that

ρ′ + 3ρ
a′

a
= 0

and therefore

(ρa3)′ = (ρ′ + 3ρ
a′

a
)a3 = 0

so

ρ =
C

a3
, for some C > 0

Thus

3(a′)2 = 8π
C

a
− 3k

and therefore (recall assumption a′ ≥ 0 on I)

da

dt
= a′ =

√
C ′
a − k with C ′ := 8πC/3 (20)

so

dt =
da√

C ′
a − k

so

t(a) =

∫
1√

C ′
a − k

da + const



Problem: Find explicit formula for

t(a) =

∫
1√

C ′
a −k

da, defined on

{
(0,∞) if k = 0,−1

(0, C ′] if k = 1

Solution:

t(a) =





1√
C ′

2
3 a3/2 + const if k = 0

C ′
2 (sinh(x)− x)|x=arccosh( 2a

C′+1) + const if k = −1

C ′
2 (x− sin(x))|x=arccos(1− 2a

C′ )
+ const if k = 1

Derivation:

• k = 0: easy

• k = −1: similar to case k = 1

• k = 1: Use substitution x = arccos(1− 2a
C ′) →

∫
1√

C′
a −k

da transformed into

∫
C′
2 sin(x)dx√

2
1−cos(x)−1

= C ′
2

∫
(1− cos(x))dx = C ′

2 (x− sin(x)) + const

Remark 6 We obtain a(t) by inverting t(a), e.g. for k = 0

a(t) = c · (t− t0)
2/3, c :=

(3
√

C ′

2

)2/3
, t0 := const.



Observation: Solutions for k = 0,−1 are “maximal”,

Solution for k = 1 is not maximal.



Recall: We assumed above that a′ ≥ 0 on interval I .

Situation a′ ≤ 0 can be treated similarly. We obtain

Again the solutions for k = 0,−1 are maximal but the solution for k = 1 is not

maximal.

However, the two solutions for k = 1 (the one with a′ ≥ 0 and the one with

a′ ≤ 0) can be “joined” to give a maximal solution.



Full Solutions:

Remark 7 Our universe is expanding at the moment.

“Hubble’s constant” H(t0) := a′(t0)/a(t0), t0 = present time

can be determined experimentally by measuring the “redshift” in the spectral lines

of the light coming from distant galaxies. One finds H(t0) > 0.

Summary:

• “Big bang” singularity

• Eternal expansion for k = 0,−1; recollapse (=“big crunch”) for k = 1.

• For k ∈ {−1, 0}: M ∼= R× R3 ∼= R4 and each (Σt, gt) has infinite volume.

• For k = 1: M ∼= R× S3 and each (Σt, gt) has finite volume.

Open problem: k = −1 or k = 0 or k = 1 for our universe?


