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1. INTRODUCTION

This paper is a survey of articles published by the authors in the last six years
on the subject together with related work in the literature.

When trying to construct a Riemannian geometry on the path space of a Rie-
mannian manifold several approaches could be thought about. The local chart
approach, considering the path space as an infinite dimensional manifold and the
basic tangent space the Cameron-Martin Hilbert space, leads to the study of the
so-called Wiener-Riemann manifolds [18]. Several difficulties appear in this study,
namely the difficulty of finding an atlas such that the change of charts is compatible
with the probabilistic structure (preserves the class of Wiener measures together
with the Cameron-Martin type tangent spaces) and the non-availability of an ef-
fective computational procedure in the local coordinate system. Indeed, in infinite
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dimensions, the summation operators of differential geometry become very often
divergent series.

Another approach to construct a geometry could be the use of a frame bundle.
The corresponding object to the bundle of orthonormal frames would be the group
of unitary transformations of a Hilbert space. Without further restrictions, this
group seems too large to be considered in an efficient way.

But the path space is more than a space endowed with a probability: time and
the corresponding It6 filtration provide a much richer structure. In particular,
the parallel transport over Brownian paths can be naturally defined by a limiting
procedure from ODEs to SDEs. The stochastic parallel transport defines a canonical
moving frame on the path space: the point of view we have adopted is the one of
replacing systematically the machinery of local charts by the method of moving
frames (as in Cartan theory [3]). In this way it is possible to transfer geometrical
quantities of the path space to the classical Wiener space and use It6 calculus to
renormalize the apriori divergent expressions. An effective computational procedure
is then achieved, where Stochastic Analysis and Geometry interact, not only on a
technical level, but in a deeper way: Stochastic Analysis makes it possible to define
geometrical quantities, Geometry implies new results in Stochastic Analysis.

1.1. Some geometrical preliminaries. Let M be a Riemannian manifold of
dimension d, that we shall always assume to be compact. O(M) denotes the bundle
of orthonormal frames over M, namely

OM) = {(m,r): r:R? = Tp,,(M) is a Euclidean isometry, m € M}
and 7 : O(M) — M, w(r) = m the canonical projection.

A smooth section of O(M), namely a smooth map o : M — O(M) such that
moo =1Id. is called a Riemannian parallelism. In Cartan’s theory of moving frame
Geometry, an orthonormal moving frame is the data of d unitary vector fields By
on M. Denote by Oy, the corresponding dual differential forms, (z,0) = (z | B).
Then the structural equations are defined as

d@k = aij @Z A @j,
where ai/ are (uniquely defined) functions on M.
The brackets of the vector fields By, are then expressed by
[Bk, B[] = — Z alei.

The Christoffel differential form associated to © is the so(d) 1-differential form

I" such that, for all vector fields A and B on M we have

(AN B,dO) =T(B)0(A) —T(A)O(B).
k.
equations, we have aj = T'¥; —T'%; and the coordinates of T are uniquely determined
by

Such form exists and is unique. Writing T' = I'*.@%, and using the structural

1. .. ) .
I‘fj = _5[(12] -I-a;“ —al*].

Given a moving frame, the Levi-Civita covariant derivative of a vector field z is
expressed in the moving frame by
O(Vaz) =LaO(2) + T(A)O(z),
where £ denotes the usual derivative.

It is possible to define on O(M) a structure of parallelized manifold.
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Let «; denote the (unique) geodesic on M such that ;(0) = m, %|t:0 vi(t) =

r(e;), where e;, i = 1,...,d, are the vectors of the canonical basis of R?, and let
(7i(t),7i(t)) represent the parallel transport of r along ~;, defined by the equation
d?"i
% = —F;Yl.’f‘i, 7"2(0) =1Id.
Then
d
Ai(r) = —|  ri(t)
dt |,

are the so-called horizontal vector fields on M.

Denote by © the form defined by (0, 4;) = (e;,0). It is a one-form defined
on O(M) with values in R? x so(d), © = (6,w), where w(m,r) = r~'dr is the
Maurer-Cartan form of the orthogonal group O(d).

The structure equations of the parallelism are given by
dé =wAN0,
dw=wAw+ QO A0,

where () denotes the curvature tensor:

Q(A,B,X) = (VaVe — VeV —Viap)X.

We define the Laplacian on O(M) by
1A
Aoy =5 ) LA,
k=1

Then for every smooth function on M we have

AO(M)(f om)=(Anf)om,
where Ajy; denotes the Laplace-Beltrami operator on M.

An analogue construction can be performed with respect to any Riemannian
connection with torsion. In this case the structure equations are

dd=wANO+T(@OAD),
dw=wAw+ QO NO).
If the torsion satisfies the so-called “Driver condition”, namely
(T(A7 B)7 C) = _(T(CvB)vA)a

then the construction gives rise to the same Laplacian ([10] pg. 347).

1.2. Stochastic analysis on the Wiener space. We shall denote by X the
classical Wiener space of continuous paths on R?,

X = {z:[0,1] = R : = continuous,z(0) = 0}
endowed with the Wiener measure po and the usual It6 filtration P; of the events
before time t.

A fundamental equality in Stochastic Analysis, that is at the basis of the defini-
tion of It6 integral itself is the following energy identity

1 2 1
E/ Uy - da(7) :E/ lu-|? dr
0 0
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for Pi-adapted L2 functionals of the Wiener space, and where

/01 ur - de(r) = /01 ul dre (1),

using Einstein convention for the sum of indices.

If F € LP(u) and z is such that fol |2-]> dr < 400 (2 belongs to the Cameron-
Martin space H'), we define
1
D.F(x) = gl_I}%) B (F(z +ez) — F(2)),
the limit being taken in the ug-a.e. sense. Cameron-Martin-Girsanov theorem im-
plies that

Eu(D.F(z)) = E,, (F(m) /01 2dx), (1.1)

that is, It6 integral can be regarded as the dual of a derivation operator on the
Wiener space.

For a cylindrical functional F(z) = f(z(m),...,2(Tm)), f smooth, let

m

=D LrcnOuf (ol sl

The operator D is a closed operator on the space W 2, the completion of cylin-
drical functionals with respect to the norm

1
2
IFIE » = Eyo |FI* + E / D, F|P dr,
and we can write

1
Dze/ D,F % dr. (1.2)
0

Notice that, if we consider the basic “vector fields” in the Wiener space, e; o () =
1, .,Eq, then

D;oF =D, F

The dual of the derivative, for non adapted processes z, is well defined when

E/ |2-|? dT-I-E/ / |D,2(7)|? do dr < +00.

It was discovered by Gaveau and Trauber [15] that the divergence coincides with the
Skorohod integral [24], previously defined for non-adapted processes. Following the
Nualart-Pardoux-Zakai theory of non-adapted stochastic calculus [22], this integral,

that we still denote by fol u dx, can be defined as the limit of the sums

1 Thgl  [Th4l
ZMk Tk+1) _33(7'1@)) _Zm/ / D, u, deO’, (13)

k

where

1 Tk+1
Mp(u) = —— / ug do
Tk+1 — Tk
and is an extension of the It0 integral.

So we have, extending (1.1) to the anticipative case,

Eu(D.F(z)) = By, (F(m) /0 i dx).
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This implies, in particular,

EM(/Oludx) =E</01DT</01u-dx>-u(T)dT>

and a commutation relation, namely

2

D. /01 w-dr = /01 D:u(o) - dx(o) + u(r) (1.4)

allows us to derive the corresponding energy identity, which is

1 2 1 1,1
E (/ Ur dx(T)) = E/ lur|” dr + E/ / D uy - Dyuy drdo. (1.5)
0 0 0o Jo

Notice that (1.4) reduces to the energy identity for the It6 integral when w is
adapted, since the last term vanishes.

We recall here the notion of Stratonovich-Skorohod integral, again following [22]:
this integral, that we denote by fol u o dzx, is defined as the limit of the sums

D Mi(w) - (2(rhr) — 2(8)). (1.6)
k

Conditions for the existence of such limit are more restrictive than those required
for the definition of the Skorohod integral: in particular, some uniform continuity
near the diagonal of [0,1]? is required ([22]). When both integrals exist they are
related by

1 1 1
1
/ ur de(t) = / ur o dx(r) — —/ (DY u, + DI -u,)dr, (1.7)
0 0 2 Jo
where
Dj “ur = lim D, - ug,,
o1t
D -u, = lim D;-u,.
o—T
In the case where u is Pi-adapted, D u, = 0 and %fol D, - - u; dr reduces to the
usual Ito stochastic contraction term.

1.3. Stochastic analysis on the path space. We denote by P,,, (M) the space
of continuous maps p : [0,1] = M, where M is a (compact) Riemannian manifold
of dimension d, mq a fixed point in M. P,,,(M) is considered with its natural
past filtration and with u, the Wiener measure, constructed via the fundamental
solution of the operator /01 — A, where A is the Laplace-Beltrami operator on
M.

We consider the stochastic parallel transport of frames, which is the flow of dif-
feomorphisms on O(M) defined by the following Stratonovich stochastic differential
equation:

d
dry (1) = Z Ap(ry) o dz® (1)
k=1
r,(0) = ro,

with 7(rg) = mo. Then 7 sends P,,(O(M)) into Pp,,(M). The Laplacians on M
and on O(M) induce two probability measures; the map 7 realizes an isomorphism
between these two probability spaces.
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Definition 1.1. The map [ : X — P, (M) given by
I(z)(7) = m(ra (7))

is called the Ité map.

This map is a.s. bijective ([19]) and provides an isomorphism of probability
spaces; namely we have

1= (I)xpo.
Definition 1.2. The parallel transport along p is the isomorphism from T}y (M) —
Ty (M) defined by
tgero = ry(T)re (7'0)_17
where x = I~!(p).
Definition 1.3. A wvector field z along the path p is a section process of the tangent

bundle of M, namely a measurable map Z,(7) € Tp-)(M) defined for (p,7) €
Py, (M) x [0,1].

For a vector field Z along p we shall systematically denote by z the image of Z
through the parallelism © given by the parallel transport; more precisely we shall
write

2 = [0(2)]; =ty (Z;). (1.8)

We define the Itd and the Stratonovich stochastic integrals of an adapted vector
field on the path space Z, respectively, by

1 1
/ Z-dp:/ z2%dxy,
0 0
1 1
/ ZOdpz/ 2% odxg.
0 0

It is possible to characterize these stochastic integrals without using the parallel
transport; they correspond to the limit of the following Riemann sums, when the
mesh |S| of the partition S = {09 =0< 01 < --- < o, = 1} tends to zero:

1
- T -1
[, Zir= m S (e | e, 00w,

P("’k—l)(M)

! .1 -1 1
/0 Zodp= ‘;1‘130 3 Zk: (Zp(m ‘ exp, . (P(ort1)) —exp, . (p(okfl)))

(for a proof cf. [14]).

In the moving frame type of geometry on the path space, it is natural to consider
at the origin the tangent space which corresponds to the one usually associated to
Wiener space, namely the Cameron-Martin space. As we have mentioned in the
last paragraph, Cameron-Martin vectors are precisely those with respect to which
integration by parts can be performed and the corresponding space is dense in X.
In this perspective, we define

Tp(ay,) (M)

Definition 1.4. A tangent vector field in P,,, (M) is a L%-section process Z, such
that Z(0) = 0 and, defining,

1
@72 =lim (. (Z(r +2)) - Z(7)),

we have dPZ € L2.
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On the tangent vector space T'(P(M)) we define the Hilbertian norm
1
1210y = [ W22, o

The parallelism O defined in (1.8) provides a differential 1-form realizing an
Hilbertian isomorphism of T}(Pp,(M)) with the Cameron-Martin space H' =
H'([0,1]; RY) and we have:

d

—O(2) =t (&7). (1.9)

Let S(Pp,,(M)) denote the space of smooth cylindrical functionals on P,
namely the functionals f for which there exists a partition of [0,1,0 <71 < -+ <
Tm < 1 and a smooth function f on M™ such that F(p) = f(p(r1),...,p(Tm)).

In M™ we have the Riemannian product structure. We define, for f € S(Pp,, (M)),
the following operator:

DiF =3 1,cn 2 (). (1.10)
k=1

The map 7 — D, F defines a section process (cf. definition 1.3); we introduce
the norm

IDFIPp) =S / (D, F)? dr,

where D, o F = (th, D, F |z,), {€a} the canonical basis of R%.

Then, for a tangent vector field Z, we define
1
DzF = / D; o f22dr. (1.11)
0

In analogy with the Wiener space case, we can consider the “basic vector fields”
éra(0) =1,.4t", o and we have D, , = D

Era-
The operators D, , may be regarded as forming a “continuous” basis of the
tangent space of P, (M).

Theorem 1.5. With respect to the norms ||Df||%, = E(||Df||?), the operator D is
closable in LY. The domain of the operator D is, by definition, the Sobolev space
Wi,q(Pmo (M)).

2. DIFFERENTIABILITY OF THE ITO PARALLEL TRANSPORT AND INTERTWINING
FORMULA

The parallelism we have considered on the path space should allow us to transfer
differential calculus on this space to differential calculus on the Wiener space. To
do this we are bound to derivate the It6 map, that is, to derivate parallel transport.

Theorem 2.1. Granted the parallelism of O(M), the Jacobian matriz of the flow

of diffeomorphisms ro — ro(7) is given by a linear map Jo, = (J; ., J7 ) €
GL(R? x so(d)) which is defined by the following system of Stratonovich SDEs:
d
dT'];7T = Z(Jg,‘r)a ° dfa(T)
a=1

d
dT‘]m2,T = Z Q(Ji,rafa) o dra(r)

a=1
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where (J?),, denotes the ath column of the matriz J* and Q is the curvature tensor
of the underlying manifold read on the frame bundle.

Proof. (cf. [10, 14, 20], noting that here the sign of the curvature tensor follows
a different convention). Let z, be a sequence of smooth approximations of the
Brownian curve . We consider the O(M)-valued map

fn(Ta t) = Tzn+tz(7-)7 T(TO) =To,

for » € H*([0,1];R?), 7,t € [0, 1]. The inverse image by f, of the differential form
of the parallelism is given by

£20 = ap dr + B dt

faw = pndt
where oy, = &, + tZ. Then
*p\ dap,  OBn

and, by the structure equations,
fo(df) = ppoay, dt Adr.
Since d(fx0) = fx(df), for t = 0 we obtain
9Pn

F— 2 = poi.

or

The second structure equation implies, in an analogous way,

Opn _ .
E = Q(ﬂn,ﬂﬁn)-

The theorem follows from the conditions 3,(0,0) = 0, p,(0,0) = 0 and from a limit
theorem for SDEs

dp(r) = 2(1) = p o du(7)

dp(r) = (B, odx).
Then we take z = 0. U

Remark 2.1. If one considers a metric connection with torsion on the manifold M,
the first structure equation must be corrected by the corresponding term and in
the last theorem we derive

dB(t) = 2(r)dr — podz(t) + T(3, odx)
dp(7) = B, ode).
Corollary. For 19 € [0,1] and considering I, : X — M the specialization of the
Ité6 map at time 19 defined by x — w(r. (7)), we have
Del7, =17, o(2(70)),

where
1 A
) = [ T ode(o)
0

J is the horizontalx horizontal block of matrices J defined in last theorem and

d§ = z2dr —podx
dp = Q(z, odz).
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We encounter here a difficulty: the It6 map is not Cameron-Martin differentiable,
since the “vector field” £ is no longer a process of bounded variation! Nevertheless
its martingale part is given by an antisymmetric matrix which, by Levy’s theorem,
implies that Wiener measure is still conserved during the evolution.

If we consider a connection with torsion, an extra martingale term appears, that
conserves Wiener measure only if the torsion satisfies the antisymmetric condition

Tk (es,ej) = =T (e;, ex)
(Driver’s condition).

From this result we see that we have to enlarge the tangent space and that it will
not be enough to consider (Cameron-Martin) tangent vector fields. We introduce
the following processes:

Definition 2.2. A tangent process on the Wiener space X is a R?-valued semi-
martingale process & defined on X with It6 differential given by

d¢® (1) = af da” (1) + ™ dr,
where a§ = —af, a§(0) = 0, a§ and ¢* € L?[0,1].
The tangent space of P, (M), that we shall denote by T'(P), is the space
{&(r) = t2,_o&(7), € tangent process on X }.

Given a smooth cylindrical functional F(z) = f(x(r1),...,2(7m)), we define the
derivative D¢ F' by
De¢F = Z(dkfag(Tk»‘ (2.1)
k=1

The operator Dy is closable in L?: this is a consequence of the integration by
parts (Theorem 3.1).

Definition 2.3. A functional F is called strongly differentiable in L? if
F € Dom(D¢) VY tangent process £
Which functionals on the Wiener space are actually on the domain of D¢ or

which is the characterization of the closure of this domain is a delicate question.
We shall come back to these problems in the next paragraph.

Theorem 2.4 (Intertwining formula [6]). A scalar-valued functional F defined on
the path space is strongly differentiable if and only if F oI is strongly differentiable
on X. We have the intertwining formula

(D= F) o I = De(F o I),
where & and £* are related by the equations:

dé =d&* —podx
dp = (", odz).

Proof. We consider the following infinitesimal Euclidean motion on the Wiener
space

16§ (0))(r) = tE(r) + / exp(tp) o dz,
and
VE=Togjol™";
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derivating in ¢ = 0,

d d )
% —0 Vvt5 = 71" (TCI: (T)) . % - T¢f (z) (T) =7y (7-) é‘ (7—)7
and the result follows from last corollary. 0

Remark 2.2. For a Driver-type connection we have to replace the last equations by

d§ = dg* — podr +T(£, odr),
dp = Q(£", odx),

where T is read on the frame bundle, T}.(u,v) = r 1T (ru,rv).

At this stage one could think we are dealing with two different notions of de-
rivative on the path space, the one defined in paragraph 1.3 and the one that
naturally follows from the above results, namely, for F' € S(P,,,(M)), F(p) =
f(p(Tl)a s ap(Tm))a

d
DroF () = =|  F/™ (),
t=0

the limit being taken in LP(u) with p > 1.

In fact both notions coincide; we have:
d - - d B
F(Vi™(p)) =D ouf(p)- T Vi (1)
k=1

dt -

t=0

= Zakf(p) . (1T<Tkt£k<_056l)
k=1
D,

oF.

)

The next result gives a formula for the derivation of the parallel transport on
the path space.

Theorem 2.5. For fized 7y € [0, 1] and denoting ®(p) = t£0<—07'07 the derivative of
® can be expressed in the parallelism of O(M) as:

(D28.0) = 2(r0) (+ / "Iz 0da)),
(Dz®,w) = /T0 Q(z, odz).

Proof. Derivating on the path space with respect to a tangent vector field Z means,
by the intertwining formula, derivating with respect to a tangent process

d§ =idr —podx (+T(z,0dz))
dp = Q(z, odx)

the functionals pulled back to the Wiener space through the It6 map. O

We have obtained the derivation of the parallel transport with a short proof, by
transferring the result to the Wiener space. This result can also be proved by a
more direct geometric analysis, an approach that may have the advantage of a more
intuitive argument, but requires a very delicate approximation procedure. Here we
just sketch the main argument.

We take cylindrical approximations of the functional 7 ,_,ro obtained by parallel
transporting along piecewise minimizing geodesics 7, based on points {p(71),...,p(7.)}
of the manifold M and converging to Brownian motion on M. For such geodesics to
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be well defined one must place ourselves inside a ball of radius less than the radius
of injectivity: that is, one must consider a cutoff function procedure together with
the approximation one (we refer to [6], paragraph II-4 for the development of such
techniques).

We want to differentiate parallel transport on the path space. Working with a
normal chart centered at a fixed point p(7x), this means that we want to compare
in an infinitesimal way parallel translation along the geodesics going from p(7;—1)
to p(1x) and from p(7) to p(trs1) to parallel translation when p(7) is perturbed
in the direction we want to consider. So, modulo the bracket of the vector fields
involved, we are considering a loop going from p(7;—1) to p(7x+1) and back. To
compute parallel transport along this loop is precisely to compute the holonomy
of the curve in Differential Geometry, which means integrating the curvature along
the path ([17]). The integrals converge at the end to Stratonovich integrals with
respect to Brownian motion.

3. THE SPACE OF TANGENT PROCESSES

We consider the theory of anticipative integrals according to Nualart-Zakai-
Pardoux, following reference [22]. Given a scalar valued process u,, its Skorohod
and Skorohod-Stratonovich integrals, that we denote, respectively, by fol u dr and

fol u o dz, are defined as the limit of the Riemannian sums (1.3) and (1.6), when
they exist.

Let & be a tangent process, namely a process satisfying the stochastic differential
equation

d¢* (1) = af da” (1) + c*dr
(cf. definition 2.2).

Theorem 3.1 (Integration by parts). For every smooth cylindrical functional F
we have

1
E(D¢F) = E(F/ Co dia),
0
where D¢ F was defined in (2.1).

Proof. The martingale part of the Ito6 representation of £ defines a measure pre-
serving isomorphism on the Wiener space. O

We define the Skorohod and the Skorohod-Stratonovich integrals of a process u,
relatively to a tangent process £ as the limit of the sums

> Mi(u) - (Elmrsr = E(m))
k

and

ZE‘S’“C(Mk(U)) (&(Thg1 — &()),

k

where My (u) was defined in (1.3) and E%" denotes the conditional expectation
constituted by averaging relatively to the o-field generated by z(7) — x(m), 7 €
5k = [Tk,Tk+1].
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Theorem 3.2. Assume that f € WP(X) Vp > 1 and that a. € LP(X;L?[0,1])
Vp > 1, a is adapted and ag = —aB. If one of the two stochastic integrals below
exist, then the other exists as well and

1 1
/ (Draf) - de*(r) = / (Draf) o d° (7).
0 0
where £() = [ af da®.

Proof. The difference between the two integrals is given by the limit of the following
sums:

STE (Mi(D.af)) = Mi(£))(E (Fhs) — € (70));

k
using the Clark-Ocone formula, this expression is equal to

S (e [T EP DA ) - (€ () — ()
;( k/ak A7), () ) k+ k

and the limit when the mesh of the partition goes to zero is equal to the limit of
Th+1
—Z/ Mi(D3 ), F)a5 (V) dA
kyy © TR

which is equal to zero by the symmetry of the second derivatives and the antisym-
metry of a. O

Generalizing the corresponding representation formula for derivatives along Cameron-
Martin vector fields (cf. (1.2)), we have the following:

Theorem 3.3. Let & be a tangent process such that a satisfies the assumptions of
theorem 3.2 and, furthermore, that af € W1 ,(X) Vp > 1, and f01||c(7')||L2(X) dr <
+00. Then Wy C Dom(D¢) Vq > 1 and we have

1 1
fo = ;/0 <; ag‘ D-,—7af> . dSUB(T) +/0 Ca D'nozde'

For a proof of this result we refer to [6] and to the appendix in [8].

We may use the representation of last theorem to derive a formula for the deriv-
ative of a stochastic integral with respect to a tangent process. These formulae for
derivations with respect to Cameron-Martin space valued processes were obtained
in [25].

Theorem 3.4 ([6]). Let & be a tangent process with coefficients satisfying the as-
sumptions of theorem 3.3. Let u be an adapted process such that, for some p > 1,
f01||u(7')||2,p dr < +00. The derivative of the Ité stochastic integral of u is given by:

1 1 1
Dg/u-dx:/Dgu-dx-l-/ u - d€.
0 0 0

Also in [6] we have derived a corresponding formula for the derivation of Stratonovich
integrals. Under suitable assumptions that ensure the existence of such integrals,

it reads:
1 1 1
DE/ Ude:/ DEude—l-/ wodE.
0 0 0

Tangent processes have the same regularity (in time) as the Wiener process;
therefore it is not possible to extend to the space of tangent processes the H'
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metric. Considering H 3¢ metrics gives rise to serious difficulties, namely in the
definition of corresponding metric (for instance, Levi-Civita) connections (cf. [9]).

4. INTEGRATION BY PARTS ON THE PATH SPACE

A formula of integration by parts on the path space was first derived by Bismut
[2]. There are different proofs and approaches to this result: we refer to [1, 10, 14].
In this paragraph we derive integration by parts on the path space via transferring
the result to the Wiener space and using the intertwining theorem.

Let Z be a tangent vector field on the path space. From the results in paragraph
2 we have, for cylindrical functionals F',

Eu(DzF) = Eyy (De(F o 1)),

where d§ = Z2dr — podx, dp = Q(z,0dx) and Z, =t _ z.. On the Wiener space,
we have

By (De(F o 1)) = Ey, ((F o 1)5(8))-

The process £ is a tangent process whose bounded variation part is equal to
Zdr + % dp - dz. From the equations of p, dp - dz = Ricci(z) dr, where Ricci(z), =
t? o o Ricciy(ry Z o t? ;. We have, therefore,

Theorem 4.1 (Bismut integration by parts formula). For a cylindrical function F
on the path space and Z an adapted vector field such that Efol |d£Z|2 dr < 400,

E(D,F) = E((F o) /01 [z + % Ricci(z)] dx) .

From this theorem it follows that D is a closable operator from L?(P,,,(M)) to
the space

1 p/2
{z : Z tangent vector field, || Z||} = E(/ |d? Z||? dT) < +oo}.
0

We remark that, when the connection considered on the manifold is of Driver
type, an extra term appears, namely

1
3 dT - dx, where dT' = T'(z, odzx).

In this case we derive the following integration by parts formula:
1
1 N
E(D,F)=E ((F o) / [z + 5 Ricci(z) + T(z)] dx) :
0

where T'(z) = Zizl(veaT)(z,ea), a result which is due to Driver [10].

We have only considered adapted vector fields Z. A natural question is what
happens if Z is anticipative and whether in this case the divergence could be simply
written, in analogy with what happens in the Wiener space, as

d(z) = /01 (Z + %Ricci(z)) -dx,

where the stochastic integral would be interpreted in the sense of Skorohod. The
answer is no; another term involving derivatives of Z and a stochastic integral of the
curvature tensor appears. The corresponding formula was obtained in [7], where
we have developed a computational technique of decomposition of the processes in
their “continuous coordinates” expressed on the basic vector fields.
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We have, for non necessarily adapted tangent vector fields Z, and for cylindrical
functions F' on the path space,

E(DzF) :E((FOI){/Olzdx-|-/01;é,-~grdr—/01DqT -szTD, (4.1)

where

1
Gria = 5/ (Ricci )3 dxP

and

tra0) = ey /U {/jQ(odw,aa)] o dz()\).

T

The integration by parts formula (4.1) holds under suitable regularity assump-
tions on Z that ensure the definition of the anticipative stochastic integrals involved
(cf. [7]).

5. STRUCTURAL EQUATIONS OF THE PATH SPACE
In this section we compute the bracket of two constant vector fields, namely

U(p)T = tfeouﬂ V(p)T = t£<—0U‘H
where u, v are non random.

Let F(p) = f(p(1),...,p(Tm)) be a smooth cylindrical functional; denote by F
the lift of F to [O(M)]™, namely

E(rp(n), o srp(tm)) = F(w(rp(m1)), -, w(rp (7)),

and by 81»,&]3' the derivative of F' in the coordinate rp(7;) and in the direction of
the horizontal vector field A,:
d

iaF: -
% de

B F(rp(m),...,rp(1i) + €40, ..., 7p(Tm)).

Then the following equality holds:
Dyf = Z u®(7;) 6@(1}?‘(7'17(7'1)7 o3 Tp(Tm)),
i=1

and we have

Dy DyF = 308 (1) u (1) 9,06 - v () -+ (1)
5,
=> 00 (rj) u(7) [0, Bia F + 01 F (05,87 (7)) 7]
b7j
When ¢ # j, 0; and 9; commute; when i = j,

O 05, — 05,5 Oia = Oi[a,,A4]-

Since A, and Ag are horizontal vector fields, [A4, Ag] is vertical; on the other hand,
F only depends on m(r), therefore this term vanishes. It remains to consider the
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term corresponding to the derivative of the parallel transport

Z. v?(75) 9,37 (i) = Dyr®(7i)

1 T;
=/ 1')3(7')<1T<Ti/ QB,A7a0da§>‘> dr
0 T
=/ VP (1) Qpra o da™.
0

We have, therefore,

(DuDy — Dy Dy)F
= Z <8s,,yf, vB(Ti)/ Qargu® o dz™ — u"(ri)/ Qprat?® o dx’\> ,
i=1 0 0

from which we deduce the following

Theorem 5.1. The bracket of two constant tangent vector fields U and V' on the
path space is given by the following expression in the parallelism of the moving
frame:

[U’vv]r = Quv — Quu, where QU(T) = /T Q(U, de)'
0

Corollary. The bracket of two constant (Cameron-Martin) tangent vector fields is
no longer a Cameron-Martin vector field.

Proof. In differential form, the bracket is given by
d-[u,v] = Qu,v) ode + [Qu0 — Q,u] dr.
O

We encounter here a new phenomena, the non-closure of the tangent space con-
sisting of tangent vector fields under the bracket. We also encounter a new reason
to enlarge the tangent space by considering tangent processes.

In particular, we have, for basic vector fields,
P

)
[er.00€0,6)(07) = 1(,<,,/ Qa0 da* = 17<P/ Qi ra 0
T o
We remark that, even inside the same time interval, there is no possibility of
simplifying the curvature terms. In fact, and unless we are in a flat manifold, the
diffusion term of the bracket does not vanish.

Let us consider a map A : Pp,, (M) — End(H*(R?)) which is invertible and a new
parallelism defined by © = Ao®. For uy,us € H', let ii; = (A~ V)u;, Vi = O (ii;),
i = 1,2; we compute Dy, = Dy, Dy, — Dy, Dy, and identify V; with v; through the
parallelism ©, obtaining

Vg = [U17U2] + (Dle_l)UQ — (szA_l)ul.

Since the last terms are Cameron-Martin vector fields, we see that a change of
metric on the path space does not change the fact that the bracket produces a true
tangent process.

Nevertheless a very interesting phenomena is that the tangent processes (the “en-
larged” tangent space) do form a Lie algebra: the bracket of two tangent processes
is again a tangent process. The result was shown in [6] and [11].
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Theorem 5.2. Given two smooth tangent processes & and & on P, (M), there
exists a tangent process &3 such that, denoting B = D¢, D¢, — D¢, D¢, , we have

BF = D¢, F.
6. RIEMANNIAN CONNECTIONS

As we have recalled in 1.1, in finite dimensions, the Levi-Civita connection, the
only Riemannian connection which is torsion free, is determined by the structure
equations. As we have computed those on the path space, we can also consider the
corresponding Levi-Civita connection.

For U; = t?, qu;, u; € H', i = 1,2,3, and identifying again vector fields on the
path space with the corresponding Cameron-Martin processes through the paral-
lelism, a Riemannian connection without torsion (Levi-Civita connection), Vi, Us,
will be defined by

(Vg | ug) = %(([ulal@] | ug) — ([ug, us] | wr) + ([us, ur] | uz)).

Using the expression for the bracket,

([ui,uj]|uk)=/0 ﬂkﬂ(ui,uj)(de)—l-/O Wl Qurity — Qu i dr. (6.1)

Integrating by parts

1 1
| nfunua)ode) = [0 pyusuig o de
0 0

1p 1
/ [/ Q) paus ] o dx)‘] Wl dr.
0 T

The sum of the contributions of the Stratonovich integrals in expression (6.1) is
equal to

1

3 /01 Q(uy,uz)(odz)us + % /01 [/Tl Q(ty, odz) (u2) + Q(ts, odz)(ur) | us dr.

we obtain

Using the antisymmetry of the matrices () we obtain:

Theorem 6.1. The Levi-Civita covariant derivative @ulug of two constant tangent
vector fields has the following expression in the parallelism of the moving frame:

- 1
d- (vm U2) = §Q(u17 u2) (de)
1

+ [Quﬂlz +%/ Qi odx)(usz) +%/ Q(ta, odz)(uy) | dr.

T T

1

We remark that the expression obtained is a tangent process with an anticipative
bounded variation part.

Various other connections can be defined on the path space. We shall work in
the sequel with a particular one, that we call the Markovian connection.

Definition 6.2. For two constant tangent vector fields Uy, Uy, the Markovian
covariant derivative is defined by

(@Y1, 05](p) = Dus [(expyl) ) (d2T5))

This expression is Markovian in the sense that d2[Vy, Us] depends only upon
ngQ and Ul(T).
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Theorem 6.3. The Markovian connection is expressed in the parallelism by

d .
E (vul U2) = Qulu27

for uy,us € H'.

Proof. Since Us(p)(1) = t2,_ju2(7), we have

d .
[0Vt U2)] = (w, Do (t7.0)) * a(7)
and the theorem of derivation of the parallel transport (section 2) gives the result.
O
We introduce the localization of the covariant derivative by the definition
ViaZ =Ve, 2.
For a tangent vector field Y, we have
d 1
VvZ=Y / VraZdl Y dr. (6.2)
a=1"0
The Christoffel symbols of the Markovian connection are defined by
vr,a (écnﬁ) = Fgg (Ta ‘7) é0'737
where
1—26 (Tv U) = 1‘r<a’/ QZW\B o da?. (63)

Theorem 6.4. The Markovian connection is Riemannian. Its torsion is given by

s
T’Y(é‘r,aaémﬁ)(s) = _1T\/0'§5/ QZYB)\ o da.
T

Vo

Proof. Let U;(0), i = 1,2, denote the vector fields d,Us(c) read in the normal chart
at exp;(f_) and g;; the metric tensor of M read in this normal chart. The fact that
the derivatives of g;; vanish at the origin, implies that

Dylgi;Un"U57] = gi;[Dy U1 'JUS + gi5Ur ' [Dy U]
and
Dyl (0) = d2[VyUs(o)]

The expression for the torsion follows from the structural equations. O

7. WEITZENBOCK FORMULAE

7.1. Energy identities and curvature. As we have recalled in section 1.2 en-
ergy identities are fundamental in Stochastic Analysis. They are at the basis of
the definition of stochastic integrals of adapted processes and they allow to derive
estimates for anticipative stochastic integrals. On the Wiener space the energy
equality for anticipative integrals is:

1 2 1 1,1
/ ur da(T) =E/ |UT|2dT+E// D uy - Dyu, dr do
0 0 0Jo

In Differential Geometry formulae of the type
dd* + d*d = —A + Ric,

E
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where d* denote the adjoint of the exterior derivative with respect to the Riemann
measure dm and Ric is the Ricci tensor associated with the Levi-Civita connection
V are known under the name of Weitzenbock formulae. For a metric connection
with torsion, one has

dd* + d*d = —A + Ric+ T,

where T(ej) = Zj’:l(vei -T)(ej,e;). If we consider Weitzenbock formulae (with
respect to Levi-Civita connection) on 1 forms w, (z denotes the dual correspondent
vector field) we obtain

/|d*z|2dm+/|dwz|2dm=/|Vz|2dm+/<Ricz,z)dm,

which is equivalent to
/|d*z|2 dm = Z/(Veiz | ;) (Ve 2 | e;) dm + / (Ricz, z)dm,
i,j

where {e;} denotes an orthonormal basis of the tangent space.

This corresponds to the energy identity written in the Wiener space with respect
to the underlying Gaussian measure. We may say, in an equivalent way, that the
Ricci tensor of the Wiener space is equal to the identity. This result was obtained
by Shigekawa in [23].

If O = dd* + d*d denotes the Rham-Hodge operator on forms of degree one, the
semigroup e~ 2 f satisfies

%(de‘mﬁ = dd*de™"* f = O(de ™' f),

since ddu = 0. The problem of estimating the commutator between de** and
e~t2d reduces to estimating the commutator between the operators A and O on
differential forms (cf. [1] for a development of this point of view).

On the Wiener space Mehler’s formula gives an explicit representation of the
semigroup associated to the Ornstein-Uhlenbeck operator Lf = —ddf. The com-
mutation relation reads

de 1 f) = et (e o)
and is at the basis of Meyer’s inequalities (cf. [21]).

7.2. First order commutation relations. An energy identity, as we have seen
in paragraph 1.2, follows from a commutation relation between derivatives and
divergences which means, in the case of adapted vector fields, between derivatives
an (Ito) stochastic integrals. We are therefore interested in studying such relations
on the path space.

We have the following
Theorem 7.1. Given an adapted tangent vector field Z such that the process Z

satisfies f01||;>3(r)||2,p dr < 400 for some p > 1 we have

1 1 1t
Do | d°Z-dp(o) = / db(VraZ)-dplo) +d? 7 — 5/ (Ric2)™ dr.
0 0

T

Proof. We start from the characterization of the It integral on the path space,

1 1
/ d?Z - dp(o) = / 2o dz®
0 0
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and we observe that, by the intertwining theorem, the derivation D, , corresponds,
on the Wiener space, to the derivation with respect to the tangent process

§ral0) =lrcoea + /TU (/ Q(de,aa)> o dx(s).

By theorem 3.4,
1 1 1
Dg/ z'-dx:/ (DEZ')-dx—i—/ Z-d¢€.
0 0 0

We have z, = r~!(d2Z) and we derivate parallel transport by making the deriv-
ative at the point p(7) and using the normal chart centered at this point. From
the formulae of the derivative of the parallel transport and the definition of the
Markovian connection it follows that

[Dra 2]’ = [r @2V, 2)]” T (r0) 22,

where I' denotes the Christoffel symbols defined in (6.3).

Concerning the second term,

/012 de = 3°( / (/ Qodmsa) (o) - de(o)

/ ZzV dr, B (1,0) - dzP (o).
0

By

Since dT',2(r,0) - da” (o) = an dr, we obtain the result. O

We observe that the Markovian connection appears naturally when dealing with
first order commutation relations on the path space.

An analogous formula for derivating Stratonovich stochastic integrals may be
derived. Under suitable assumptions on the tangent vector field Z, it reads

DTa/ d? 7 o dp(o /d (VraZ)odp(o) +db ,Z (7.1)

(ct. [6]).

7.3. A first result for adapted tangent vectors. Using Bismut’s characteri-
zation of the divergence in terms of stochastic integrals, together with the com-
mutation relations of the last paragraph, we may derive a first energy identity for
adapted vector fields on the path space.

A differential form of degree p on the path space is given by a functional p €
Wig (Prmo (M); [Hl]/\p)~

Definition 7.2. Given a form of degree 1 its coboundary is defined by
<dp7 Zl A Z2> = DZ1(<p7 ZQ)) - DZz(<p7 Z1>) - <p7 [Z17 Z2]> .

Granted the Hilbertian structure of the underlying tangent space, differential forms
of degree 1 may be identified with linear functionals on the space of tangent vector
fields.
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Let Z be a tangent vector field on the path space. We have
2
E(5(2))
=E(D#(57)

=F ZB:/Oldg,Bz {Dm/ <d”Z+ (Ric 7). ) -dp(T)] do

1 1 1 .
=F Z/o dy 57 {/0 d’-(Vep Z) + ivm(chZ)T -dp(T)] do | +1,
B

where

1
I =E|Z|3: + 5E(chz | Z)m

1 1 1
- 5E 26:/0 dgﬁz(/a ch(de)+ch(chZ)Td7-)

Then we decompose

Vo3(Ric Z:) = [VgpRic] Zr + Ric[Vo5 7] .

The first term gives rise to a stochastic integral which is again a divergence,
namely

1 1
Z/ (Vo Z)dl 3 Zdo | = E Z/ Dy, , z(d 5 Z)do
g "0 g "0
=F Z//d Vo3 Z)Dro (d 5 Z)dr do

Now Dy o(d2 5 Z) = & (Vs Z) — d2 4(Tra Z).

Since Z is adapted and d? 5l'r,a is only different, from zero when 7 < o, this last
term does not contribute to the integration. We end up with

E(5(2))° =E Z// 5(Vra 2)d (Vg Z)drdo | + 1.

Finally, the fact that, for the 1-differential form associated to Z we have
<dp, €r,a N é,;,ﬁ) = — (é‘r,a | Vo3 Z)+ (égﬁ | Via Z)
+(T((r,0),(0,8) | Z),

allows to deduce the following result (cf. [6] for details):

Theorem 7.3. There exists two operators on H', A° and A' such that, for any
smooth adapted tangent vector field Z we have

E(8(2))° + Elldpz|* = EVZ|3pam + E(AY(Z) | Z2) + E(AN(DZ) | Z),

where A® and A' are given by H'-operators with integral kernels defined in terms
of stochastic integrals.
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This first result shows that, even for adapted vector fields, a Weitzenb6ck formula
on the path space with respect to the Markovian connection gives rise to first order
non trivial terms. At this stage we have considered the Markovian connection
mainly because it naturally appears when dealing with first order commutation
formulae, as seen in last paragraph. On the other hand derivating on the path
space means derivating on the Wiener space with respect to tangent processes; as
we have seen, assumptions on the second derivatives of Z are needed to define DZ.
One could of course expect things to be easier for Levi-Civita connection. In fact,
this is far from being the case.

We first notice that, since we have an explicit control of the expressions A° and
Al in terms of stochastic integrals, we can show that

E(5(2))° + E|ldpz|® < +0
under suitable integrable assumptions on the vector field Z (cf. [6]).

Now let us consider a Weitzenbdck-type formula valid for such vector fields Z.
It should be given by

E(5(2))” + Elldpz|]* = EIINZ|%p o + E(R(2) | Z). (7.2)

The left-hand side of this equality being finite, let us look at E||@Z||f5,1®H1
according to the expression obtained in Theorem 6.1 for the Levi-Civita covariant
derivative. It is given in terms of a tangent process and therefore the H'-norm will
be infinite. We encounter here the problem already mentioned in paragraph 3 of
the difficulty of defining a Riemannian metric for tangent processes.

More precisely we have:

Theorem 7.4 (Explosion of the Levi-Civita Ricci tensor [6]). The right-hand side
of the identity (7.2) is a sum of two infinite terms even when the sum is finite.

To prove this result we may take {p} an orthonormal basis of the space H' and
write

EIVZIP = Y (Vo Z | 1) -
k,l

Using Theorem 6.1, the first term corresponds to

1 ! o oh -
5B [/0 Qapr o 2° ¢} dfck]
k.l
and the energy identity for It6 integrals implies

Z[¢k(r)]2 =400 VT.

k

2

7.4. A modified Riemannian metric. In [5] a Riemannian metric which takes
into account the perturbation of the divergence due to the Ricci curvature term
was considered. With respect to a connection defined accordingly, the first order
commutation formula has a simplified expression.

We consider in H the scalar product:

((h1 [ h2)) = (T | ho)pr,

where

h(r) =h(r) + = /OT Ric(h)ds,
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and we define the covariant derivative of a constant tangent vector field on the path
space Z with respect to h by

(¥02)(r) = /0 Q(odz, h) 5(r).
Then the following relation with the Markovian covariant derivative holds:
ViZ =ViZ.
The modified connection is still Riemannian and has a torsion.
Theorem 7.5 (Commutation formula). For z,h € H, the following identity holds:
Dyd(z) = 8(Vh2) + (2 | h)).

We consider vector fields, which are of the form

Zp)(1) = fralp) vea(r)
k,o

where fi, are cylindrical functions on Pp,,(M) and v, are the adapted vector
fields defined by
Vka(T) = ln<r<n+1 €a
for a partition {7} of the interval [0, 1].
Such processes were called by Fang (cf. [12]) simple processes.
The Weitzenbock formula corresponding to the covariant derivative V allows to

deduce the following estimation (cf. [5]):

Theorem 7.6. There exists a constant ¢ > 0 such that
E(3Z)* < c(E||ZI” + EIIVZ|])

for every simple process Z.

8. ANTICIPATIVE INTEGRALS AND WEITZENBOCK FORMULAE

As we have discussed in section 4, in the Riemannian setting the notion of
anticipative (Skorohod) integral no longer coincides, as is the case in R?, with the
notion of divergence with respect to Wiener measure in a direct way. In fact, not
only there is a correction term due to the Ricci tensor of the underlying manifold
(already present in the adapted case) but an extra term involving the curvature
appears (cf. formula (4.1)). In this section, when referring to anticipative stochastic
integrals on the path space, we shall be talking in fact about divergences.

To obtain L”-estimates for such divergences, it is enough to proceed by ap-
proximation by adapted vector fields and use the Weitzenbock formulae already
developed for these fields.

For ¢ > 1 we denote Df the completion of the space of simple processes under
the norm

12Ilg, = E (/01 |Z(T)|2dr)% LB (/01/01 |DC,Z(T)|2dT,da> g

By an approximation procedure Fang showed in [12] that, if Z belongs to a space
D{ for some ¢ > 2, then the divergence of Z exists and

16(2)|z> < cqll ZlIng -
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The same kind of approximation methods were used [6] with respect to the
Markovian connection as well as in [5] with respect to the modified connection
discussed in paragraph 7.4.

At this stage we could ask ourselves whether the passage from the adapted to
the non adapted case is really a source of extra difficulties (with respect to the
Wiener space situation). So far we have only looked at this passage from the point
of view of estimating norms and not tried to obtain closed commutation formulae
for anticipative vector fields.

The first order commutation relation for adapted fields has shown that
D,(52) = 8(V,2) + B(2),

where

1 1

B(2) :d{,’Z—%/a Ric () dr+i/g Ric (Ric(Z)) dr

+ %(RicZ),, + % / [VRic](z) - da(r).

o

Let Z be an adapted tangent vector field and f a smooth functional on the path
space. We have

Dy (8(fZ)) = Ds(f6Z — Dz f)
= (Dyf)0Z + f0(NoZ) + fB(Z)Z — DDy f

On the other hand,

6(Vo(fZ)) = fo(VoZ) - D(V,Z)f +(Dsf)0Z — DzDq f.

So, apart from the modification due to the Ricci tensor of the manifold, the differ-
ence between D, (6(fZ)) and §(V,(fZ)) makes intervene the structure equations,
which are, as we have seen, nontrivial on the path space.

We refer to [13] for developments of first order commutation formulae.

Let Ay denote the Laplacian on 1-forms associated to the Markovian connection,
namely:

MZ =-V"VZ.
We have
D:o(Y|ViaZ)=(VioY | VioZ)+ (Y | Via(ViaZ))
and, since E(A1Z | Y) = —E(VZ | VY'), we derive the following expression,
which holds for general (not necessarily adapted) vector fields Z:

1 1
@ (MZ)=) /0 & 5(V2,Z)dr — /0 & 5(VraZ) o da®(r)
1

1
~3 / Ric(V1.aZ)(,p) 0 dx®(T), (8.1)
0

where the Stratonovich integral is to be taken in the Stratonovich-Skorohod sense.

Let us denote by [0 the de Rham-Hodge Laplacian, O = dd + dd, on forms of
degree one.
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Theorem 8.1. There exists an operator on H', A, such that, for any smooth
tangent vector field Z we have

O+ A)Z(aﬁ) = A(Z)(U,g) +
1,1
S [ DoiralsT (o). (7:00) = T (700, (0,5)
any
where A has an integral kernel defined in terms of stochastic integrals.

9. ADAPTED DIFFERENTIAL GEOMETRY

We are interested in considering Weitzenbdck formulae for exact differential forms
w =df. If £ denotes the Ornstein-Uhlenbeck operator on the path space, defined
by

Lf=—-06Df, (9.1)
this means computing the commutator between dLf and A (df).

In this section (and following [8]) we consider a type of renormalization that
consists in restricting identities (such as Weitzenbock formulae) to adapted vec-
tor fields. We refer also to [4] where, in the same spirit, a modified Markovian
connection has been defined.

In a properly defined adapted differential geometry many identities simplify dras-
tically. The main result is that, through this renormalization by restriction the Ricci
tensor associated to the Markovian connection on the path space is equal to the
identity. In adapted differential geometry 1-differential forms are not identified via
the Hilbertian structure with vector fields; this allows to consider simultaneously
closed forms and adapted vector fields in duality.

Let us consider the family of projectors on H' = H'([0,1]; R?), II,, for A € [0, 1],
defined by

dT(HAZ) = 1.,—<>\Z'(T).
This family corresponds to the It6 time filtration.

We consider 2, the group of unitary transformations of H' that commute with
the projectors I, thus restricting the group of all unitary transformations which
would a priori define the “orthonormal frames” on the path space.

Denoting, respectively, GL(d) and O(d) the linear group and the orthogonal
group of R?, and P(x) the bounded measurable maps of [0, 1] into *, we can iden-
tify P(O(d)) and P(GL(d)) to, respectively 2 and to the group of bounded linear
transformations of H! commuting with the family I, , through the following action:

(ux2z2)(r) = /OT u(o) 2(o) do.

The Lie algebra of the group 2 can be identified with P(so(d)).

Definition 9.1. We call frame at a point p € P,,,(M) an isometric surjective map
of H' into the space of tangent vector fields on the path space.

We call adapted frame a frame which intertwines with the family of projection
operators on the space of tangent vector fields defined by:

(\(2))(1) = Z; VY71 <),
(MA(Z2))(7) = ] _\(Zx) Y7 >

The frame bundle O(P,,, (M) will consist of the collection of all adapted frames.
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Using the notation © already used for the canonic frame defined by the parallel
transport, O(Z), = th, _Z, = z,, the map = BN @;1(u x 2) defined for u € h,
z € H', is a bijective isomorphism from A x P, (M) to O(Pp,, (M)).

Let o(p) = x(e, p), where e denotes the constant path equal to the identity; o is
the section of the bundle of adapted frames. If ¢ : O(Py,, (M)) = Pp,, (M) denotes
the canonic projection, then p oo = Idme(M).

For fixed u € A, the map
Qu : OBy (M) = O(Pry (M)
Qur)=rou!
defines a group action of A on O (P, (M)).

The Markovian connection we have defined in section 6, namely

L. () = / " Q(=(0), odp(0)),

has a martingale part belonging to P(so(d)). An important observation is that,
when the underlying manifold has a zero Ricci curvature, then I',, € P(so(d))
since, by Bianchi identities, the contraction in the stochastic integral disappears.

The Markovian connection defines a family of canonic horizontal vector fields on
the frame bundle O(Py,,(M)), Az. We define Az(r) at a point » = o(p) o u by

Az(r) = (D2 (r), Z(r)), (9-2)

where

o E 0 exp(_gru*z,p) ou,

Given a tangent vector field Z on the path space Fz(r) =~ (Z,,)) defines its
scalarization. The Markovian covariant derivative V7Y is expressed on the frame
bundle by

FV,»(:)Y(T) = <dFY7 Az>r . (93)
We may then consider D, the directional derivative along the vector field A, op-

erating on smooth cylindrical functionals on O(Py,,(M)). The covariant derivative
V:.o is defined by

(vnaq))p = ([)T,aq))a(p) (9~4)

for a “vector field” ® : O(M) — L?([0;1]; RY).

On the frame bundle O(Py,,(M)) we can define a parallelism, by considering a
1-differential form with values in H* x 2. Let m = (71, 72) denote this differential
from, defined by

(11, T), = r~' (&' (r)(T)),
(72, T), = Ta(ry +¢'(r) T, (9.5)

where v denotes the projection of the domain of the map y on the first component
and where the tangent space at the point « € 2 is identified to

{uexp™ : g € P(so(d)) }.
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Theorem 9.2 ([8]). The structural equations of the frame are

(<d7T1,T1 A T2> + 71'2(T1)7T1(T2) — 71'2(T2) 71'1(T1))

— /.Q(ﬂ'l(T2),ﬂ'1(T1)) Odl‘

0

o(p)

(<d7T2,T1 A T2> — 71'2(T1)7T2(T2) + 71'2(T2) 71'2(T1))
[FZ17F22] - (DZ1F22) + (Dzzrzl) + F[

a(p)
21,22]7

where z; = m (T3), 1 =1,2.

From the expressions of the last theorem we recover the formula for the torsion
of the Markovian connection, namely

T (21, 22) /921,22 odz,

and we obtain the curvature tensor, which is equal to:
C(zlv 22) = _[F217F22] - (D21F22) + (Dzzrzl) + F[zhzz]‘

Corollary. The Ricci type trace of the curvature of the Markovian connection,
namely

TraceC(z Z/ C(z,é2)xeXdr

1s given by

d? TraceC(z) = Ricy() (d? 7).

In particular, if Ricci(M) = 0, then the Ricci trace on the path space vanishes.

We notice that these results are a consequence of the Markovian character of the
covariant derivative on the path space (cf. [8]).

As we have already pointed out, when the manifold is Ricci flat we can replace
the Stratonovich integral defining the Markovian connection by an It6 integral,
since the contraction term vanishes; we have an analogous situation concerning the
torsion. On the other hand,

Theorem 9.3. For Z;, i = 1,2, two adapted tangent vector fields, if
T(21,2)(0) = - [ (2. 22}
then E,(D1F) =0 for every smooth functional F.

The Markovian character of the connection together with the simplification in
the stochastic integrals when M is Ricci flat (as in theorem 9.3 above) induce
drastic simplifications on the corresponding Weitzenbdck formula in this adapted
differential geometry.

In the situation where Ricci(M) = 0 (which does not imply that the curvature
tensor of M is trivial), the expression for the Ornstein-Uhlenbeck operator on the
path space is (cf. [16]):

1 1
=3 Z/ D2 dr — D; o 0 da®(). (9.6)
=~ Jo
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Theorem 9.4 ([8]). Let Ricci(M) = 0. If Ay denotes the Laplacian on vector
fields, namely

th
fo

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

1 1 1
Ay = 3 Z/ V2, dr — / Viraodz®(T),
=~ Jo 0

en A1Z is an adapted vector field for every adapted tangent vector field 7 and,
r every smooth functional f, the following identity holds:

E(dLf,Z) + E(df, Z) = E(df, A1 Z) .

REFERENCES

. H. Airault and P. Malliavin, “Semi-martingales with values in a Euclidean vector bundle and
Ocone’s formula on a Riemannian manifold”, in Proceedings of Symposium in Pure Math, M.
C. Cranston and M. A. Pinsky, eds., A.M.S., vol. 57 (1995)

. J. M. Bismut, Large Deviations and the Malliavin Calculus (Birkhduser, Basel, 1984).

. E. Cartan, Legons sur la méthode du repére mobile, rédigées par J. Leray (Gauthier-Villars,
Paris, 1935).

. A.B. Cruzeiro, S. Fang and P. Malliavin, “A probabilistic Weitzenbdck formula on Riemannian
path space”, J. Anal. Mathém. 80 (2000), 87-100.

. A. B. Cruzeiro and S. Fang, “An L? estimate for Riemannian Stochastic integrals”, J. Funct.
Anal. 143 (1997), 400-414.

. A.B. Cruzeiro and P. Malliavin, “Renormalized differential geometry on path space: structural
equation, curvature”, J. Funct. Anal 139 (1996), 119-181.

. A. B. Cruzeiro and P. Malliavin, “Energy identities and estimates for anticipative stochastic
integrals on a Riemannian manifold”, Stoch. Anal. Rel. Topics 42 (1998), 1249-1254.

. A. B. Cruzeiro and P. Malliavin, “Frame bundle of Riemannian path space and Ricci tensor
in adapted differential geometry”, J. Funct. Anal., 177 (2000), 219-253.

. A. B. Cruzeiro and K. N. Xiang, “On metrics of tangent processes on path spaces”, preprint.

. B. K. Driver, “A Cameron-Martin type quasi-invariance theorem for Brownian motion on a

compact manifold”, J. Funct. Anal. 110 (1992), 272-376.

B. Driver, “The Lie bracket of adapted vector fields on Wiener spaces”, Appl. Math. Opt.

39(2) (1999), 179-210.

S. Fang, “Stochastic anticipative integrals on a Riemannian manifold”, J. Funct. Anal. 131

(1995), 228-253.

S. Fang, “Stochastic anticipative calculus on the path space over a compact Riemannian

manifold”, J. Math. Pures Appl. 77 (1998), 249-289.

S. Fang and P. Malliavin, “Stochastic Analysis on the path space of a Riemannian manifold:

I. Markovian Stochastic Calculus”, J. Funct. Anal. 118 (1993), 249-274.

B. Gaveau, P. Trauber, “L’integrale stochastique comme operateur de divergence dans I’espace

fonctionnel”, J. Funct. Anal. 46 (1982), 230-238.

T. Kazumi, “Les processes d’Ornstein-Uhlenbeck sur ’espace de chemins Riemanniens et le

problem des martingales”, J. Funct. Anal. 144 (1997), 20-45.

Kobayashi and Nomizu, Differential Geometry (Wiley, New York, 1962).

S. Kusuoka, “Analysis on Wiener space II, Differential forms”, J. Funct. Anal. 103 (1992),

229-274.

P. Malliavin, “Formule de la moyenne, Calcul de perturbations et théoréeme d’annulation pour

les formes harmoniques”, J. Funct. Anal. (1974) 274-291.

P. Malliavin, “Champs de Jacobi stochastiques”, C. R. Acad. Sci. Paris 285 (1977), 789-791.

P. Malliavin, “Stochastic Analysis”, Grund. der Math. Wissen. 313 (Springer-Verlag, 1997).

D. Nualart, E. Pardoux, “Stochastic integrals and the Malliavin calculus”, Prob. Th. Rel.

Fields 73 (1986), 191-202.

S. Shigekawa, “The complex of the de Rham-Hodge on the Wiener space”, J. Math. Kyoto

Univ. 26 (1986), 191-202.

A. V. Skorohod, “On a generalization of a stochastic integral”, Th. Prob. Appl. 20 (1975),

219-233.

D. W. Stroock, “The Malliavin calculus and its application to second order parabolic differ-

ential equations”, Math. Systems Th. 14 (1981), 25-65.

D. W. Stroock, An Introduction to the analysis of Paths on a Riemannian Manifold, Math.

Surveys and Monographs 74 (AMS, 2000).

K. D. Elworthy, Y. Legan and X. M. Li, “On the geometry of differential operators and

stochastic flows”, in Lecture Notes in Mathematics 1720 (Springer, 1999).



