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In this paper we derive a non-linear version of the Feynman–
Kac formula for the solutions of the vorticity equation in
dimension 2 with space periodic boundary conditions. We
prove the existence (global in time) and uniqueness for
a stochastic terminal value problem associated with the
vorticity equation in dimension 2. A particular class of
terminal values provide, via these probabilistic methods,
solutions for the vorticity equation.
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1. Introduction

The Feynman–Kac formula, in its original form derived from the idea of path in-
tegration in Feynman’s PhD thesis (which is now available in a new print [8]), is a
representation formula for solutions of Schrödinger’s equations, and in the hand of Kac,
is an explicit formula written in terms of functional integrals with respect to the Wiener
measure, the law of Brownian motion.
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Bismut [3], Pardoux–Peng [11] and Peng [12], by utilizing Itô’s lemma together
with Itô’s martingale representation, have obtained an interesting non-linear version
of Feynman–Kac’s formula for solutions of semi-linear parabolic equations in terms of
backward stochastic differential equations (BSDE). The goal of the present paper is to
derive a Feynman–Kac formula for solutions of the Navier–Stokes equations in the same
spirit of Bismut and Pardoux–Peng [11], and to study the random terminal problem of
the stochastic differential equations associated with the vorticity equations.

The main idea contained in [3,11] may be described as the following. Let u(t, x) =
(u1(t, x), · · · , um(t, x)) be a smooth solution to the Cauchy initial value problem of the
following system of semi-linear parabolic equations

∂

∂t
ui − νΔui + f i(u,∇u) = 0, u(0, x) = u0(x) in Rd (1.1)

where i = 1, · · · ,m, and ν > 0 a constant. Let B = (B1, · · · , Bd) be the standard
Brownian motion on a complete probability space (Ω,F ,P), x ∈ Rd and T > 0. Let us
read the solution u along Brownian motion B. More explicitly, let Yt = u(T−t,

√
2νBt+x)

for t ∈ [0, T ] and Zt = ∇u(T − t,
√

2νBt + x), where ∇u is the linear operator from Rd

to Rd defined by ∇u(·, x)v = d
dε |ε=0u(·, x + εv), v ∈ Rd. Applying Itô’s formula to u and

B we obtain

YT − Yt =
T∫
t

f(Ys, Zs)ds +
√

2ν
T∫
t

Zs · dBs, YT = u0(BT ). (1.2)

In literature, (1.1) may be written in differential form

dY = f(Y,Z)dt +
√

2νZ · dB, YT = ξ, (1.3)

where the arguments s, t, etc. are suppressed if no confusion may arise. The differential
equation above is an example of backward stochastic differential equations, where the
terminal value YT = ξ is given. The function f appearing on the right hand side of (1.3)
is called the (non-linear) driver.

Pardoux–Peng [11] made an important observation. If the non-linear driver f in BSDE
(1.3) is globally Lipschitz continuous, then there is a unique adapted solution pair (Y,Z)
satisfying (1.3) for a random terminal value ξ ∈ L2(Ω,FT ,P), which is not necessary
in the form of u0(BT ). The solution u and its gradient ∇u in turn can be represented
in terms of (Y,Z). This representation may be considered as a non-linear extension of
Feynman–Kac’s formula to semi-linear parabolic equations.

More recently, Kobylanski [9], Delarue [7], Briand–Hu [4], Tevzadze [13], etc. have
extended Pardoux–Peng’s result to some BSDEs with non-linear drivers of quadratic
growth. These papers however mainly deal with scalar BSDEs only, which corresponds
to semi-linear scalar parabolic equations. It remains largely an open problem whether



Author's personal copy

662 A.B. Cruzeiro, Z.M. Qian / Journal of Functional Analysis 267 (2014) 660–677

the BSDE approach may be applied to non-parabolic type of partial differential equa-
tions. We study in the present paper a class of backward stochastic differential equations
which arise from the vorticity formulation of the Navier–Stokes equations, hence provide
Feynman–Kac type formula for solutions of the Navier–Stokes equations.

Relations between the Navier–Stokes equation and forward–backward stochastic dif-
ferential equations formulated in the group of diffeomorphisms were introduced in [5].

2. The vorticity equation

Let us describe a class of (infinite dimensional) backward stochastic differential equa-
tions associated with the study of Navier–Stokes equations.

The 2D Navier–Stokes equations (without external force) are the partial differential
equations which describe the motion of fluids

∂u
∂t

− νΔu + u · ∇u + ∇p = 0, ∇ · u = 0, (2.1)

where u = (u1,u2) is the velocity field, ν the viscosity constant and p the pressure. The
mathematical study of the Navier–Stokes equations is interesting by its own, and even
the simplest situation where the space periodic condition is supplied is of interest.

Suppose that u(0, x) = ϕ(x) is a smooth vector field with period one, that is,
ϕ(x + ei) = ϕ(x) for all x ∈ R2, where e1 = (1, 0) and e2 = (0, 1) the standard basis
in R2. Then, the unique solution (u, p) to the 2D Navier–Stokes equation is smooth
on (0,∞) × R2 and periodic in space variables, so that u(t, x + ei) = u(t, x) and
p(t, x + ei) = p(t, x) for all t > 0, x ∈ R2, i = 1, 2.

Let

ω = ∂u2

∂x1 − ∂u1

∂x2 (2.2)

be the vorticity of u, which is a scalar function in dimension two, and thus the evolution
equation for ω is a scalar partial differential equation

∂ω

∂t
− νΔω + u · ∇ω = 0. (2.3)

Eq. (2.3) is called the vorticity equation which is equivalent to the Navier–Stokes equa-
tion. The relationship between the scalar function ω and the associated vector field u is
determined by the Poisson equations

Δu1 = − ∂ω

∂x2 and Δu2 = ∂ω

∂x1 . (2.4)
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By (2.2) the average of ω(t, x)

∫
[0,1)2

ω(t, x)dx = 0 for all t ≥ 0, (2.5)

so that (2.4) has a unique periodic (with period one) solution u = (u1,u2). We define
linear operators Ki : ω → ui (where i = 1, 2) and K : ω → u by solving the Poisson
equations (2.4), where ω is a real function with period one and mean zero.

Let T2 = R2/Z2 be the 2D torus equipped with the standard metric and the Lebesgue
measure. We may identify tensor fields in R2 with period one canonically with the cor-
responding tensor fields on T2. For example

L2(T2) =
{
f ∈ L2

loc
(
R2) : f(· + ei) = f(·) for i = 1, 2

}
∩ L2([0, 1)2

)
.

If f ∈ L2(T2) then

f(x) =
∑
k∈Z2

e2π
√
−1〈k,x〉f̂(k) (2.6)

where

f̂(k) =
∫

[0,1)2

e−2π
√
−1〈k,y〉f(y)dy, k ∈ Z2 (2.7)

is the Fourier transform of f , 〈·, ·〉 denotes the scalar product in Euclidean spaces.

Lemma 2.1 (Green’s formula). Consider the Poisson equation

Δg = −f in T2,

∫
T2

g(y)dy = 0, (2.8)

where
∫

T2 f(y)dy = 0 and f ∈ L2(T2). Then the unique solution of the problem (2.8) is
given by

g(x) =
∑

k∈Z2,k �=0

e2π
√
−1〈k,x〉

4π|k|2 f̂(k). (2.9)

Our first goal is to derive a probabilistic representation for ω in terms of Brownian
motion. To this end we set up the probability setting with which we are going to work
with. Let B = (B1, B2) be a standard Brownian motion on a complete probability space
(Ω,F , P ), and define



Author's personal copy

664 A.B. Cruzeiro, Z.M. Qian / Journal of Functional Analysis 267 (2014) 660–677

Y (w, t, x) = ω
(
T − t, x +

√
2vBt(w)

)
,

Z1(w, t, x) = ∂ω

∂x1
(
T − t, x +

√
2vBt(w)

)
,

Z2(w, t, x) = ∂ω

∂x2
(
T − t, x +

√
2vBt(w)

)
for (w, t, x) ∈ Ω × [0,∞) × R2. We will often suppress the random element w from our
notations, and write Y (t, x), Yt or simply by Y for Y (w, t, x), if no confusion is possible.

Let ψ = ∂ϕ2
∂x1 − ∂ϕ1

∂x2 be the vorticity of the initial velocity ϕ ≡ u0, and ξ(x) =
ψ(x +

√
2vBT ). Then, it is clear that ξ is smooth and periodic in x (with again period

one). According to Itô’s formula

ξ(x) − Y (t, x) =
√

2v
T∫
t

〈
∇ω

(
T − s, x +

√
2vBs

)
, dBs

〉

+
T∫
t

(
−∂ω

∂s
+ νΔω

)(
T − s, x +

√
2vBs

)
ds. (2.10)

Now, by using the vorticity equation (2.3): substitute −∂ω
∂s + νΔω by u · ∇ω to obtain

ξ(x) − Y (t, x) =
T∫
t

〈
Z(s, x), X(s, x)

〉
ds +

√
2v

T∫
t

〈
Z(s, x), dBs

〉
(2.11)

where for simplicity we have set

X(t, x) = u
(
T − t, x +

√
2vBt

)
which is continuous in t, smooth in x, and periodic in x. Next, we wish to rewrite X(t, x)
in terms of Y and Z. To this end, it is a good idea to introduce some notions in Fourier
analysis, and establish several notations which will be used in what follows.

Let us apply Green’s formula to the vorticity ω of u. According to (2.4) and (2.9), we
have

u1(t, x) =
√
−1
2

∑
k=(k1,k2)∈Z2, k �=0

k2
|k|2 e

2π
√
−1〈k,x〉ω̂(t, ·)(k) (2.12)

and

u2(t, x) = −
√
−1
2

∑
k=(k1,k2)∈Z2, k �=0

k1
|k|2 e

2π
√
−1〈k,x〉ω̂(t, ·)(k). (2.13)
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In other words

û1(t, ·)(k) =
√
−1
2

k2
|k|2 ω̂(t, ·)(k) and û2(t, ·)(k) = −

√
−1
2

k1
|k|2 ω̂(t, ·)(k),

k �= 0. (2.14)

Hence

X1(t, x) = u1(T − t, x +
√

2vBt

)
=

√
−1
2

∑
k=(k1,k2)∈Z2,k �=0

k2
|k|2 e

2π
√
−1〈k,x+

√
2vBt〉 ̂ω(T − t, ·)(k). (2.15)

On the other hand

Ŷ (t, ·)(k) =
∫

[0,1)2

e−2π
√
−1〈k,y〉ω

(
T − t, y +

√
2vBt

)
dy

= e2π
√
−1〈k,

√
2vBt〉

∫
[0,1)2+

√
2vBt

e−2π
√
−1〈k,y〉ω(T − t, y)dy

= e2π
√
−1〈k,

√
2vBt〉

∫
[0,1)2

e−2π
√
−1〈k,y〉ω(T − t, y)dy

= e2π
√
−1〈k,

√
2vBt〉 ̂ω(T − t, ·)(k)

here the third equality follows from the fact that ω is periodic. Substituting the above
equality into (2.15) to obtain

X1(t, x) =
√
−1
2

∑
k=(k1,k2)∈Z2,k �=0

k2
|k|2 e

2π
√
−1〈k,x〉Ŷ (t, ·)(k), (2.16)

and

X2(t, x) = −
√
−1
2

∑
k �=(k1,k2)∈Z2,k �=0

k1
|k|2 e

2π
√
−1〈k,x〉Ŷ (t, ·)(k). (2.17)

By our definition of linear operators Ki, the previous equations (2.16), (2.17) may be
written as

Xj(t, x) = Kj

(
Y (t, ·)

)
(x) ∀x ∈ R2, j = 1, 2. (2.18)
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Thanks to (2.18) we may finish our computation for Y as follows. According to (2.11)

ξ(x) − Y (t, x) =
√

2v
T∫
t

〈
Z(s, x), dBs

〉
+

T∫
t

〈
Z(s, x),K

(
Y (s, ·)

)
(x)
〉
ds (2.19)

where x runs through R2.

3. Feynman–Kac formula for the vorticity

The preceding stochastic integral equation (2.19) may be put in a differential form

dY =
〈
Z,K(Y )

〉
dt +

√
2v〈Z, dB〉, YT = ξ (3.1)

where the time space variable x, for simplicity, is suppressed. The initial value problem
to the vorticity equation (2.3) is transferred to a terminal value problem to the stochastic
differential equation (3.1) within the formulation of BSDEs. In order to derive a non-
linear version of the Feynman–Kac formula for the vorticity ω, we need to study the
infinite dimensional BSDE (3.1).

BSDE (3.1) possesses two features which make it difficulty to study. First, the stochas-
tic equation (3.1) must be solved in a function space, so it is an infinite dimensional
stochastic differential equation (with finite dimensional noise). Second, the non-linear
term in this BSDE is quadratic in Y and Z, which is the origin of all difficulties. There
are few results in literature about this kind of backward stochastic differential equations.

Let B = (B1, B2) be a standard Brownian motion on a complete probability space
(Ω,F ,P). Let F0

t = σ{Bs: s ≤ t} and (Ft)t≥0 be the completed continuous filtration
associated with (F0

t )t≥0. Let O and P be the optional and predictable σ-fields on Ω ×
[0,∞), respectively. Let Q̃ = O × B(R2) and P̃ = P × B(R2) be the optional and
predictable σ-algebras on Ω×[0,∞)×R2. A Q̃-measurable (resp. P̃-measurable) function
on Ω×[0,∞)×R2 is called an optional (resp. predictable) function, or called an R2-valued
optional (resp. predictable). We may similarly define O×B(T2) and P×B(T2) which are
identified with elements in the O×B(R2) and P ×B(R2) respectively which are periodic
in the space variables with period one.

In order to derive a non-linear version of the Feynman–Kac formula for the vorticity
ω we need to prove the existence and the uniqueness of solutions to (3.1) subject to the
given terminal value ξ. Actually we will do this for a general terminal value ξ which is
not necessary in a form of ϕ(BT ).

We will assume that ξ is a bounded random function on Ω × T2 which is FT ⊗B(T2)
measurable, and furthermore, we assume that for every w ∈ Ω, ξ(w, ·) ∈ W 2,2(T2), and∫

T2 ξ(w, y)dy = 0 for all w ∈ Ω. In particular, according to the Sobolev embedding,
x → ξ(w, x) is continuous on T2 for every w ∈ Ω.
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By a solution to BSDE (3.1) we mean a pair of P̃-measurable stochastic processes Y

and Z, such that:

1) For all x ∈ T2, (w, t) → Y (w, t, x) is continuous semimartingale, and for all (w, t) ∈
Ω × [0, T ], Y (w, t, ·) ∈ L2(T2).

2) For every x ∈ T2,

E
T∫

0

∣∣Z(t, x)
∣∣2dt < +∞

so that the Itô’s integral
∫ ·
0〈Z(·, x), dB〉 is a square integrable martingale for

every x.
3) It holds that

Y (t, x) = ξ(x) −
T∫
t

〈
Z(s, x),K

(
Y (s, ·)

)
(x)
〉
ds−

√
2v

T∫
t

〈
Z(s, x), dBs

〉
almost surely on Ω × T2, for t ∈ [0, T ].

Now we are in a position to state our main result.

Theorem 3.1. Under above assumptions on the terminal value ξ, there is a unique solution
pair (Y,Z) to BSDE (3.1) such that

1) Y is bounded on Ω × [0, T ] × T2, and
2) For almost all x ∈ T2, the Itô’s integral

∫ ·
0〈Z(·, x), dB〉 is a BMO martingale, and

ess sup
[0,T ]×Ω

E

{ T∫
t

‖Zs‖2ds
∣∣∣ Ft

}
< +∞

where ‖ · ‖ denotes the L2-norm on T2.

In particular, by applying Theorem 3.1 to ξ = ϕ(BT ) where ϕ = ∇× u0 is bounded,
C2 on T2 and using standard methods for backward differential equations (cf. for exam-
ple [6]) there exists a function ω such that Y (t, x) = ω(T −t,

√
2νBt+x), where (Y,Z) is

the unique solution pair of (3.1) with terminal ξ = ϕ(BT ). Moreover ω is the solution to
the vorticity equation (2.3) subject to the initial value u(0, ·) = u0. Y may be regarded
as the probabilistic representation for the vorticity ω. Therefore the method provides a
probabilistic solution of the vorticity equation.
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The proof of Theorem 3.1 relies on two important technical facts. The first is the
L2-estimate for the linear operator K, and the second is a maximal principle formulated
in terms of backward stochastic differential equations.

4. Several technical estimates

In order to prove the main result Theorem 3.1, we need several A priori estimates.

4.1. A priori estimates for K

Let us recall the definition of K. Note that we identify tensor fields in the torus T2

with the tensor fields on R2 with period one along each space variable. For k ∈ Z+ and
q ≥ 1 the Sobolev space

W k,q
(
T2) =

{
f : ∂αf ∈ Lq

loc
(
R2) ∩ Lq

(
[0, 1)2

)
for |α| ≤ k and f(· + ei) = f(·)

for i = 1, 2
}

together with the Sobolev norm

‖f‖k,q =
( ∑

α∈Z2,|α|≤k

∥∥∂αf
∥∥q
q

)1/q

where ‖ · ‖q is the Lq-norm over T2, that is

‖f‖q =
(∫

T2

|f |q
)1/q

=
( ∫

[0,1)2

∣∣f(x)
∣∣qdx)1/q

.

If q = 2 then we use ‖ · ‖ instead of ‖ · ‖2 for simplicity.
According to Sobolev’s embedding theorem, W 2,2(T2) ↪→ Cα(T2) for some α ∈ (0, 1),

so any element in W 2,2(T2) has a unique continuous representation.
If f ∈ L2(T2) such that

∫
[0,1)2 f = 0, then Kj(f) = gj are the unique solutions (with

period one) such that
∫
[0,1)2 gj = 0, solving the Poisson equations

Δg1 = − ∂f

∂x2
, Δg2 = ∂f

∂x1
on T2. (4.1)

By definition, if α = (α1, α2) ∈ Z+ × Z+, then ∂αKj(f) = Kj(∂αf), where ∂α stands
for the partial derivative ∂|α|

∂x
α1
1 ∂x

α2
2

for simplicity as long as ∂αf ∈ L2(T2).
On the other hand∫

T2

|∇gj |2 = −
∫
T2

gjΔgj =
∫
T2

g1
∂f

∂x2
or −

∫
T2

g2
∂f

∂x1



Author's personal copy

A.B. Cruzeiro, Z.M. Qian / Journal of Functional Analysis 267 (2014) 660–677 669

according to j = 1 or j = 2. Integrating by parts together with Cauchy–Schwarz inequal-
ity to the last integrals we deduce that

∫
T2

|∇gj |2 ≤
√√√√∫

T2

|∇gj |2
√√√√∫

T2

|f |2

which yields that ∥∥∇Kj(f)
∥∥ ≤ ‖f‖, j = 1, 2. (4.2)

Let λ1 > 0 be the spectral gap for the torus T2. Since
∫

T2 Kj(f) = 0, according to the
Poincaré inequality

∥∥Kj(f)
∥∥ ≤ 1√

λ1

∥∥∇Kj(f)
∥∥ ≤ 1√

λ1
‖f‖. (4.3)

Therefore we have the following elliptic estimate (for more details see for example
[1,2,10]).

Lemma 4.1. There is a universal constant C0 > 0 such that∥∥Kj(f)
∥∥
k,2 ≤ C0‖f‖k−1,2

for any f ∈ W k−1,2(T2) with
∫

T2 f = 0, where k ∈ N.

In particular, if f ∈ W 1,2(T2), K(f) is α-Hölder continuous.

4.2. A maximum principle

Let us formulate a probabilistic version of the maximum principle in terms of BSDE.

Lemma 4.2. Suppose y is a continuous semimartingale such that

yt = yT −
T∫
t

〈h, z〉ds−
T∫
t

〈z, dB〉 for t ∈ [0, T ],

where yT is a bounded FT -measurable random variable, both z and h are Rd-valued
predictable processes such that

E
T∫

0

|z|2dt < ∞
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and suppose that

Rt = exp
[
−

t∫
0

〈h, dB〉 − 1
2

t∫
0

|h|2ds
]

is a martingale up to T . Then |yt|∞ ≤ |yT |∞ for all t ∈ [0, T ].

Proof. Define a probability Q with density R. Then P is equivalent to Q on FT , and
according to Girsanov’s theorem B̃t = Bt +

∫ t

0 hsds is a standard Brownian motion, and

yt − yT = −
T∫
t

〈z, dB̃〉.

Therefore yt = EQ{yT | Ft} so that |yt|∞ ≤ |yT |∞. �
4.3. A linear BSDE

Let us consider the following linear BSDE

dY = 〈Z, h〉dt + 〈Z, dB〉, YT = ξ (4.4)

with h ∈ Q̃ is a given optional process (valued in T2) such that for each (w, t) ∈ Ω×[0, T ],
h(w, t, ·) ∈ C(T2) and

E
T∫

0

∣∣h(t, x)
∣∣2dt < ∞ ∀x ∈ T2. (4.5)

ξ is the terminal value:

ξ ∈ L∞(Ω × T2) ∩ L∞(Ω,FT ,W
2,2(T2)).

The linear equation (4.4) may be solved for every x ∈ T2, and in fact we may solve the
linear BSDE

dY (t, x) =
〈
Z(t, x), h(t, x)

〉
dt +

〈
Z(t, x), dBt

〉
,

Y (T, x) = ξ(x), (4.6)

by means of changing probability. More precisely, for each x ∈ T2, since (4.5) holds, we
can define a probability Qx on FT by dQx

dP = R(T, x), where



Author's personal copy

A.B. Cruzeiro, Z.M. Qian / Journal of Functional Analysis 267 (2014) 660–677 671

R(t, x) = exp
[
−

t∫
0

〈
h(s, x), dBs

〉
− 1

2

t∫
0

∣∣h(s, x)
∣∣2ds].

If (Y (·, x), Z(·, x)) is the unique solution of (4.6), then, according to the Girsanov theo-
rem, Y (·, x) must be a martingale under the new probability Qx, we therefore have

Y (t, x) = EQx{
ξ(x) | Ft

}
which implies that

Y (t, x) = E
{
R(T, x)
R(t, x) ξ(x)

∣∣∣ Ft

}
for (t, x) ∈ [0, T ] × T2. Therefore we have established the following

Lemma 4.3. Suppose that ξ is W 2,2(T2)-valued FT -measurable random variable, and
suppose that h is a W 2,2(T2)-valued adapted stochastic process satisfying (4.5), then the
unique solution to (4.4) is given by

Y (t, x) = E
{
ξ(x)e−

∫ T
t
〈h(s,x),dBs〉− 1

2
∫ T
t

|h(s,x)|2ds | Ft

}
(4.7)

for t ∈ [0, T ] × T2.

It is clear that

∂jY (t, x) = E
{
∂jξ(x)R(T, x)

R(t, x)

∣∣∣ Ft

}

+ E

{
ξ(x)

(
−

T∫
t

〈
∂jh(s, x), dBs

〉
−

T∫
t

〈
h(s, x), ∂jh(s, x)

〉
ds

)
R(T, x)
R(t, x)

∣∣∣ Ft

}

so we have the following simple fact.

Corollary 4.4. 1) If in addition ξ and h are bounded, then the solution Y is continuous
in (t, x). 2) If in addition ξ and h have bounded derivatives in x, then so is Y .

5. Proof of Theorem 3.1

This section is devoted to the proof of Theorem 3.1. We will use the following
convention in our proof. The elliptic estimates show that if f ∈ W k,2(T2) then
K(f) ∈ W k+1,2(T2), thus if k ≥ 1, then, according to the Sobolev embedding, K(f)
has a Hölder continuous version. Therefore, if f ∈ W 1,2(T2) for k ≥ 1, K(f) is always
chosen to be its continuous version.
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Let H denote the collection of all bounded P̃-measurable stochastic processes Y on
Ω × [0, T ] × T2 satisfying the following conditions:

1) For each x ∈ T2, Y (·, x) is a continuous semimartingale (up to time T ) on
(Ω,F ,Ft,P) whose martingale part M (with M0 = 0) is a BMO martingale, and YT = ξ.
Moreover, for every (w, t) ∈ Ω × [0, T ], Y (w, t, ·) ∈ W 2,2(T2).

2) Let the Itô’s representation of the martingale part

M(t, x) =
t∫

0

〈
Z(t, x), dBt

〉

where Z is P̃-measurable. Then

ess sup
[0,T ]×Ω

E

{ T∫
t

‖Zs‖2ds
∣∣∣ Ft

}
< +∞.

Let Y ∈ H, we define L(Y ) = Ỹ by solving the following linear backward stochastic
differential equation

dỸ (t, x) =
〈
Z̃(t, x),K

(
Y (t, ·)

)
(x)
〉
dt +

√
2v
〈
Z̃(t, x), dBt

〉
, Ỹ (T, x) = ξ(x), (5.1)

for every x ∈ T2. Then Ỹ ∈ H.

5.1. A priori estimate for the density process Z

If Y ∈ H, in particular Y is a bounded function on Ω × [0, T ] × T2. ‖Y ‖∞ denotes
the essential bound of Y on Ω × [0, T ] × T2.

Suppose Y ∈ H such that ‖Y ‖∞ ≤ C1. Define Ỹ = L(Y ), and Z̃ the density process
of the martingale part of Ỹ , that is, define (Ỹ , Z̃) by solving the following linear BSDE

dỸ =
〈
Z̃,K(Y )

〉
ds +

√
2ν〈Z̃, dB〉, ỸT = ξ (5.2)

where |ξ(w, t, x)| ≤ C1. By the maximal principle, |Ỹ (w, t, x)| ≤ C1.
For simplicity, we will use EFt to denote the conditional expectation E{· | Ft}.
By Itô’s calculus,

|Ỹt|2 = |ξ|2 − 2ν
T∫
t

|Z̃|2ds− 2
T∫
t

Ỹ
〈
Z̃,K(Y )

〉
ds− 2

√
2ν

T∫
t

Ỹ 〈Z̃, dB〉.
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First take conditional expectations, to obtain that

|Ỹt|2 + 2νEFt

T∫
t

|Z̃|2ds = EFt |ξ|2 − 2EFt

T∫
t

Ỹ
〈
Z̃,K(Y )

〉
ds

≤ C2
1 + 2C1EFt

T∫
t

∣∣〈Z̃,K(Y )
〉∣∣ds

then integrating over T2 and using the estimate from the maximum principle, we have

‖Ỹt‖2 + 2νEFt

T∫
t

‖Z̃‖2ds ≤ C2
1 + 2C1EFt

T∫
t

∫
T2

∣∣〈Z̃,K(Y )
〉∣∣ds

≤ C2
1 + 2C1EFt

T∫
t

∥∥K(Y )
∥∥‖Z̃‖ds

≤ C2
1 + C1EFt

T∫
t

[
ε
∥∥K(Y )

∥∥2 + 1
ε
‖Z̃‖2

]
ds

≤ C2
1 + εC1C0EFt

[ T∫
t

‖Y ‖2ds

]
+ C1

ε
EFt

[ T∫
t

‖Z̃‖2ds

]

for every ε > 0. Recall that

‖Z̃‖2
BMO = ess sup

Ω×[0,T ]
EFt

T∫
t

‖Z̃‖2ds.

It follows that

‖Z̃‖2
BMO ≤ C1

2ν

[
C1 + TεC2

1C0 + 1
ε
‖Z̃‖2

BMO

]
. (5.3)

Choose ε = C1
ν , we obtain

‖Z̃‖BMO ≤ C1
ν

√
ν + TC0C2

1 .

That is, the norms ‖Ỹ ‖∞ and ‖Z̃‖BMO are uniformly bounded, depending only on ν,
C1, C0 and T .
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5.2. Contraction property

Let α be a real number to be chosen later, and consider Y α
t = eαtYt and Ỹ α

t = eαtỸt.
Then, according to integration by parts

dỸ α =
〈
Z̃,K

(
Y α
)〉
ds +

√
2ν
〈
Z̃α, dB

〉
+ αỸ αdt.

Denote δY α = Y α − Y ′α and δZα = Zα − Z ′α. Then

d
(
δỸ α

)
= Φds + α

(
δỸ α

)
ds +

√
2ν
〈
δZ̃α, dB

〉
where

Φs =
〈
Z̃s,K

(
Y α
s

)〉
−
〈
Z̃ ′
s,K

(
Y ′α
s

)〉
.

It follows that

∣∣δỸ α
t

∣∣2 = −2ν
T∫
t

∣∣δZ̃α
∣∣2ds− 2α

T∫
t

∣∣δỸ α
∣∣2ds

− 2
T∫
t

(
δỸ α

)
Φds− 2

√
2ν

T∫
t

(
δỸ α

)〈
δZ̃α, dB

〉
by taking conditional expectation given the information up to Ft; we obtain

∣∣δỸ α
t

∣∣2 = −2νEFt

T∫
t

∣∣δZ̃α
∣∣2ds− 2αEFt

T∫
t

∣∣δỸ α
∣∣2ds− 2EFt

T∫
t

(
δỸ α

)
Φds.

Now integrating over T2, to obtain

∥∥δỸ α
t

∥∥2 = −2νEFt

T∫
t

∥∥δZ̃α
∥∥2

ds− 2αEFt

T∫
t

∥∥δỸ α
∥∥2

ds− 2EFt

T∫
t

∫
T2

(
δỸ α

)
Φds. (5.4)

Let us write for simplicity

J(t) =
∥∥δỸ α

t

∥∥2 + 2νEFt

T∫
t

∥∥δZ̃α
∥∥2

ds + 2αEFt

T∫
t

∥∥δỸ α
∥∥2

ds.
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Then (5.4) implies that

J(t) = −2EFt

T∫
t

∫
T2

(
δỸ α

)
Φds

≤ 2EFt

T∫
t

∥∥δỸ α
∥∥‖Φ‖ds

≤ 2
(

EFt

T∫
t

∥∥δỸ α
∥∥2

ds

) 1
2
(

EFt

T∫
t

‖Φ‖2ds

) 1
2

(5.5)

which yields that

J(t) ≤ 2
(

EFt

T∫
t

∥∥δỸ α
∥∥2

ds

) 1
2
(

EFt

T∫
t

‖Φ‖2ds

) 1
2

≤ 2αEFt

T∫
t

∥∥δỸ α
∥∥2

ds + 1
2αEFt

T∫
t

‖Φ‖2ds. (5.6)

Let us now consider the last integral appearing on the right-hand side of (5.6). It is
clear that

‖Φs‖ =
∥∥Z̃s ·K

(
Y α
s

)
− Z̃ ′

s ·K
(
Y ′α
s

)∥∥
=
∥∥Z̃s ·K

(
δY α

s

)
+ δZ̃α

s ·K
(
Y ′
s

)∥∥
≤
∥∥K(δY α

s

)∥∥‖Z̃s‖ +
∥∥K(Y ′

s

)∥∥∥∥δZ̃α
s

∥∥
≤ C0

∥∥δY α
s

∥∥‖Z̃s‖ + C0
∥∥Y ′

s

∥∥∥∥δZ̃α
s

∥∥
plugging into (5.6) we conclude that

J(t) ≤ 2αEFt

T∫
t

∥∥δỸ α
∥∥2

ds + C2
0C

2
1

α

ν + TC0C
2
1

ν2

∥∥δY α
∥∥2
∞

+ C2
0C

2
1

α
EFt

T∫
t

∥∥δZ̃α
∥∥2

ds (5.7)

where we have used the uniform bounds

‖Ỹ ‖∞ ≤ C1 and ‖Z̃‖BMO ≤ C1
ν

√
ν + TC0C2

1 .
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Choose α > 0 such that

C2
0C

2
1

α

ν + TC0C
2
1

ν2 ≤ 1
16 ,

C2
0C

2
1

α
≤ ν

4

then (5.7) yields that

∥∥δỸ α
∥∥
∞ +

∥∥δZ̃α
∥∥
BMO ≤ 1

2
∥∥δY α

∥∥
∞.

Theorem 5.1. There is α > 0 such that, L is a contraction on H under the norm

‖Y ‖α,∞ =
∥∥Y α

∥∥
∞ +

∥∥Zα
∥∥
BMO

where Zα
t = eαtZt and Z is the density process of the martingale part of Y .

We are now in a position to complete the proof of Theorem 3.1. The sequence of
Picard’s iteration is constructed as the following. Begin with

Y0(t, x) = E
{
ξ(x) | Ft

}
(here we mean the continuous version of the optional projection of ξ) and Z0 is the
density process of Y0 with respect to the Brownian motion determined by Itô’s martingale
representation. Since ξ ∈ W 2,2(T2), so Y0(t, ·) ∈ W 2,2(T2) for all t almost surely. Define
Yn+1 = L(Yn) for n = 0, 1, 2, · · · . Then Lemma 4.3 implies that all Yn ∈ H and in
particular (t, x) → Yn(·, t, x) are continuous almost surely, so that

P
{∣∣Yn(t, x)

∣∣ ≤ C1 for all (t, x, n) ∈ [0, T ] × T2 × N
}

= 1. (5.8)

Theorem 5.1 implies that {Yn} is a Cauchy sequence under the norm ‖ · ‖α,∞ for some
α > 0, and therefore has a limit Y which is a solution to (3.1).
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