The Einstein field equations

Part II: The Friedmann model of the Universe

Atle Hahn GFM, Universidade de Lisboa

Lisbon, 4th February 2010

Contents:

- §1 Geometric background
- §2 The Einstein field equations for perfect fluids
- §3 The Friedmann(-Robertson-Walker) model

References:

- Book by Wald: "General Relativity"
- Wikipedia

1 Geometric background

1.1 Foundations

Recall: Euclidean Geometry is about (straight) lines, planes, lengths, angles, ... in \mathbb{R}^2 and \mathbb{R}^3 .

Modern formulation based on

Definition 1 A Euclidean space is a pair $(V, \langle \cdot, \cdot \rangle)$ where

- ullet V is a finite-dimensional real vector space,
- $\bullet \langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ a positive-definite (symmetric) bilinear form ("scalar product")
- i) V can have arbitrary dimension \rightarrow already a generalization
- ii) Without loss of generality: $V = \mathbb{R}^n$ where $n := \dim(V)$.
- iii) lines, planes, ...: definition only uses vector space structure
- iv) lengths, angles: definition uses $\langle \cdot, \cdot \rangle$

$$length(v) := ||v|| := \sqrt{\langle v, v \rangle}$$

Angle $\varphi \in [0, \pi]$ between v and w given by

$$\cos(\varphi) = \frac{\langle v, w \rangle}{\|v\| \|w\|} \tag{1}$$

Convention 1 We often write $g: V \times V \to \mathbb{R}$ instead of $\langle \cdot, \cdot \rangle$ and call $g = g(\cdot, \cdot)$ a "metric".

Aim: Generalize this to more general spaces where notions like "distance" and "angles" can be defined.

Two of the best generalizations:

- (Pseudo-)Riemannian manifolds
- Metric spaces (with special properties)

Definition 2 A topological manifold M is a topological space which "looks locally like \mathbb{R}^n "

(formally: M is Hausdorff and every point has a neighborhood which is homeomorphic to \mathbb{R}^n for some n).

Example 1 i) Every open subset of \mathbb{R}^n

- ii) "Curved surfaces" in \mathbb{R}^3
- iii) S^n for arbitrary n

"Non-example" Most non-open subsets of \mathbb{R}^n are not topological manifolds.

Problem: A general topological manifold has no vector space structure. How can we define analogue of the metric $g(\cdot, \cdot)$?

Solution: Introduce additional structure \rightarrow

"Definition" 3 A smooth manifold is a topological manifold M equipped with certain extra-structure, called "differentiable structure". Differentiable structure allows definition of

- i) the notion of "smoothness" for maps
- ii) a "canonical" finite-dim. vector space T_xM in each $x \in M$.
- iii) structure of a smooth manifold on $TM := \bigcup_{x \in M} T_x M$

Example 2 i) $M = \mathbb{R}^n$. Here T_xM can be canonically identified with \mathbb{R}^n .

ii) M is surface in \mathbb{R}^3 : Here T_xM can be identified with some 2-dimensional subspace V_x of \mathbb{R}^3 .

Definition 4 A tensor field of type (p,q) on a smooth manifold M is a "smooth" family $A = (A_x)_{x \in M}$ s. t. each A_x is a multilinear map

$$A_x: T_xM \times \ldots \times T_xM \times T_xM^* \times \ldots \times T_xM^* \to \mathbb{R}$$

where T_xM appears p times and T_xM^* appears q times.

Definition 5 i) A pseudo-Riemannian metric on a smooth manifold M is a tensor field $g = (g_x)_{x \in M}$ of type (2,0) on M s. t. each

$$g_x: T_xM \times T_xM \to \mathbb{R}$$

is symmetric and non-degenerate.

- ii) Let $g = (g_x)_{x \in M}$ be a pseudo-Riemannian metric on M. The "signature of g" is the signature of the bilinear form g_x for any x (independent of x!)
- iii) Riemannian/Lorentzian metric on M is a pseudo-Riemannian metric on M with signature (n,0)/(n-1,1) where $n=\dim(M)$.
- **Definition 6** i) A pseudo-Riemannian/Riemannian/Lorentzian manifold is a pair (M, g) where M is a smooth manifold and g is a pseudo-Riemannian/Riemannian/Lorentzian metric on M.
 - ii) A "spacetime" is a 4-dimensional Lorentzian manifold.

Remark 1 Pseudo-Riemannian metric g on $M = \mathbb{R}^n$ can be considered as a matrix $g = (g_{ab})_{1 \leq a,b \leq n}$ of smooth functions $g_{ab} : \mathbb{R}^n \to \mathbb{R}$ s. t. for each $x \in \mathbb{R}^n$

- matrix $(g_{ab}(x))_{a,b}$ is symmetric
- matrix $(g_{ab}(x))_{a,b}$ has no zero eigenvalues

Digression 1 A "metric space" is a pair (X, d) where

- X is any set
- $d: X \times X \to \mathbb{R}_+$ ("distance function" or "metric") s.t.
 - i) d(x, y) = 0 if and only if x = y.
 - ii) d(x, y) = d(y, x)
 - iii) $d(x, y) \le d(x, z) + d(z, y)$

Observation 1: Euclidean space $(V, \langle \cdot, \cdot \rangle) \to \text{metric space } (V, d_V)$ where

$$d_V(v,w) := \sqrt{\langle v - w, v - w \rangle}$$

Observation 2:

$$\langle v, w \rangle = \frac{1}{2} [d(v, 0)^2 + d(w, 0)^2 - d(v, w)^2]$$

 $\Rightarrow \langle \cdot, \cdot \rangle$ can be reconstructed from d_V

 \Rightarrow

$$\cos(\varphi(v,w)) = \frac{d(0,v)^2 + d(0,w)^2 - d(v,w)^2}{2d(0,v)d(0,w)}$$

- \Rightarrow lengths of vectors and angles between them can be defined using only the metric space structure $(V, d_V)!$
 - \Rightarrow notions like lengths and angles can be defined in general metric space

1.2 The isometry group

Fix a Riemannian manifold M = (M, g)

Definition 7 (Isometry group)

 $\operatorname{Isom}(M) := \{ \psi : M \to M \mid \psi \text{ is "bi-smooth" bijection preserving } g \}$ $(\psi \text{ "bi-smooth"} = \operatorname{both} \psi \text{ and } \psi^{-1} \text{ are smooth}).$

Definition 8 i) M is "homogeneous" iff for all $x, y \in M$

$$\exists \psi \in \text{Isom}(M) : \quad \psi(x) = y$$

ii) M is "isotropic" in $x \in M$ iff for all unit vectors $v, w \in T_xM$

$$\exists \psi \in \text{Isom}(M) : \psi_*(v) = w$$

where $\psi_*:TM\to TM$ is bi-smooth bijection induced by $\psi:M\to M$

Digression 2 i) Isom(M) has natural Lie group structure

ii) Every subgroup $\Gamma \subset \text{Isom}(M)$ operates on M. If Γ is discrete and operation on M is "properly-discontinuous" then M/Γ has canonical Riemannian manifold structure.

1.3 Some basic results on curvature

Fix pseudo-Riemannian manifold (M, g).

Recall: we use "abstract index notation"

- \rightarrow we write g_{ab} for the type (2,0) tensor g
- g^{ab} is type (0,2) tensor given by $\sum_b g_{ab}g^{bc} = \delta^c_a$ (here δ^a_c is type (1,1) tensor given by $\delta^a_c(x) = \delta_{ac}$ for all $x \in M$)
- R_{abc}^{d} denotes the curvature tensor associated to (M,g)
- We set $R_{ab} := \sum_{c} R_{acb}^{c}$ ("Ricci tensor")
- We set $R := \sum_{a,b} R_{ab} g^{ab}$ ("scalar curvature")

Convention 2 i) Einstein sum convention, i.e. we often drop Σ -signs. E.g. we write $R_{ab}g^{ac}$ instead of $\sum_a R_{ab}g^{ac}$.

- ii) Normal rules for raising and lowering indices: e.g. we write $R_b{}^c$ instead of $R_{ab}g^{ac}$ and v_av^a instead of $g_{ab}v^bv^a$.
- iii) Replace index set $\{1, 2, \ldots, n\}$ by $\{0, 1, \ldots, n-1\}$.

Remark 2 Elementary reformulation in special case $M = \mathbb{R}^n$:

Curvature tensor $(R_{abc}^{d})_{1 \leq a,b,c,d \leq n}$ can be considered as a family of functions $R_{abc}^{d}: \mathbb{R}^n \to \mathbb{R}$ given explicitly as

$$R_{abc}^{d}(x) = \partial_b \Gamma_{ac}^d(x) - \partial_a \Gamma_{bc}^d(x) + \sum_i \left(\Gamma_{ac}^i(x) \Gamma_{ib}^d(x) - \Gamma_{bc}^i(x) \Gamma_{ia}^d(x) \right)$$
(2)

where

$$\Gamma_{ab}^{c}(x) := \frac{1}{2} \sum_{d} g^{cd}(x) \left(\partial_{a} g_{bd}(x) + \partial_{b} g_{ad}(x) - \partial_{d} g_{ab}(x) \right) \tag{3}$$

Similarly, $(R_{ac})_{ac}$, and R can be considered as (matrix of) functions on $M = \mathbb{R}^n$. Explicitly:

$$R_{ac}(x) = \partial_b \Gamma^b_{ac}(x) - \partial_a \Gamma^b_{bc}(x) + \sum_i \left(\Gamma^i_{ac}(x) \Gamma^b_{ib}(x) - \Gamma^i_{bc}(x) \Gamma^b_{ia}(x) \right)$$
(4)

Symmetry properties of R_{abc}^{d}, R_{abcd} , R_{ab}^{cd} and R_{ab}

Proposition 1

$$i) R_{abcd} = -R_{bacd}$$

$$ii) R_{abcd} = -R_{abdc}$$

iii)
$$R_{abcd} + R_{bcad} + R_{cabd} = 0$$
 ("1. Bianchi identity")

$$iv) R_{abcd} = R_{cdab}$$

$$v) R_{ab} = R_{ba}$$

(Similar but not totally analogous statements hold for $R_{abc}{}^d$ and $R_{ab}{}^{cd}$)

Proof: i) follows immediately from abstract definition of R_{abcd} or, for $M = \mathbb{R}^n$, from Eqs. (2) and (3) above.

- ii) and iii): somewhat more difficult to prove
- iv) follows from i)-iii)
- v) follows immediately from iv)

Digression 3 i) For d = 2 all the information in $R_{abc}^{\ d}$ is already contained in the scalar curvature R.

ii) For d = 3 all the information in $R_{abc}^{\ d}$ is already contained in the Ricci tensor R_{ab} .

1.4 Spaces of constant curvature

Fix Riemannian manifold M = (M, g)

Definition 9 M = (M, g) has constant curvature iff

$$R_{ab}^{\ cd} = K \delta_{ab}^{\ cd}$$

for some constant $K \in \mathbb{R}$ where δ_{ab}^{cd} is tensor field of type (2,2) given by

$$\delta_{ab}^{cd} := \delta_a^{c} \delta_b^{d} - \delta_a^{d} \delta_b^{c}$$

Let us assume now that $\dim(M) = 3$.

Theorem 1 If M = (M, g) is homogenous and isotropic in some point $x_0 \in M$ then M has constant curvature.

Sketch of proof:

• View $R_{ab}^{cd}(x)$ and $\delta_{ab}^{cd}(x)$, for $x \in M$, as linear maps

$$T_xM \wedge T_xM \to T_xM \wedge T_xM$$

- $\delta_{ab}^{cd}(x)$ is identity on $T_xM \wedge T_xM$
- $R_{ab}^{\ \ cd}(x)$ is symmetric (w.r.t.obvious scalar product) and hence diagonalizable.
- Isotropy of M in x_0 implies that all eigenvalues of $R_{ab}^{\ cd}(x_0)$ must be the same, so $R_{ab}^{\ cd}(x_0) = K\delta_{ab}^{\ cd}(x_0)$ for some $K \in \mathbb{R}$.

(rigorous treatment uses irreducibility argument, which is straightforward for $\dim(M) = 3$)

• Homogeneity of M implies that $R_{ab}^{cd}(x) = K\delta_{ab}^{cd}(x)$ for all $x \in M$.

 $\mathbb{E}^n := \text{ standard n-dimensional Euclidean space}$

$$S^{n} := \{ x \in \mathbb{R}^{n+1} \mid \sum_{i=1}^{n} x_{i}^{2} + x_{n+1}^{2} = 1 \} \subset \mathbb{E}^{n+1}$$
$$\mathbb{H}^{n} := \{ x \in \mathbb{R}^{n+1} \mid -\sum_{i=1}^{n} x_{i}^{2} + x_{n+1}^{2} = 1 \} \subset \mathbb{E}^{n+1}$$

 $(S^n \text{ and } \mathbb{H}^n \text{ equipped with metric induced by } \mathbb{E}^{n+1}).$

Remark 3 \mathbb{H}^n ("*n*-dimensional hyperbolic space") is homeomorphic to \mathbb{E}^n but not isometric!

Theorem 2 Let M = (M, g) be simply-connected (!) n-dimensional (complete) Riemannian manifold with constant curvature $K \in \mathbb{R}$.

Then (M,g) is isometric to suitable rescaling of

$$(N, g_N) := egin{cases} \mathbb{E}^n & & \textit{if } K = 0 \\ S^n & & \textit{if } K > 0 \\ \mathbb{H}^n & & \textit{if } K < 0 \end{cases}$$

More precisely:

$$(M,g) \cong (N, a \cdot g_N)$$
 for suitable $a > 0$

 $(a = \sqrt{|K|} \text{ in last two cases; in the first case a can be arbitrary).}$

Digression 4 If M = (M, g) is a general *n*-dimensional (complete) Riemannian manifold of constant curvature then

$$M \cong N/\Gamma$$

where

$$N \in {\mathbb{E}^n, S^n, \mathbb{H}^n},$$
 and

 Γ is suitable discrete subgroup of Isom(N).

Spaces of constant curvature play major role in 2-dim. and 3-dim. Topology/Geometry:

- d=2: Classification of Riemannian surfaces can be reduced to classification of all discrete subgroups Γ of $\mathrm{Isom}(S^2)$, $\mathrm{Isom}(\mathbb{E}^2)$, and $\mathrm{Isom}(\mathbb{H}^2)$ which operate properly discontinuously.
- \bullet d=3: Spaces of constant curvature play a major role in classification of compact 3-dimensional topological/smooth manifolds

2 Einstein field equations for perfect fluids

2.1 Review: The general Einstein field equations

Fix 4-dimensional smooth manifold M and $\Lambda \in \mathbb{R}$ ("the cosmological constant").

Let Φ be matter/radiation field on M. We assume that for every Lorentzian metric g on M

- corresponding "stress energy tensor" $T_{ab} = T_{ab}(g, \Phi)$ is known explicitly
- Equations of motions $F(g, \Phi) = 0$ for Φ are known explicitly, i.e. function F given explicitly.

Basic problem: Find (g, Φ) such that

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi T_{ab}(g, \Phi)$$
 (5a)

$$F(g, \Phi) = 0 \tag{5b}$$

2.2 Review: Perfect fluid in Minkowski space

Recall: (relativistic or non-relativistic) fluid in \mathbb{R}^3 described by

- mass density distribution $\rho(x,t)$
- temperature distribution T(x,t)
- velocity field $\vec{u}(x,t)$

We assume that equation of state $p = f(\rho, T)$ is given explicitly.

In relativistic case introduce "4-velocity field" (= vector field in Minkowski space $(M, g) = (\mathbb{R}^4, \eta)$ where $\eta_{ab} = \pm \delta_{ab}$; — only for η_{00})

$$u^{a} = \frac{1}{\sqrt{1 - |\vec{u}|^{2}}} (1, u_{1}, u_{2}, u_{3})$$

Observe that

$$u_a u^a = -1 (6)$$

If fluid is a "perfect fluid" (i.e. is "inviscid" and in thermal equilibrium, i.e. $T(x,t)=T_0$ for a constant T_0) then:

"Stress energy tensor" given by

$$T_{ab} = (\rho + p)u_a u_b + p \,\eta_{ab} \tag{7}$$

where $p(x,t) = f(\rho(x,t), T_0)$ and equation of motions are

$$\partial^a T_{ab} = 0$$

2.3 Perfect fluids in a general space time

Fluid in general space time (M, g) described by

- mass density distribution $\rho(x,t)$
- temperature distribution T(x,t)
- abstract "4-velocity field" $u^a(x,t)$, i.e. arbitrary vector field (=tensor field of type (0,1)) with

$$u_a u^a = -1$$

Again assume that equation of state $p = f(\rho, T)$ given explicitly.

In "perfect fluid situation" (where fluid is "inviscid" and in thermal equilibrium at temperature T_0) stress-energy tensor is given by

$$T_{ab} = (\rho + p)u_a u_b + p g_{ab} \tag{8}$$

where $p(x,t) = f(\rho(x,t), T_0)$ and equations of motion are

$$\nabla^a T_{ab} = 0$$

where ∇^a is the Levi-Civita connection of (M, g_{ab}) .

2.4 The Einstein field equations for perfect fluids

Taking $\Phi = (u^a, \rho)$ in Eqs. (5a) and (5b) above we see that for a perfect fluid in M (with equation of state $p = f(\rho, T)$ at temperature T_0) the corresponding Einstein field equations read

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi T_{ab} \tag{9a}$$

$$\nabla^a T_{ab} = 0$$
, with (9b)

where $T_{ab} = (\rho + p)u_a u_b + p \ g_{ab}$ and $p(x, t) = f(\rho(x, t), T_0)$.

Observation: We always have

$$\nabla^a \left(R_{ab} - \frac{1}{2} R g_{ab} \right) = 0, \qquad \nabla^a g_{ab} = 0,$$

- \Rightarrow Eq. (9a) implies Eq. (9b)!
- ⇒ Einstein field equations in perfect fluid situation

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi \left((\rho + p)u_a u_b + p \ g_{ab} \right)$$
 (10a)

$$p(x,t) = f(\rho(x,t), T_0) \tag{10b}$$

Special case: Fluid has vanishing pressure, i.e $p = f(\rho, T) = 0$ ("Dust situation"):

 \Rightarrow Eqs. (10) reduce to

$$R_{ab} - \frac{1}{2}Rg_{ab} + \Lambda g_{ab} = 8\pi \rho u_a u_b \tag{11}$$

3 The Friedmann(-Robertson-Walker) model

3.1 Assumptions

Consider spacetime M = (M, g) fulfilling:

Assumption 1 (Product Ansatz)

- i) $M \cong \mathbb{R} \times \Sigma$
- ii) $\Sigma_t \cong \{t\} \times \Sigma$ is orthogonal to $\mathbb{R} \times \{\sigma\}$, $\sigma \in \Sigma$.
- iii) $\Sigma_t \cong \{t\} \times \Sigma, t \in \mathbb{R}$, is "space-like"

(i.e. restriction g_t of g to Σ_t is a Riemannian metric)

Assumption 2 Each (Σ_t, g_t) is homogenous.

Assumption 3 Each (Σ_t, g_t) is isotropic in each $x \in \Sigma_t$.

Assumption 4 *M* is simply-connected

Assumption 5 Only one matter field, namely a perfect fluid

For simplicity:

Assumption 6 i) Perfect fluid is "dust"

ii) Cosmological constant $\Lambda = 0$

3.2 The Robertson-Walker metric

Assumption $1 \Rightarrow T_{(t,x)}M \cong T_t\mathbb{R} \oplus T_x\Sigma$.

For fixed $(t, x) \in \mathbb{R} \times \Sigma \cong M$ we can choose basis $(e_i)_{i=0,1,2,3}$ of $T_{(t,x)}M$ such that $\begin{cases} e_0 \in T_t \mathbb{R} \subset T_t \mathbb{R} \oplus T_x \Sigma \\ e_i \in T_x \Sigma \subset T_t \mathbb{R} \oplus T_x \Sigma, \ i=1,2,3 \end{cases}$

Conclusion 1 In basis above we have

$$(g_{ij})_{ij} = (g_{ij}(t,x))_{ij} = \begin{pmatrix} g_{00} & 0 & 0 & 0 \\ 0 & g_{11} & g_{12} & g_{13} \\ 0 & g_{21} & g_{22} & g_{23} \\ 0 & g_{31} & g_{32} & g_{33} \end{pmatrix}$$
(12)

where $g_{00} < 0$. Moreover, by a suitable reparametrization of t we can achieve that $g_{00} = -1$. Finally, $g_t = (g_{ij})_{i,j=1,2,3}$.

Assumptions 2–4 and Theorem 1

 \Rightarrow (Σ_t, g_t) is simply-connected Riem. manifold of const. curvature \Rightarrow (cf. Theorem 2)

Conclusion 2 (Σ_t, g_t) is isometric to $(N, g_N) \in {\mathbb{E}^3, S^3, \mathbb{H}^3}$ after rescaling with suitable $a(t) \in \mathbb{R}_+$ (i.e. $g_t = a(t) \cdot g_N$)

Remark 4 If $(N, g_N) = \mathbb{E}^3$ then (cf. Remark 1)

$$(g_{ij})_{ij} = (g_{ij}(t,x))_{ij} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & a(t)^2 & 0 & 0\\ 0 & 0 & a(t)^2 & 0\\ 0 & 0 & 0 & a(t)^2 \end{pmatrix}$$
(13)

Remark 5 Metric g written in "standard" local coordinates:

•
$$N = \mathbb{E}^3$$
: $g = -dt^2 + a(t)^2(dx^2 + dy^2 + dz^2)$

•
$$N = S^3$$
: $g = -dt^2 + a(t)^2 (d\psi^2 + \sin^2(\psi)(d\theta^2 + \sin^2(\theta)d\varphi^2))$

$$\bullet \ N = \mathbb{H}^3: \ g = -dt^2 + a(t)^2 \left(d\psi^2 + \sinh^2(\psi) (d\theta^2 + \sin^2(\theta) d\varphi^2) \right)$$

Conclusion 3 $u^{a}(t, x) = (1, 0, 0, 0)$ and $\rho(t, x) = \rho(t)$. Thus

(recall $T_{ab} = \rho u_a u_b$ in dust situation).

- Intuitively, Conclusion 3 is "clear"
- Formal proof in general case not too difficult
- In the special case $N = \mathbb{E}^3$ it follows easily from computations below

3.3 Reduction of the Einstein field equations

Aim: Simplify Eq. (11) if Assumptions 1-6 are fulfilled.

For simplicity: consider only $N = \mathbb{E}^3$ where

$$(g_{ij})_{ij} = \begin{pmatrix} -1 & 0 & 0 & 0\\ 0 & a(t)^2 & 0 & 0\\ 0 & 0 & a(t)^2 & 0\\ 0 & 0 & 0 & a(t)^2 \end{pmatrix}$$

$$(15)$$

 \Rightarrow non-vanishing components of Γ_{ij}^k are (cf. Eq. (3))

$$\Gamma_{11}^0 = \Gamma_{22}^0 = \Gamma_{33}^0 = a'a, \tag{16}$$

$$\Gamma_{10}^1 = \Gamma_{01}^1 = \Gamma_{20}^2 = \Gamma_{02}^2 = \Gamma_{30}^3 = \Gamma_{03}^3 = a'/a,$$
 (17)

 \Rightarrow (cf. Eq. (4))

$$(R_{ij})_{ij} = \begin{pmatrix} -3\frac{a''}{a} & 0 & 0 & 0\\ 0 & a''a + 2(a')^2 & 0 & 0\\ 0 & 0 & a''a + 2(a')^2 & 0\\ 0 & 0 & 0 & a''a + 2(a')^2 \end{pmatrix}$$

and therefore $R = 6 \frac{a''a + (a')^2}{a^2} \Rightarrow$

$$(R_{ij} - \frac{1}{2}Rg_{ij})_{ij} = \begin{pmatrix} 3\frac{(a')^2}{a^2} & 0 & 0 & 0\\ 0 & F(a) & 0 & 0\\ 0 & 0 & F(a) & 0\\ 0 & 0 & 0 & F(a) \end{pmatrix} \stackrel{!}{=} 8\pi (T_{ij})_{ij}$$

where $F(a) := -2a''a - (a')^2$

$$(R_{ij} - \frac{1}{2}Rg_{ij})_{ij} = \begin{pmatrix} 3\frac{(a')^2}{a^2} & 0 & 0 & 0\\ 0 & F(a) & 0 & 0\\ 0 & 0 & F(a) & 0\\ 0 & 0 & 0 & F(a) \end{pmatrix} \stackrel{!}{=} 8\pi (T_{ij})_{ij}$$

 \Rightarrow reduces to system of two ODEs for a = a(t) and $\rho = \rho(t)$,

$$3\frac{(a')^2}{a^2} = 8\pi\rho, \qquad -2a''a - (a')^2 = 0$$

or, equivalently,

$$3\frac{(a')^2}{a^2} = 8\pi\rho, \qquad 3\frac{a''}{a} = -4\pi\rho$$
 (18)

Similar computation for $N \in \{S^3, \mathbb{H}^3\} \Rightarrow$

$$3\frac{(a')^2}{a^2} = 8\pi\rho - \frac{3k}{a^2}, \qquad 3\frac{a''}{a} = -4\pi\rho \tag{19}$$

where k = 1 for $N = S^3$ and k = -1 for $N = \mathbb{H}^3$

Problem: For $k \in \{-1, 0, 1\}$ find solutions $(a, \rho) = (a(t), \rho(t))$ $a(t) : I \to \mathbb{R}_+$ and $\rho(t) : I \to \mathbb{R}_+$ on interval $I \subset \mathbb{R}$

$$3\frac{(a')^2}{a^2} = 8\pi\rho - \frac{3k}{a^2}, \qquad 3\frac{a''}{a} = -4\pi\rho$$

(a must be C^2 and ρ must be C^1)

Temporary assumption: $a'(t) \ge 0$ on I

3.4 Explicit solution of the Einstein field equations

We want to solve

$$3\frac{(a')^2}{a^2} = 8\pi\rho - \frac{3k}{a^2}, \qquad 3\frac{a''}{a} = -4\pi\rho$$

First note that

$$\rho' + 3\rho \frac{a'}{a} = 0$$

and therefore

$$(\rho a^3)' = (\rho' + 3\rho \frac{a'}{a})a^3 = 0$$

SO

$$\rho = \frac{C}{a^3}, \quad \text{for some } C > 0$$

Thus

$$3(a')^2 = 8\pi \frac{C}{a} - 3k$$

and therefore (recall assumption $a' \ge 0$ on I)

$$\frac{da}{dt} = a' = \sqrt{\frac{C'}{a} - k} \quad \text{with } C' := 8\pi C/3 \tag{20}$$

SO

$$dt = \frac{da}{\sqrt{\frac{C'}{a} - k}}$$

SO

$$t(a) = \int \frac{1}{\sqrt{\frac{C'}{a} - k}} \, da + const$$

Problem: Find explicit formula for

$$t(a) = \int \frac{1}{\sqrt{\frac{C'}{a} - k}} da$$
, defined on
$$\begin{cases} (0, \infty) & \text{if } k = 0, -1\\ (0, C'] & \text{if } k = 1 \end{cases}$$

Solution:

$$t(a) = \begin{cases} \frac{1}{\sqrt{C'}} \frac{2}{3} a^{3/2} + const & \text{if } k = 0\\ \frac{C'}{2} (\sinh(x) - x)_{|x = \arccos(\frac{2a}{C'} + 1)} + const & \text{if } k = -1\\ \frac{C'}{2} (x - \sin(x))_{|x = \arccos(1 - \frac{2a}{C'})} + const & \text{if } k = 1 \end{cases}$$

Derivation:

- k = 0: easy
- k = -1: similar to case k = 1
- k = 1: Use substitution $x = \arccos(1 \frac{2a}{C'}) \rightarrow$

$$\int \frac{1}{\sqrt{\frac{C'}{a} - k}} da \quad \text{transformed into}$$

$$\int \frac{\frac{C'}{2}\sin(x)dx}{\sqrt{\frac{2}{1-\cos(x)}-1}} = \frac{C'}{2}\int (1-\cos(x))dx = \frac{C'}{2}(x-\sin(x)) + const$$

Remark 6 We obtain a(t) by inverting t(a), e.g. for k=0

$$a(t) = c \cdot (t - t_0)^{2/3}, \qquad c := \left(\frac{3\sqrt{C'}}{2}\right)^{2/3}, \quad t_0 := const.$$

Observation: Solutions for k = 0, -1 are "maximal", Solution for k = 1 is not maximal.

Recall: We assumed above that $a' \ge 0$ on interval I. Situation $a' \le 0$ can be treated similarly. We obtain

Again the solutions for k = 0, -1 are maximal but the solution for k = 1 is not maximal.

However, the two solutions for k=1 (the one with $a'\geq 0$ and the one with $a'\leq 0$) can be "joined" to give a maximal solution.

Full Solutions:

Remark 7 Our universe is expanding at the moment.

"Hubble's constant"
$$H(t_0) := a'(t_0)/a(t_0), \qquad t_0 = \text{present time}$$

can be determined experimentally by measuring the "redshift" in the spectral lines of the light coming from distant galaxies. One finds $H(t_0) > 0$.

Summary:

- "Big bang" singularity
- Eternal expansion for k = 0, -1; recollapse (="big crunch") for k = 1.
- For $k \in \{-1, 0\}$: $M \cong \mathbb{R} \times \mathbb{R}^3 \cong \mathbb{R}^4$ and each (Σ_t, g_t) has infinite volume.
- For k = 1: $M \cong \mathbb{R} \times S^3$ and each (Σ_t, g_t) has finite volume.

Open problem: k = -1 or k = 0 or k = 1 for our universe?