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1 Introduction

Since the introduction by Feynman of his famous path integral approach to Quan-
tum Mechanics many mathematiciens have tried through different ways to provide
a rigorous and general framework for this approach. The Feynman original integral
is associated with an Hamiltonian of the form H = −1

2
∆ + V , for V a scalar po-

tential, and it should look like an integral with respect to a ”probability measure”
on the space of paths x : [0, t] → Rd:

dν(x) =
1

Z
exp i(

1

2

∫ t

0

|ẋ|2(s)ds−
∫ t

0

V (x(s))ds)dx

where Z is a normalization constant and ”dx = Πs∈[0,t]dx(s)” should account for a
kind of Lebesgue measure, which does not exist on an infinite dimensional space.

It is known since [3] that such a measure is not well defined, even in the free
case (V = 0), although some rigorous notion of Feynman integral can be formulated
(cf.[1],[16]). Nevertheless another object, the Wiener measure, which is a perfectly
well defined probability measure on the space of continuous paths, looks almost the
same as ν except for the imaginary parameter i. To use a physical language, let’s
say that working with the Wiener measure is working ”in imaginary time”. This
measure, and the random motion it describes (the Brownian motion) are at the
basis of the field called Stochastic Analysis, which had an enormous development
in the last century, specially after the work of Itô, with many applications not only
in Physics, but also within Mathematics, and came out to have a great impact in
various other areas, like, more recently, in Mathematical Finance.

One fundamental problem concerning the study of the Wiener measure is the
way it behaves under transformations, that is, its change of variables transformation
rules. The need for that study was already stressed by Feynman himself. The first
works concerning these problems are due to Cameron and Martin ([4],[5]). They
have considered transformations under deterministic shifts, as well as under certain
linear and a few non-linear transformations.

Let X = {x : [0, 1] → Rd, x continuous, x(0) = 0} and µ the Wiener measure
on X. As a probability space X is the so-called (classical) Wiener space. Let

H = {h ∈ X : ḣ exists a.e. and satisfies
∫ 1

0
|ḣ|2ds < ∞}. H is an Hilbert space

densely embedded in X (with respect to the usual topologies); it satisfies µ(H) = 0.
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The Cameron-Martin theorem for deterministic shifts states that if h ∈ H then
the image of the Wiener measure under τh(x) = x + h is absolutly continuous with
respect to µ with Radon-Nikodym density explicitly given by:

(dτh)∗µ

dµ
(x) = exp(

∫ 1

0

ḣ.dx− 1

2
|ḣ|2ds)

where .dx stands for (Itô’s) stochastic integral with respect to the Brownian motion
x.

With the development of Itô calculus, this theorem was later extended to shifts
by adapted H-valued random variables, the expression for the density being analo-
gous to (1.1) (this is the well known Girsanov theorem). Itô calculus is a powerfull
machinery requiring adapteness to the underlying filtration (usually taken to be
the filtration of past events) in order to work out. One can nevertheless legitimely
ask what this notion of adaptness has to do with transformations of the Wiener
measure. A priori, nothing, of course, except that Itô integral is no longer defined.
On the other hand another notion of stochastic integral, due to Skorohod ([23]),
exists: it is a generalization of Itô’s in the sense that it does not require adapteness
of the integrand. With the development of Malliavin calculus the Skorohod integral
was identified with a basic notion (essential for this calculus), namely the diver-
gence on the Wiener space. This allowed to consider much more general change of
variable formulae of the Wiener measure.

In this work we review in the next section some results on (non adapted) trans-
formations T : X → X verifying T (x) − x ∈ H. In section 3 we describe a more
general class of maps (the tangent processes) where a rotation of the space is al-
lowed and which, more recently, became a central object in order to study path
spaces of Riemannian manifolds - integration by parts on such spaces is described
in paragraph 4. Finally, in the last paragraph, we refer to an application of tangent
processes in geometry.

2 Non linear transformations of the Wiener mea-

sure

The classical Jacobi change of variables theorem for diffeomorphisms T in Rd states
that ∫

Rd

f(T (x))|J(x)|dx =

∫
Rd

f(x)dx

where J is the Jacobian determinant of T .
Let us now write T (x) = x + h(x). Replacing the Lebesgue measure dx by the

Gaussian measure dν(x) = 1

(2π)
d
2
exp(− |x|

2

2
)dx we obtain∫

Rd

f(T (x))|J̃(x)|dν(x) =

∫
Rd

f(x)dν(x)

where
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J̃(x) = J(x)exp(−h(x).x− 1

2
|h(x)|2)

Let us recall some notions of Malliavin calculus on the Wiener space that will allow
us to write down an infinite dimensional ”analogue” of the Jacobi formula.

2.1. Differentiation on the Wiener space.
We shall follow the Nualart-Pardoux-Zakai terminology (c.f.[20]) in the frame-

work of Malliavin calculus ([19]).
For a cylindrical functional on the Wiener space, of the form F (x) = f(x(τ1), ..., x(τm)),

with f smooth in Rm and 0 ≤ τ1 < ...τm < 1 a partition of the interval [0, 1], one
defines the following derivative operators:

DτF (x) =
m∑

k=0

1τ<τk
∂kf(x(τ1), ..., x(τm))

For h ∈ H, the derivative of F in the direction of h is defined as

DhF (x) =

∫ 1

0

DτF.
d

dτ
hdτ

The cylindrical functionals are dense in Lp
µ and derivation operators can be

extended by closure to a corresponding domain.
As a linear operator on the (Hilbert) Cameron-Martin space, the derivation

gives rise to the gradient operator, ∇F (x)(h) = DhF (x), and we can define the
Sobolev spaces

W p
1 (X) = {F ∈ Lp

µ : ∇F ∈ Lp
µ(X; H)}

Higher order Sobolev spaces W p
r (r derivatives in Lp

µ) can be defined when we
consider a norm on the space of k-linear operators, k ≤ p.

2.2. The divergence operator.
Let A : X → H be a L2

µ ”vector field”. Its dual with respect to the Wiener
measure, when it exists, is called the divergence of A and will be denoted by δ(A).
We have then, by definition, the following integration by parts formula:

Eµ(DhF ) = Eµ(Fδ(A)) ∀F ∈ W 2
1

If A belongs to the Sobolev space W 2
1 then the divergence exists - this was

proved in [17]. Gaveau and Trauber ([14]) showed that the divergence coincides
with the integral previously defined by Skorohod. In particular if A is an adapted
random variable this integral coincides with Itô’s one and we have

δ(A) =

∫ 1

0

d

dτ
A(x)(τ)dx(τ)

.
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In this paper we take this characterization as the definition of Skorohod integral
itself, namely, for a process u(x)(τ) we write

∫ 1

0
u(x)(τ)dx(τ) = δ(

∫ .

0
u(x)(τ)dτ)

when the divergence is well defined.
On the other hand if we can associate a flow Ut(x) to the vector field A, namely

a solution of the ordinary differential equation

d

dt
Ut(x) = A(Ut(x)), U0(x) = x

(in the sense that the corresponding integral equation holds µ almost everywhere
in x), then the divergence accounts for the infinitesimal action of the flow on the
measure, i.e., we have:

d

dt |t=0

Eµ(U∗t F ) = Eµ(Fδ(A))

for every test function f .
We remark also that the dual of the derivative with respect to the Gaussian

measure on Rd can be obtained explicitely by the integration by parts formula:∫
Rd

(∇f |A)(x)dν(x) =

∫
Rd

f [(A(x)|x)H − trace∇(A)(x)]dν(x)

It is possible to derive the Skorohod integral expression for the divergence by using
a suitable finite dimensional approximation argument on the Wiener space.

2.3. Non linear transformations.
Under suitable hypothesis, the change of variables formula for transformations

T (x) : X → X on the Wiener space of the form T (x) = x + A(x), A(x) ∈ H a.e.,
can be written

Eµ(|J |(x)F (T (x))) = Eµ(F (x))

where

J (x) = det2(IH +∇A)exp(−δ(A)− 1

2
||A||2H),

det2 being the Carleman-Fredholm determinant and IH denoting the identity op-
erator on H. Various authors have contributed to the discovery of this formula.
The version we have written is due to Ramer ([22], c.f. also [25]); it requires some
non trivial assumptions on the Sobolev norms of the transformation T .

For non-random vector fields A the formula gives precisely Cameron-Martin
initial theorem. The fact that it is also a generalization of Girsanov theorem is true
but much more delicate: for adapted shifts ∇A turns out to be quasi-nilpotent ( i.e.
trace(∇A)k = 0 ∀k ≥ 2 ) and this is equivalent to the condition det2(Ih +∇A) = 1
([26]). In the adapted case the classical approach via Itô calculus requires much
weaker hypothesis.

We can look at a (deterministic) shift by h ∈ H as the value at time t = 1 of
the flow associated to the vector h, namely Uh

t (x) = x + th. We know that

d

dt |t=0

(Uh
t )∗µ = δ(h)µ
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and that δ(h) =
∫ 1

0
d
dτ

(τ)dx(τ). By using the group property of the flow we can
integrate this infinitesimal formula and obtain

d(Uh
t )∗µ

dµ
(x) = exp(

∫ t

0

δ(h)(Uh
−s(x))ds

which is precisely Girsanov theorem.
Under suitable Sobolev assumptions on the vector field A these ideas can be ex-

tended (c.f.[7]) in order to define the corresponding flow Ut and derive the following
transformation formula

Eµ(FoUt) = Eµ(Fρt)

where

ρt(x) = exp(

∫ t

0

δ(A)(U−s(x)ds)

A fairly complete reference concerning these ideas can be found in [26] (c.f. also
[19]).

3 Tangent processes

With the development of analysis and geometry on the path space of a Riemannian
manifold the need to extend the tangent space and include rotations of the Wiener
space became clear (c.f.[8],[12]).

We call a tangent process a process ξ on the Wiener space of the form:

dξα(τ) = aα
βdxβ(τ) + cβdτ

where aα
β + aβ

α = 0, aα
β(0) = 0, cα(0) = 0 with α, β = 1, ..., d, and E

∫ 1

0
|c|2dτ < ∞.

When a is adapted the process ξ is a martingale with an antisymmetric diffu-
sion coefficient and we know, by Levy’s theorem, that the martingale part keeps
the Wiener measure invariant. When a is not adapted dx is to be interpreted
in the Skorohod sense and assumptions on a for this integral to be well defined
are required (c.f.[20]). In both cases we also assume that, besides the Skorohod
(resp. Itô) representation, ξ also has a Stratonovich-Skorohod (resp. Stratonovich)
representation.

Given a cylindrical functional F (x) = f(x(τ1), ..., x(τm)) on X we define the
derivative of F with respect to ξ as

DξF =
m∑

k=1

(∂kf.ξ(τk))

In [10] we have considered the question of wether Wiener measure is still in-
variant under non adapted rotations, that is under transformations by anticipative
tangent processes with bounded variation part ( c ) equal to zero. The answer is
yes and was also treated independently in [15]. It is a consequence of the represen-
tation formula of next theorem together with the fact that a Skorohod integral is
a random variable with divergence zero.
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Theorem 1. ([10]) Let dξα = aα
βdxβ(τ) with

∫ 1

0
||a(τ)||W p

1
dτ < ∞ for all p.

Then W q
2 ⊂ Dom (Dξ) forall q > 1 and the following formula holds:

DξF =

∫ 1

0

(
∑

α

aα
βDτ,αF )dxβ(τ)

for every F ∈ W q
2 .

Tangent processes give rise, as Cameron-Martin vector fields do, to flows defined
µ almost everywhere on the Wiener space under suitable (Sobolev type) assump-
tions on the coefficients. The adapted case has been studied in [6] but the methods
extend to the anticipative situation.

4 Integration by parts on the path space of a

Riemannian manifold

Let M be a d-dimensional compact Riemannian manifold. For m0 ∈ M we consider
the path space:

Pm0(M) = {p : [0, 1] → M, p(0) = m0}
endowed with the Wiener measure σ, i.e. the law of the Brownian motion associated
to the Laplace-Beltrami operator on M .

Let O(M) denote the orthonormal frame bundle over M and consider its canon-
ical parallelization, which is given by a differential form (θ, ω) with values in
Rd× so(d). If (Aα)α=1,...,d are the horizontal vector fields on O(M) ( < Aα, ω >= 0
and < Aα, θ >= εα where εα denotes the canonical basis on Rd ), then the
Stratonovich stochastic differential equation

drx(τ) =
∑

α

Aα(rx)dxα, rx(0) = r0

defines a horizontal flow of diffeomorphisms.
The Itô map I : X → Pm0(M), I(x)(.) = π(rx(.)), where π is the canonical

projection, was constructed in [18] and shown to be a a.s. bijection that preserves
the measure, namely such that (I)∗(µ) = σ.

For a cylindrical functional on the path space, F (p) = f(p(τ1), ..., p(τm)),with
f smooth, we consider the operators

Dτ,αF (p) =
∑

k

1τ<τk
(tp0←τk

(∂τk
F )|εα))

where tp0←τ is the Levi-Civita parallel transport over Brownian paths, which was
defined by Itô.

With respect to the norms ||DF ||q
Lq

σ
= Eσ(||DF ||q), where

||DF ||2(p) =
∑

α

∫ 1

0

[Dτ,αF ]2dτ
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this operator is closable, the domain being the Sobolev space W q
1 (Pm0(M)).

A Cameron-Martin vector field on the path space is a map Zp(τ) ∈ Tp(τ)(M)
whose parallel transport to the origin, that we denote by z(τ) = tp0←τZ(τ), belongs
to the Cameron-Martin space. Then one defines

DZF =
∑

α

∫ 1

0

d

dτ
zαDτ,αFdτ

In the last decade analysis and geometry on path spaces has been considerably
developed. We mostly refer to the pioneering works [2] and [12] and to [8] that
follows the development of the Markovian stochastic calculus on the path space
established in [13]. Other sources of information on this subject are [19], [24] and
references within.

One could expect that the differential structure would be preserved as well by
the map I, but differentiation of the Itô map makes things much more complicated
and it turns out that a derivation with respect to a Cameron-Martin vector field
on Pm0(M) corresponds to a derivation on the Wiener space in the direction of
a tangent process. This is why, as already mentionned, such processes became of
crucial importance for the study of the path space. More precisely we have:

Theorem 2. A functional F on Pm0(M) is differentiable along a Cameron-
Martin vector field Z if and only if FoI is differentiable on the Wiener space in
the direction of the tangent process

dξ =
d

dτ
zdτ + ρodx(τ)

where
dρ(τ) = Ω(odx, z)

and Ω denotes the curvature tensor on the manifold M .

This theorem was proved in [12] and [13], generalized to tangent processes
on the path space in [8] and to non adapted vector fields Z in [10](in this case
stochastic integration must be interpreted in the Stratonovich-Skorohod sense).
One of its consequences, in the adapted case, is Bismut’s integration by parts
formula which may be deduced from the expression of the Itô contraction term
dρ.dx = 1

2
RicciMdτ .

Theorem 3. ([2]) If F ∈ W 2
1 (Pm0(M)) and Z is a L2

σ adapted Cameron-Martin
vector field on the path space, we have:

Eσ(DZF ) = Eµ((FoI)

∫ 1

0

[
d

dτ
z +

1

2
RMz]dx)

where RM
τ = tp0←τoRicciMp(τ)ot

p
τ←0.

An extension of the integration by parts formula for non adapted vector fields
also holds (c.f.[9], [10] and [21]).
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Theorem 4. Let Z be a Cameron-Martin vector field in the path space such that
E

∫ 1

0
| d
dτ

z|2dτ < ∞, where z(τ) = tp0←τZ(τ) and such that dρα
β(τ) = Ωα

γ,δ,βzδodxγ(τ)
is well defined and satisfies E||ρ||W p

1
< ∞. Assume also that

E

∫ 1

0

|
∑

β

∫ τ

0

Ω(odx, D̄τ,βz)|2dτ < ∞,

where D̄τ denotes the sum of D+
τ and D−τ defined by D

+(−)
τ .u(τ) = limη→τ+(−)Dτ .u(η).

Then we have

Eσ(DZF ) = Eµ((FoI)

∫ 1

0

[
d

dτ
z +

1

2
(RMz)(τ)− 1

2

∑
β

∫ τ

0

Ωβ(odx, D̄τ,βz)].dx(τ))

The supplementary term with respect to the adapted case is essentially due
to the more complex form of the contraction that gives the difference between
Skorohod and Stratonovich-Skorohod integrals.

5 An assymptotic estimate for the vertical deriva-

tives of the horizontal Laplacian

In this paragraph we describe an application of the non adapted integration by
parts on the path space which has been derived in [11].

Let us consider the horizontal Laplacian on the frame bundle O(M), namely
L =

∑
α A2

α. We assume that the curvature tensor of the manifold M satisfies

(H) c(Ω) = supr∈O(M)||[Ω)r]
−1|| < ∞

Since the brackets [Aα, Aβ] are vertical vectors whose vertical component in
the canonical parallelism of O(M) is precisely Ωβ,α, assumption (H) implies that
L satisfies Hörmander condition and therefore the heat kernel associated to 1

2
L

exists. We denote it by πt.
If q ∈ so(d) is a vertical vector, we have L∂q = ∂qL, which implies that the

vertical derivatives commute with the semigroup associated to L and, in particular,
that

∂1
qπt(r0, r) = −∂2

qπt(r0, r)

Theorem 5. ([11])Under hypothesis (H) and assuming the Ricci curvature of
the manifold M is bounded, we have, for every q ∈ so(d),

lim sup
t→0

t

||q||

∫
O(M)

|∂qπt(ro, r)|γO(M)(dr) ≤ c(d)c(Ω)

where γO(M) denotes the volume element of O(M) and c(d) is a constant depending
only of the dimension d of M .
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The rest of this section is devoted to give an idea of the proof.
We consider the functional

Φβ(x, τ) =
∑

α

∫ τ

0

Ωα,βodxα

where here Ω denotes the scalarization of the curvature tensor at rx(τ), the Brown-
ian flow starting at r0 at time 0. This functional takes values at so(d). For t ∈ [0, 1]
we define Φ̃β = Φβ − 1

t

∫ t

0
Φβ(τ)dτ and the covariance matrix

σθ′

θ =
∑

β

∫ t

0

Φ̃β
θ (τ)Φ̃β

θ′(τ)dτ

where θ, θ′ denote double indeces.
We consider the variation process

zβ
q (τ) =

∫ τ

0

(
∑

θ

aθΦ̃
β
θ (η))dη

where
aθ =

∑
θ′

[σ−1]θ
′

θ qθ′

Direct verification shows that zq(t) = 0 and that

ρ(t) = −
∑

β

∫ t

0

Φβ(τ)dzβ
q (τ)dτ = q

Therefore, by Theorem 2 the infinitesimal variation of the horizontal flow is due
to the corresponding variation ξ of the Brownian motion (on the Wiener space)
defined by

dξ = dzq + ρodx

Notice that, because of the expressions of Φ̃ and σ, this process is an anticipative
tangent process. In terms of Skorohod integration, it reads:

dξ(τ) = dzq(τ) + ρdx(τ) +
1

2
RM(zq)dτ − 1

2

∑
β

∫ τ

0

Ωβ(odx, D̄τ,βzq)dx(τ)

Now we have

∂1
qπt(r0, r)

πt(r0, r)
= Erx(t,r0)=r[δ(zq)]

and the theorem follows from the L2 estimates of the divergence of zq, which is given
by the Skorohod integrals of the bounded variation part of the tangent process ξ
defined above.
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