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Introduction: Einstein field equations

The Einstein field equations are a set of 10 equations in Einstein’s theory of

general relativity which describe the fundamental interaction of gravitation as

a result of spacetime being curved by matter and energy
�

�

�

�
Rij − 1

2gijR + gijΛ = 8πG
c4 Tij

• Rij , R: Ricci and Gauss curvature (of the underlying spacetime manifold)

• gij : (pseudo-Riemannian) Minkowski metric of spacetime

• Tij : energy-momentum tensor
�
�

�
�Main point of this talk: Geometry of the LHS vs physics of the RHS

�
�

�
�Other point will be the physics of defects. Why?

• Massive objects of our universe do modify its intrinsic curvature

• Defects in a crystal modify its intrinsic metric, curvature and torsion

• These geometric properties imply dynamical laws
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A historical interplay between physics and mathematics

• Newton (1713). Mass, acceleration: velocities at different space points

• Euler (1748). Calculus of variations

• Lagrange (1754). Generalization of CV to arbitrary coordinate systems.

Euler-Lagrange equations depend of the velocity and position

• Gauss (1827-1847). Theory of surfaces, Geodesics, Curvature. Theorema

Egregium (“remarkable”): curvature as an intrisic property of a surface

• Riemann (1854). Generalization of Gauss work to N -dimensional

“manifolds”, general metric and curvature

• Christoffel (1869). Relations between differentials of order 2. Covariant

derivative. Connexion. Symbols

• Ricci & Levi-Civita (1900) Systematization, theorization. Tool for physics

• Einstein (1905-1912). Special Relativity (Space-Time), General relativity

(Gravitation modifies the Geometry)
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BASIC NOTIONS

�
�

�
�Cartesian space

• A point ⇒ real coordinates {αi}
• 6= point ⇔ 6= coordinates

• All n-uples are admissible

• Change of coord. Ai
j = ∂αi

∂α′j

�
�

�
�Euclidean space

• Euclid. length in a Cart. space

l2E =
(
xi

Q − xi
P

)2
,

αi = xi = length

• Scalar Product < ξ, η >= ξiηi

• Angle ϕ: cosϕ = <ξ,η>
|ξ||η|

�
�

�
�Riemannian space

• Rieman. length in Cart. space

lg =
∫ b

a

√

gij ẋiẋjdt, ẋi = dxi

dt

• Riemannian metric gij : smooth

positive definite quadratic form

• Scalar Prod. < ξ, η >= gijξ
iηj

�
�

�
�Euclidean metric

• If ∃Ai
j s.t. ∀P : gij = Ak

iA
k

j

�
�

�
�Pseudo-Riemannian metric

• gij must not be positive definite:

ex.: Minkowski metric
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EXAMPLES

• Euclidean spherical coordinates (r, θ, ϕ): dl2 = dr2 + r2
(
dθ2 + sin2 θdϕ2

)
,

gij =







1 0 0

0 r2 0

0 0 r2 sin2 θ







ij

• Pseudo-Euclidean Minkowski space R
4
1,3: coordinates (ct, xi), length

dl2 = dx2
0 − dx2

i . A “world-line” has tangent vector ξ = (c, ẋi) with ξ2 ≥ 0

(light-like (= 0 – photon) or time-like (> 0 – massive particle))

Figure 1: Word-line and light cones (Gribbin 19992)
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• Induced metric gij on a surface. Take a curve r(t) = (x(t), y(t), z(t)) on a

(x1, x2)-surface of R
3: ẋ2 + ẏ2 + ż2 = gij ẋ

iẋj , 1 ≤ i, j ≤ 2

• First fundamental form: gijdxidxj = E(dx1)2 + 2F (dx1dx2) + G(dx2)2

• Riemannian non-Euclidean metric: gij =




E F

F G





ij

• 2D surface in 3D Euclidean space: F (x1, · · · , xn) = 0 and

gij = δij +
(∂F/∂xi)(∂F/∂xj)

(∂F/∂xn)2

• Surface z = f(x, y) and consider d2f = fxxdx2 + 2fxydxdy + fyydy2. The

hessian of f is H = [fij ].

1. Mean curvature at P is tr H

2. Gauss curvature at P is det H (intrisic notion)
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�
�

�
�The elastic metric

• Consider an elastic solid submitted to internal and external loads

• The stress [ force
surface ] is given at every interior point by a matrix [σij ]

• In linear elasticity, the strain is defined from the stress by the Lamé

relation ǫij = A−1
ijklσkl (diagonal elements mean relative stretch of matter)

• The elastic metric is gE
ij = δij − 2ǫij

• The external observer is equiped with the Cartesian metric δij and

coordinates {xi}

• The elastic metric is Euclidean if one finds (holonomic) coordinates {αj}

• This will happen if gE
ij = Am

i Am
j for some Am

i = ∂xm

∂αi

• Small displacements: am
i = δm

i − ∂um

∂xi IFF the strain is compatible

• In the presence of line-like defects (dislocations & disclinations) it is not

compatible
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Covariance and contravariance

�
�

�
�Contravariant object: the velocity vector

• Change of base: vj = dxj

dt
, v′

i
= dx′i

dt
=⇒ v′

i
= Ai

jv
j with Ai

j = ∂xi

∂x′j

• Above indice ⇒ contravariance: “velocity-like” object (live on the

manifold)
�
�

�
�Covariant object: the gradient of a scalar

• Change of base: ∇if = df
dxi ,∇jf = df

dx′j =⇒ ∇if = Aj
i∇jf with Aj

i the

inverse of Ai
j

• Below indice ⇒ covariance: “gradient-like” object (live on the tangent

space)
�

�

�

�Most physical quantities: mixed Covariant/Covariant object

• Tensor field of type (or “valence”) (p, q) and order (or “rank”) p + q

• ex.: T IJKL
mn is of type (4, 2)
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Tensor fields

• Every physical property is represented by means of a tensor field (of some

given type and order)

• A tensor is defined relatively to a system of coordinates

• In this system a tensor is given by its components T IJKL···
mn···

• Main property of tensors: law w.r.t. change of coordinate system:
�

�

�

�
T ′BCDE

pq =
(
AB

I AC
J AD

KAE
LAm

p An
q · · ·

)
T IJKL···

mn···

• Examples: velocity or normal vector n to a surface is a (1, 0)-tensor,

temperature gradient is a (0, 1)-tensor, the stress tensor σ is a

(1, 1)-tensor. The metric g is a (0, 2)-tensor

• Take a solid with an internal infinitesimal facet of normal ni. Then

σm
i ni = fm with fm the (contravariant) m − th component of the applied

local force on the facet (clearly fm depends of the coordinate system, but

represents the same physical quantity SINCE it transforms as a tensor)
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Objectivity (frame indifference)

• Objectivity means invariance w.r.t. change of observer

• An objective quantity is represented by a tensor

• HOWEVER: most physical properties are not objective.

Example. Let x′(t) = A(t)(x − x0(t)) by a change of origin and a rotation

of the axis (Euclidean coordinate change).

The velocity is not objective: v′ = Av+ẋ0(t) + (ȦAT )(x − x0(t)) except

for a Galilean (or inertial) change of axis: x′(t) = A(x − x0)

• BUT: the divergence of the velocity is objective: it is the scalar (0-order

tensor) ∇ · v = ∂iv
i where ∂i = ∂

∂xi (Euclidean coordinates)

• An objective physical quantity u is written
�




�

	
u = uiei where ei = 1

| ∂r

∂αi |
∂r
∂αi and r = x − x0 is the position vector
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Towards Christoffel symbols (1)

• For a Euclidean change of base: ∇ · v = ∂iv
i = ∂′

jv
′j

�
�

�
�What happens for a general change of base?

• Partial answer.

∇ · u = 1√
|g|

∂i(
√

|g|ui) where g = det[gij ]

• More general question.

How does ∇u = ∂ju
i(eie

j) transform under general change of base?

• Theorem 1.

The quantity ∇kT IJKL···
mn··· := ∂kT IJKL···

mn··· transform as a tensor if

A =constant (linear coordinate change)
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Towards Christoffel symbols (2)

• Theorem 2.

Given the vector field vI and the quantity ∇kvI writing as ∂kvI in

Euclidean coordinates. Then ∇kvI transform as a (1, 1)-tensor w.r.t. to

arbitrary Riemannian coordinates change xi → αj iff the transformed

components are ∇′
lv

′J = ∂v′J

∂αl + ΓJ
plv

′p(ΓJ
pl depending on the coordinates)

• In particular: ∇ · v = ∂v′l

∂αl + ΓJ
pJv′p with ΓJ

pJ := ∂p ln(
√

g)

• Theorem 3.

Given the co-vector field ui and the quantity ∇kui writing as ∂kui in

Euclidean coordinates. Then ∇kui transform as a (0, 2)-tensor w.r.t. to

arbitrary Riemannian coordinates change xi → αj iff the transformed

components are ∇′
lu

′
j =

∂u′

j

∂αl −Γp
jlu

′
p
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Towards Christoffel symbols (3)

• Einstein: “To take into account gravitation, we assume the existence of

Riemannian metrics. But in nature we also have electromagnetic fields,

which cannot be described by Riemannian metrics. The question arises:

How can we add to our Riemannian spaces in a logically natural way an

additional structure that provides all this with a uniform character ?”

• This additional notion is the “Columbus connexion”: for Columbus,

navigating straight right meant going westwards, that is, on a sphere, to

keep a fixed angle with respect to the lines of constant latitude
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Figure 2: Vectors end up with an angle as parallelly transported along 2 curves

• The connexion is the differential geometric property which governs the

law of parallel transport of vectors generalising Euclidean parallelism

• In Euclidean geometry, the parallelism of two vectors means equaling

their components. In Riemannian geometry this is no longer true and the

parallelism of two vectors depends on the vector origin positions, the

choice of a curve joining these two points and of the space connexion
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Christoffel symbols

• Definition in terms of Euclidean/general coordinates:
�

�

�

�
Γn

lj = −∂xp

∂αl
∂xq

∂αj
∂2αn

∂xp∂xq

• ∇v =
(

∂v′J

∂αk + ΓJ
pkv′

p
)

eJe
k,∇u =

(
∂u′

j

∂αk − Γp
jku′

p

)

ejek

• For a tensor T of type (0, 2): ∇T =
(

∂Tij

∂αk − Γl
ikTlj − Γl

jkTil

)

eiejek

• How do the Christoffel symbols transform under arbitrary coordinate

change?
�




�

	
Γ′m

ki = ∂α′m

∂αn

(

Γn
lj

∂αl

∂α′k
∂αj

∂α′i − ∂2αm

∂α′k∂α′i

)

(connexion)

• The Christoffel symbols transform as tensors only under affine coordinate

change

• An object which transforms under arbitrary coordinate change according

to the law above is called a CONNEXION
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Parallel transport of a vector field

• Consider a curve xi(s) and two points P and Q of this curve. Consider a

vector field ξ(x)

• In a Euclidean space, two tensors ξ(P ) and ξ(Q) are parallel if
dxi

ds
∂ξ
∂xi (s) = dξ

ds
= 0 (have equal tensor components along the curve)

• In a (general) Riemannian space, ξ(P ) and ξ(Q) are parallel along a curve

of tangent vector τ i if τ i∇iξ
J = 0

• A geodesic w.r.t. a given connexion is a curve with tangent vector τi

satisfying
�

�

�

�
∂ττ = τ i∇iτ

J = ∂τJ

∂αi τ i + ΓJ
piτ

pτ i = 0

(a curve whose velocity is parallelly transported)

• Curved space. If the tensor components after parallel transport are not

conserved

DIFFERENTIAL GEOMETRY WITH APPLICATIONS N. VAN GOETHEM



17

Connexion compatible with the metric

• Main point. To conserve the scalar product < ξ, η > w.r.t. parallel

transport along the curve x(t)

• Result. If the connexion is COMPATIBLE with the metric: ∇kgij = 0

• Proof. 0 = d
dt

(
gijξ

iηj
)

= ẋk (∇kgij)
(
ξiηj

)
+ ẋkgij

=0
︷ ︸︸ ︷
(
∇kξiηj + ξi∇kηj

)

• Operations of lowering indexes and of covariant differentaition commute
�
�

�
�Christoffel symbols of a compatible connexion

• ∃! SYMMETRIC compatible connexion (Riemannian connexion):
�




�

	
Γk

ij = 1
2gkl

(
∂glj

∂αi + ∂gil

∂αj − ∂gij

∂αl

)

• Affine connexion (Γ = 0): ∂i∂jα
K(xq) = Γl

ij∂lα
K + ΓK

mn∂iα
m∂jα

n

(“affine connexion” Γ means more exactly that ∃Γ′ = 0)
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Curvature & Riemann tensor

• In a Euclidean space for a smooth enough function f : (∂i∂j − ∂j∂i) f = 0

• For a symmetric connexion and any vector field ξ:
�

�

�

�
(∇k∇l −∇l∇k) ξi = −Ri

qklξ
q(+term if not sym. )

�




�

	
Riemann tensor: Ri

qkl = −
(

∂Γi
ql

∂αk − ∂Γi
qk

∂αl + Γi
pkΓp

ql − Γi
plΓ

p
qk

)

• “Order 1 property”:

gijdxidxj(P ) = gijdxidxj(Ogeod)− 1
6Rikjl(P

kdxi −P idxk)(P ldxj −P jdxl)

• If Ri
qkl 6= 0 then the connexion is not Euclidean (the space is said curved)

• Definition 1. The Ricci curvature is the the (0, 2)-tensor Rql = Ri
qil

• Definition 2. The scalar curvature is the the scalar R = gqlRi
qil

• Gauss’ “Theorema Egregium”. For a 2D surface in a 3D space with a

Riemannian metric, the scalar curvature is twice the Gauss curvature, i.e.

it is an intrisic invariant of the surface
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Main properties of the Riemann tensor

• We always have: Ri
qkl = Ri

qlk. If the connexion is

• symmetric: Ri
qkl + Ri

klq + Ri
lqk = 0

• compatible with the metric we have: gipR
p
qkl = Riqkl = Rqikl

• symmetric and compatible (i.e. Riemannian) we have: Riqkl = Rkliq
�
�

�
�All above propeties hold true for Riemannian metrics

• in 2D the Riemann tensor is given by the scalar curvature R:

R1212(= det[∂i∂jf ]) = K = g
2R

• in 3D the Riemann tensor is given by the Ricci curvature Rik:

Rijkl = Rikgjl − Rilgjk + Rjlgik − Rjkgil + R
2 (gilgjk − gikgjl)

• in space-time, the metric must solve Einstein’s field equations:

Gij := Rij − 1
2Rgij = λTij (“energy-momentum tensor” on the RHS, cf.

Atle lectures – Rem. ∇kGij = 0)
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Non-Riemannian spaces

�

�

�

�
The torsion of a connexion: T k

ij :=Γk
ij − Γk

ji

• A connexion is said non-Riemannian if its torsion does not vanish (and

non-Euclidean if its curvature does not vanish)

• We have ∂2
[ij]α

K = T l
ij∂lα

K − T K
mn∂iα

m∂jα
n (change of coord. is not C2)

• Can a connexion be metric-compatible in a non-Riemannian space?

• Let Γ̃k
ij be the symmetric Christoffel symbols defined by the metric

• Then the following connexion is compatible with the metric:
�

�

�

�
Γk

ij = Γ̃k
ij + ∆Γk

ij(+non-metric terms)
�




�

	
“Contortion” of a metric connexion: ∆Γk

ij = − 1
2

(

T j
ik + T i

jk − T k
ji

)

• Christoffel symbols are not tensor-like, but curvature, torsion and

contortion are tensor quantities (i.e. have physical meaning)
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Line Defects in crystals

In the perfect crystal the atoms form, in a stress-free configuration, a

regular pattern proper to the prescribed nature of the matter

The defective crystal is, by contrast, an aggregation of an immense

number of small pieces of perfect crystals that cannot be connected with

one another so as to form a finite lump of perfect crystals as an organic

unity” (Kondo (1954))

Figure 3: Dislocations and Disclinations
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The internal observer. “In our universe we are internal observers who do

not possess the ability to realize external actions on the universe, if there

are such actions at all. Here we think of the possibility that the universe

could be deformed from outside by higher beings. A crystal, on the other

hand, is an object which certainly can deform from outside. We can also

see the amount of deformation just by looking inside it, eg, by means of

an electron microscope. Imagine some crystal being who has just the

ability to recognize crystallographic directions and to count lattice steps

along them. Such an internal observer will not realize deformations from

outside, and therefore will be in a situation analogous to that of the

physicist exploring the world. The physicist clearly has the status of an

internal observer” (Kröner (1990)).

The Bravais metric (of an internal observer counting atomic steps): is for

instance in fcc crystals give n by [gB
ij ] = 1

4







2 1 1

1 2 1

1 1 2







.
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The geometry of a defective crystal

• The elastic strain (ǫ) is incompatible ⇒ the crystal is non-Euclidean

(w.r.t. the metric of an internal observer)

• In the presence of pure disclinations, the crystal is Riemannian and the

disclination density tensor (Θ) ⇔ the curvature tensor

• In the presence of pure dislocations, the crystal is non-Riemannian and

the dislocation density tensor ⇔ the (connexion’s torsion tensor ⇔ the

connexion’s contortion tensor κ)

• In the presence of general line defects, the incompatibility

:= ∇× ǫ ×∇ = Θ + κ ×∇
• In the presence of point defects, the metric is not compatible, and

∇kgB
ij = ∇k(1 − NV − NI)

2gB
ij ⇔ point-defect scalar densities (intertitial

NI and vacancies NV )

• BUT: If we have line and point defects, the crystal might be flat again · · ·
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