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Abstract. We describe how to generalize to the stochastic case the notion

of geodesic on a Lie group equipped with an invariant metric. We give a

characterization of the stochastic geodesic equations in terms of a backward
stochastic differential equation.

When the group is the diffeomorphisms group this corresponds to a prob-

abilistic description of the Navier-Stokes equations.
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1. Introduction

The study of stochastic Lagrangian variational principles has been motivated
initially by quantum mechanics, especially Feynman’s path integral approach of
this theory and also by optimal control problems. We refer to [16] and [7] for the
first perspective. The second one can be found in [12] but mainly in the early and
groundbreaking work of J. M. Bismut, who introduced also the concept of backward
stochastic differential equations (c.f. for example [4]).

More recently these stochastic methods and ideas have been re-introduced in the
context of fluid dynamics: in [8] the critical stochastic flows for the kinetic energy on
the volume-preserving diffeomorphisms group of the torus were described as those
whose drift satisfies the Navier-Stokes equations. The torus can be replaced by any
(reasonable) Riemannian manifold, as was shown in [2]. This result generalizes to
the viscous case of Arnold’s characterization of Euler’s equation for ideal fluids as
geodesics on the group of volume-preserving diffeomorphisms ([3]).

Actually, the same kind of stochastic variational principles can be derived on
general Lie groups: this is the content of reference [1]. The result is a stochastic
version of the classical approach in the theory of Geometric Mechanics ([15]).

Originated in Bismut’s approach to mechanics ([5] a different type of stochastic
generalization or, more precisely, a random perturbation of geometric mechanics
has been developed in [6].

Many examples of deterministic Euler-Arnold geodesics, namely geodesics on a
Lie group equipped with an invariant metric, have been studied with this point
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of view. They include not only Euler but also many interesting equations such as
Camassa-Holm or Korteweg-de Vries, formulated in infinite-dimensional Lie groups
with suitable metrics. For a survey of this subject we refer to [13].

In this work we first recall the formulation of the stochastic variational principle
on Lie groups derived in [1]. Then we give a relation between stochastic geodesic
equations and a backward stochastic differential equation. This relation turns out
to be very simple for the case of the volume preserving diffeomorphisms group. For
the subject of backward and forward-backward stochastic equations we refer to [14].

2. The variational principles

Let G denote a Lie group, e its identity element and G the corresponding Lie
algebra which can be identified with TeG. Assume that G is endowed with a right-
invariant Riemannian metric.

The Lagrangian corresponding to the kinetic energy is

L (ug) =
1

2
< TgRg−1ug, TgRg−1ug >, ∀ug ∈ TgG,

for g ∈ G, where Rg is the right translation by the element g on G and TaRg :
TaG → TagG is its differential. This Lagrangian is right-invariant, but one can
work as well with left-invariant Lagrangians.

For all the Lagrangian paths g(.) ∈ C1([0, T ];G), using Euler-Poincaré reduc-

tion (c.f.[15]), the critical flows g(t) for the action functional
∫ T

0
L ( ddtg(t))dt (the

geodesics for the corresponding metric) are solutions of the following equations:{
d
dtg(t) = TeRg(t)u(t)
d
dtu(t) = −ad∗u(t)u(t)

where ad∗ is the dual of the ad operator with respect to the metric, i.e.< ad∗uv, w >=<
v, aduw >.

We describe the extension of the notion of geodesics to the stochastic case.
For this we fix a right-invariant Riemannian connection (not necessarily the Levi-

Civita connection) on the Lie group, that we denote by ∇ and take a sequence of
vectors Hk in TeG, not necessarily a basis of the Lie algebra.

The paths g(t) will now be stochastic processes, more precisely semi-martingales
of the form

(2.1) dgu(t) = TeRgu(t)(
∑
k

HkodW
k
t −

1

2
∇HkHkdt+u(t)dt), gu(0) = e, t ∈ [0, T ]

Here W k
t are real valued independent Brownian motions, o denotes Stratonovich

integration, and u(.) ∈ C1([0, T ];TeG) a non random map.
In terms of Itô integration the process g(t) can be written as

(2.2) dgu(t) = TeRgu(t)(
∑
k

HkdW
k
t + u(t)dt)

When Hk is an orthonormal basis of TeG, ∇ is the Levi-Civita connection,
u(t) = 0 for all t and ∇HkHk = 0 for all k then g(.) ≡ g0(.) is the Brownian motion
associated to the Laplace-Beltrami operator.
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Our results hold for the finite dimensional Lie group, as well as some infinite
dimensional groups, for example, the group of diffeomorphism on Riemannian man-
ifolds.

Remark that if Hk = 0 for each k, we are back to deterministic paths with
velocity given by the vector field u(t).

Since the paths are now not differentiable with the time parameter, we must
replace their derivative in time by a ”mean” generalized derivative. For a con-
tinuous G-valued semi-martingale ξ(.) with ξ(0) = x we consider the TxG-valued

semi-martingale η(t) =
∫ t

0
T0←sodξ(s), where Tt←s : Tξ(s)G → Tξ(t)G is the (sto-

chastic) parallel transport along ξ(.) associated to the connection ∇ and o denotes
Stratonovich integration. Although the path ξ(.) is not differentiable, the parallel
transport is well defined, as was shown by Itô. Then we consider the generalized
derivative for the TxM valued semi-martingale η(.)

(2.3) Dtη(t) = limε→0
1

ε
E
[
(η(t+ ε)− η(t)

∣∣∣Ft

]
where Ft denotes the natural filtration generated by ξ(.), i.e. Ft = σ

{
ξ(s), s ∈

[0, t]
}

. Finally we define,

(2.4) D∇t ξ(t) := Tt←0Dtη(t)

This notion depends, of course, on the chosen connection ∇.
Define the action functional as

(2.5) J∇,< > := E

∫ T

0

L (D∇t ξ(t))dt,

in fact, it is associated with the following (stochastic) kinetic energy for the semi-
martingale ξ(.)

(2.6) L (D∇ξ(t)) =
1

2
< Tξ(t)Rξ(t)−1D∇t ξ(t), Tξ(t)Rξ(t)−1D∇t ξ(t) >

Remark that the action functional J∇,< > depends on the choice of the metric
as well as the connection, which can be chosen independently.

We say that a G-valued semimartingale ξ(.) is critical for the action functional
above if for every v(.) ∈ C1([0, T ];TeG) with v(0) = v(T ) = 0 we have

d

dε
|ε=0J

∇,< >(ξ(.)eε,v(.)) = 0

where eε,v(.) is the flow in G generated by εv(.),

(2.7)

{
d
dteε,v(t) = εTeReε,v(t)

d
dtv(t)

eε,v(0) = e

By generalizing Euler-Poincaré reduction methods to the stochastic case we
proved the following

Theorem ([1]). A G-valued semi-martingale of the form (2.1) is critical for
J∇,< > if and only if the vector field u(.) satisfies the following (reduced) equation:

(2.8)
d

dt
u(t) = −ad∗ũ(t)u(t)−K(u(t))
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where

(2.9) ũ(t) = u(t)− 1

2

∑
k

∇HkHk

and K : TeG→ TeG is defined by

(2.10) < K(u), v >= − < u,
1

2

∑
k

(∇advHkHk +∇Hk(advHk)) >, ∀u, v ∈ TeG

Analogous results (modulo changes of signs in the equations) hold for left-
invariant metrics and left-invariant connections.

An important observation is that, in the right-invariant case, if ∇ is the Levi-
Civita connection with respect to the metric and we assume that ∇HkHk = 0 for
every k, then the operator K reduces to

(2.11) K(u) = −1

2

∑
k

(∇Hk∇Hku+R(u,Hk)Hk),

where R is the Riemannian curvature tensor. In particular, if Hk is an orthonormal
basis of TeG, K coincides with the minus of de Rham-Hodge Laplacian. This is
important for applications, especially to derive Navier-Stokes equations (cf. [8] and
[1]).

We shall call a stochastic geodesic on a Lie group endowed with a right-invariant
metric and connection a G-valued semi-martingale gu(.) of the form

dgu(t) = TeRgu(t)(
∑
k

HkodW
k
t −

1

2
∇HkHkdt+ u(t)dt), gu(0) = e

which is critical for an action functional J∇,< > as defined above.

3. Relation with backward differential equations

In this section we give a characterization of the stochastic geodesics as solutions
of a stochastic backward differential equation.

We shall consider the case referred above, namely∇ is the Levi-Civita connection
with respect to the metric, Hk is an orthonormal basis of TeG, ∇HkHk = 0 for every
k. Then the operator K is the de Rham-Hodge Laplacian. In particular K coincides
with its dual.

Denote by ū(t, .) = −u(T − t, .). We have,

(3.1)
d

dt
ū(t) = −ad∗ū(t)ū(t) +K(ū(t))

Consider then the process g(.) defined for t ∈ [0, T ] by

(3.2) dg(t) = TeRg(t)(
∑
k

HkodW
k
t ), g(0) = e

where, since we are assuming ∇HkHk = 0 for every k, the Stratonovich integral
coincides with the Itô one.
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Let X(t) := TeRg(t)ū(t), note that X(t) ∈ Tg(t)G. We denote the stochastic
covariant derivative along g(.) associated with the connection ∇ by Dt, then we
have,

DtX(t) = TeRg(t)

(∑
k

∇Hk ū(t) ◦ dW k
t +

d

dt
ū(t)dt

)
= TeRg(t)

(∑
k

(
∇Hk ū(t)dW k

t +
1

2
∇Hk∇Hk ū(t)dt

)
−
(
ad∗ū(t)ū(t)−K(ū(t))

)
dt
)
,

(3.3)

where in the second step we use the equation (3.1) for ū(t) and decompose the
Stratonovich integral ∇Hk ū(t)◦dW k

t into the associated Itô integral the contraction
terms by the connection ∇.

Let Zk(t) := TeRg(t)∇Hk ū(t), and a linear map Γ be defined by,

Γ(u, v) := TeRg

(
∇TgRg−1uTgRg−1v

)
, ∀u, v ∈ TgG,

We can write

TeRg(t)
(
∇Hk∇Hk ū(t)

)
= Γ(H̃k(g(t)), Zk(t)),

where H̃k denote the right invariant vector fields associated with Hk.

TeRg(t)(ad
∗
ū(t)ū(t)) =

∑
k

〈ad∗ū(t)ū(t), Hk〉H̃k(g(t))

=
∑
k

〈ū(t), adū(t)Hk〉H̃k(g(t)) =
∑
k

〈ū(t),∇Hk ū(t)−∇ū(t)Hk〉H̃k(g(t))

=
∑
k

(
〈X(t), Zk(t)− Γ(X(t), H̃k(g(t)))〉

)
H̃k(g(t)).

In the same way, by (2.11), we get,

TeRg(t)K(ū(t)) = −1

2

∑
k

Γ(H̃k(g(t)), Zk(t))− Ric(X(t)).

Combing all of the above equalities into (3.3), we have the following result,

Theorem 1. If the non-random vector field ū ∈ C1([0, T ];TeG) solves the equa-

tion (3.1) with final condition u(T ) = uT , then
(
g(t), X(t) := TeRg(t)ū(t), {Zk(t) :=

TeRg(t)∇Hk ū(t)}
)

solves the following forward-backward stochastic equation,

(3.4)


dg(t) =

∑
k TeRg(t)Hk ◦ dW k

t

DtX(t) =
∑
k Zk(t)dW k

t − 1
2Ric(X(t))dt

−
∑
k

((
〈X(t), Zk(t) + Γ(X(t), H̃k(g(t)))〉

)
H̃k(g(t))dt

g(0) = e, X(T ) = TeRg(T )uT .

We notice that the appearence of the Ricci term is due to the choice of covariant
derivative.

Hence we give an existence theorem for equation (3.4) with some special terminal
condition, i.e. Tg(T )Rg−1(T )X(T ) is non-random. But to the authors knowledge,
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existence and uniqueness of solutions for such backward and forward-backward
equations with general random terminal condition is still unknown. In fact, due
to the special terminal condition here, we do not need to use the manifold-valued
martingale representation theorem to get the expression of Zk(t), and we can get
Zk(t) directly by Itô formula. But for general terminal conditions, it seems that we
still have to use the manifold-valued martingale representation theorem, which is
also the main contribution in ([11]), where the backward SDE on some particular
Lie group is studied.

Moreover, under some assumption of the solution of (3.4), by reversing the com-
putation above, we can derive the converse of Theorem 1, namely

Theorem 2. If (g(t), X(t), {Zk(t)}) is a solution of (3.4) and ū(t) := Tg(t)Rg(t)−1X(t)
is non-random and differentiable with respect to the time parameter, then ū(t) solves
the equation (3.1) with terminal value ū(t) = uT .

4. The Navier-Stokes equations

When G is the (right-invariant) diffeomorphisms group of volume preserving
maps on a manifold, equation (2.8) is the Navier-Stokes equation (c.f. [1] and [8]).
If the manifold is flat, these equations are

(4.1)
d

dt
u(t) = −(u.∇)u(t) +

1

2
∆u(t) +∇p(t), div u(t) = 0

considered in the weak (L2) distributional sense.
In this case, we can get a simple expression of equation (3.4) by direct computa-

tion. For the diffeomorphism group of the three-dimensional torus, we choose the
vector fields {Hk}3k=1 to be the collection of vector fields

H1(θ) = (1, 0, 0), H2(θ) = (0, 1, 0), H3(θ) = (0, 0, 1)

We have here that g(t) is a standard Brownian motion, X(t) = ū(t, gt), and by
Ito formula,

dX(t) =
∑
k

∂kū(t, g(t))dW k
t + [∂tū+

1

2
∆ū](t, g(t))dt,

where ∂k denotes the derivative with the variable θk. Therefore, writing Zk(t) =
∂kū(t, g(t)), we have

(ū.∇)ū(t, g(t)) =
∑
k

(
X(t), Hk(g(t))

)
3
Zk(t),

where (, )3 denotes the inner product in the three-dimensional torus. Hence by
(4.1), we get the following equation,

g(t, θ) = Wt

X(t) =
∑
k ZkdW

k
t −

∑
k

(
X(t), Zk(t)

)
3
dt−∇p(g(t))dt

g(0, θ) = θ, X(T ) = uT (g(T, θ))

This Navier-Stokes equation on the torus has been studied from the point of
view of forward-backward and backward stochastic equations in [9] and [10].
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