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hes 
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 tangent spa
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tive 
omputational pro
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2 A. B. CRUZEIRO AND P. MALLIAVINdimensions, the summation operators of di�erential geometry be
ome very oftendivergent series.Another approa
h to 
onstru
t a geometry 
ould be the use of a frame bundle.The 
orresponding obje
t to the bundle of orthonormal frames would be the groupof unitary transformations of a Hilbert spa
e. Without further restri
tions, thisgroup seems too large to be 
onsidered in an eÆ
ient way.But the path spa
e is more than a spa
e endowed with a probability: time andthe 
orresponding Itô �ltration provide a mu
h ri
her stru
ture. In parti
ular,the parallel transport over Brownian paths 
an be naturally de�ned by a limitingpro
edure from ODEs to SDEs. The sto
hasti
 parallel transport de�nes a 
anoni
almoving frame on the path spa
e: the point of view we have adopted is the one ofrepla
ing systemati
ally the ma
hinery of lo
al 
harts by the method of movingframes (as in Cartan theory [3℄). In this way it is possible to transfer geometri
alquantities of the path spa
e to the 
lassi
al Wiener spa
e and use Itô 
al
ulus torenormalize the apriori divergent expressions. An e�e
tive 
omputational pro
edureis then a
hieved, where Sto
hasti
 Analysis and Geometry intera
t, not only on ate
hni
al level, but in a deeper way: Sto
hasti
 Analysis makes it possible to de�negeometri
al quantities, Geometry implies new results in Sto
hasti
 Analysis.1.1. Some geometri
al preliminaries. Let M be a Riemannian manifold ofdimension d, that we shall always assume to be 
ompa
t. O(M) denotes the bundleof orthonormal frames over M , namelyO(M) = �(m; r) : r : Rd ! Tm(M) is a Eu
lidean isometry, m 2M	and � : O(M)!M , �(r) = m the 
anoni
al proje
tion.A smooth se
tion of O(M), namely a smooth map � : M ! O(M) su
h that� Æ� = Id. is 
alled a Riemannian parallelism. In Cartan's theory of moving frameGeometry, an orthonormal moving frame is the data of d unitary ve
tor �elds Bkon M . Denote by �k the 
orresponding dual di�erential forms, hz;�ki = (z j Bk).Then the stru
tural equations are de�ned asd�k = aikj �i ^�j ;where aikj are (uniquely de�ned) fun
tions on M .The bra
kets of the ve
tor �elds Bk are then expressed by[Bk; Bl℄ = �Xaki lBi:The Christo�el di�erential form asso
iated to � is the so(d) 1-di�erential form� su
h that, for all ve
tor �elds A and B on M we havehA ^ B; d�i = �(B)�(A) � �(A)�(B):Su
h form exists and is unique. Writing � = �kij�i, and using the stru
turalequations, we have aikj = �kij��kji and the 
oordinates of � are uniquely determinedby �kij = �12[aikj + akj i � aji k℄:Given a moving frame, the Levi-Civita 
ovariant derivative of a ve
tor �eld z isexpressed in the moving frame by�(rAz) = LA�(z) + T (A)�(z);where L denotes the usual derivative.It is possible to de�ne on O(M) a stru
ture of parallelized manifold.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 3Let 
i denote the (unique) geodesi
 on M su
h that 
i(0) = m, ddt ��t=0 
i(t) =r(ei), where ei, i = 1; : : : ; d, are the ve
tors of the 
anoni
al basis of Rd , and let(
i(t); ri(t)) represent the parallel transport of r along 
i, de�ned by the equationdridt = �� _
iri; ri(0) = Id.Then Ai(r) = ddt ����t=0 ri(t)are the so-
alled horizontal ve
tor �elds on M .Denote by � the form de�ned by h�; Aii = (ei; 0). It is a one-form de�nedon O(M) with values in Rd � so(d), � = (�; !), where !(m; r) = r�1 dr is theMaurer-Cartan form of the orthogonal group O(d).The stru
ture equations of the parallelism are given by(d� = ! ^ �;d! = ! ^ ! +
(� ^ �);where 
 denotes the 
urvature tensor:
(A;B;X) = �rArB �rBrA �r[A;B℄�X:We de�ne the Lapla
ian on O(M) by�O(M) = 12 dXk=1L2Ak :Then for every smooth fun
tion on M we have�O(M)(f Æ �) = (�Mf) Æ �;where �M denotes the Lapla
e-Beltrami operator on M .An analogue 
onstru
tion 
an be performed with respe
t to any Riemannian
onne
tion with torsion. In this 
ase the stru
ture equations are(d� = ! ^ � + T (� ^ �);d! = ! ^ ! +
(� ^ �):If the torsion satis�es the so-
alled \Driver 
ondition", namely(T (A;B); C) = �(T (C;B); A);then the 
onstru
tion gives rise to the same Lapla
ian ([10℄ pg. 347).1.2. Sto
hasti
 analysis on the Wiener spa
e. We shall denote by X the
lassi
al Wiener spa
e of 
ontinuous paths on Rd ,X = �x : [0; 1℄! Rd : x 
ontinuous; x(0) = 0	endowed with the Wiener measure �0 and the usual Itô �ltration Pt of the eventsbefore time t.A fundamental equality in Sto
hasti
 Analysis, that is at the basis of the de�ni-tion of Itô integral itself is the following energy identityE ����Z 10 u� � dx(�)����2 = E Z 10 ju� j2 d�



4 A. B. CRUZEIRO AND P. MALLIAVINfor Pt-adapted L2 fun
tionals of the Wiener spa
e, and whereZ 10 u� � dx(�) = Z 10 u�� dx�(�);using Einstein 
onvention for the sum of indi
es.If F 2 Lp(�) and z is su
h that R 10 j _z� j2 d� < +1 (z belongs to the Cameron-Martin spa
e H1), we de�neDzF (x) = lim"!0 1" �F (x+ "z)� F (x)�;the limit being taken in the �0-a.e. sense. Cameron-Martin-Girsanov theorem im-plies that E�0(DzF (x)) = E�0�F (x) Z 10 _z dx�; (1.1)that is, Itô integral 
an be regarded as the dual of a derivation operator on theWiener spa
e.For a 
ylindri
al fun
tional F (x) = f(x(�1); : : : ; x(�m)), f smooth, letD�F (x) = mXk=11�<�k�kf(x(�1); : : : ; x(�m)):The operator D is a 
losed operator on the spa
e W1;2, the 
ompletion of 
ylin-dri
al fun
tionals with respe
t to the normkFk21;2 = E�0 jF j2 +E Z 10 kD�Fk2 d�;and we 
an write DzF = Z 10 D�F � _z� d�: (1.2)Noti
e that, if we 
onsider the basi
 \ve
tor �elds" in the Wiener spa
e, e�;�(�) =1�<�"�, then D�;�F = De�;�F:The dual of the derivative, for non adapted pro
esses z, is well de�ned whenE Z 10 j _z� j2 d� +E Z 10 Z 10 jD� _z(�)j2 d� d� < +1:It was dis
overed by Gaveau and Trauber [15℄ that the divergen
e 
oin
ides with theSkorohod integral [24℄, previously de�ned for non-adapted pro
esses. Following theNualart-Pardoux-Zakai theory of non-adapted sto
hasti
 
al
ulus [22℄, this integral,that we still denote by R 10 u dx, 
an be de�ned as the limit of the sumsXk Mk(u) � (x(�k+1)� x(�k))�Xk 1�k+1 � �k Z �k+1�k Z �k+1�k D�u� d� d�; (1.3)where Mk(u) = 1�k+1 � �k Z �k+1�k u� d�and is an extension of the Itô integral.So we have, extending (1.1) to the anti
ipative 
ase,E�0(DzF (x)) = E�0�F (x) Z 10 _z � dx�:



RIEMANNIAN GEOMETRY ON THE PATH SPACE 5This implies, in parti
ular,E�0�Z 10 u dx�2 = E�Z 10 D��Z 10 u � dx� � u(�) d��and a 
ommutation relation, namelyD� Z 10 u � dx = Z 10 D�u(�) � dx(�) + u(�) (1.4)allows us to derive the 
orresponding energy identity, whi
h isE �Z 10 u� dx(�)�2 = E Z 10 ju� j2 d� +E Z 10 Z 10 D�u� �D�u� d� d�: (1.5)Noti
e that (1.4) redu
es to the energy identity for the Itô integral when u isadapted, sin
e the last term vanishes.We re
all here the notion of Stratonovi
h-Skorohod integral, again following [22℄:this integral, that we denote by R 10 u Æ dx, is de�ned as the limit of the sumsXk Mk(u) � (x(�k+1)� x(�k)): (1.6)Conditions for the existen
e of su
h limit are more restri
tive than those requiredfor the de�nition of the Skorohod integral: in parti
ular, some uniform 
ontinuitynear the diagonal of [0; 1℄2 is required ([22℄). When both integrals exist they arerelated by Z 10 u� dx(�) = Z 10 u� Æ dx(�) � 12 Z 10 (D+� � u� +D�� � u� ) d�; (1.7)where D+� � u� = lim�!�+D� � u�;D�� � u� = lim�!��D� � u�:In the 
ase where u is Pt-adapted, D+� u� = 0 and 12 R 10 D�� � u� d� redu
es to theusual Itô sto
hasti
 
ontra
tion term.1.3. Sto
hasti
 analysis on the path spa
e. We denote by Pm0(M) the spa
eof 
ontinuous maps p : [0; 1℄ ! M , where M is a (
ompa
t) Riemannian manifoldof dimension d, m0 a �xed point in M . Pm0(M) is 
onsidered with its naturalpast �ltration and with �, the Wiener measure, 
onstru
ted via the fundamentalsolution of the operator �=�� � �, where � is the Lapla
e-Beltrami operator onM .We 
onsider the sto
hasti
 parallel transport of frames, whi
h is the 
ow of dif-feomorphisms on O(M) de�ned by the following Stratonovi
h sto
hasti
 di�erentialequation: 8><>:drx(�) = dXk=1Ak(rx) Æ dxk(�)rx(0) = r0;with �(r0) = m0. Then � sends Pr0(O(M)) into Pm0(M). The Lapla
ians on Mand on O(M) indu
e two probability measures; the map � realizes an isomorphismbetween these two probability spa
es.



6 A. B. CRUZEIRO AND P. MALLIAVINDe�nition 1.1. The map I : X ! Pm0(M) given byI(x)(�) = �(rx(�))is 
alled the Itô map.This map is a.s. bije
tive ([19℄) and provides an isomorphism of probabilityspa
es; namely we have � = (I)��0:De�nition 1.2. The parallel transport along p is the isomorphism from Tp(�0)(M)!Tp(�)(M) de�ned by tp� �0 = rx(�)rx(�0)�1;where x = I�1(p).De�nition 1.3. A ve
tor �eld z along the path p is a se
tion pro
ess of the tangentbundle of M , namely a measurable map Zp(�) 2 Tp(�)(M) de�ned for (p; �) 2Pm0(M)� [0; 1℄.For a ve
tor �eld Z along p we shall systemati
ally denote by z the image of Zthrough the parallelism � given by the parallel transport; more pre
isely we shallwrite z� = [�(Z)℄� = tp0 � (Z� ): (1.8)We de�ne the Itô and the Stratonovi
h sto
hasti
 integrals of an adapted ve
tor�eld on the path spa
e Z, respe
tively, byZ 10 Z � dp = Z 10 z� dx�;Z 10 Z Æ dp = Z 10 z� Æ dx�:It is possible to 
hara
terize these sto
hasti
 integrals without using the paralleltransport; they 
orrespond to the limit of the following Riemann sums, when themesh jSj of the partition S = f�0 = 0 < �1 < � � � < �m = 1g tends to zero:Z 10 Z dp = limjSj!0Xk �Zp(�k�1) ��� exp�1p(�k�1)(p(�k))�Tp(�k�1)(M)Z 10 Z Æ dp = limjSj!0 12Xk �Zp(�k) ��� exp�1p(�k)(p(�k+1))� exp�1p(�k)(p(�k�1))�Tp(�k)(M)(for a proof 
f. [14℄).In the moving frame type of geometry on the path spa
e, it is natural to 
onsiderat the origin the tangent spa
e whi
h 
orresponds to the one usually asso
iated toWiener spa
e, namely the Cameron-Martin spa
e. As we have mentioned in thelast paragraph, Cameron-Martin ve
tors are pre
isely those with respe
t to whi
hintegration by parts 
an be performed and the 
orresponding spa
e is dense in X .In this perspe
tive, we de�neDe�nition 1.4. A tangent ve
tor �eld in Pm0(M) is a L2-se
tion pro
ess Z, su
hthat Z(0) = 0 and, de�ning,dp�Z = lim"!0 1" �tp� �+"(Z(� + "))� Z(�)�;we have dpZ 2 L2.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 7On the tangent ve
tor spa
e T (P(M)) we de�ne the Hilbertian normkZk2Tp(P (M)) = Z 10 kdp�Zk2Tp(�)(M)d�:The parallelism � de�ned in (1.8) provides a di�erential 1-form realizing anHilbertian isomorphism of Tp(Pm0(M)) with the Cameron-Martin spa
e H1 =H1([0; 1℄;Rd) and we have: dd� �(Z) = tp0 � (dp�Z): (1.9)Let S(Pm0(M)) denote the spa
e of smooth 
ylindri
al fun
tionals on Pm0 ,namely the fun
tionals f for whi
h there exists a partition of [0; 1℄, 0 � �1 < � � � <�m � 1 and a smooth fun
tion f on Mm su
h that F (p) = f(p(�1); : : : ; p(�m)).InMm we have the Riemannian produ
t stru
ture. We de�ne, for f 2 S(Pm0(M)),the following operator: D�F = mXk=1 1�<�ktp� �k(�kf): (1.10)The map � 7! D�F de�nes a se
tion pro
ess (
f. de�nition 1.3); we introdu
ethe norm kDFk2(p) =X� Z 10 (D�;�F )2 d�;where D�;� F = ( tp0 � D� F j "� ), f"�g the 
anoni
al basis of Rd .Then, for a tangent ve
tor �eld Z, we de�neDZF = Z 10 D�;�f _z�� d�: (1.11)In analogy with the Wiener spa
e 
ase, we 
an 
onsider the \basi
 ve
tor �elds"~e�;�(�) = 1�<�tp� 0"� and we have D�;� = D~e�;� .The operators D�;� may be regarded as forming a \
ontinuous" basis of thetangent spa
e of Pm0(M).Theorem 1.5. With respe
t to the norms kDfkqLq = E(kDfkq), the operator D is
losable in Lq. The domain of the operator D is, by de�nition, the Sobolev spa
eW1;q(Pm0(M)).2. Differentiability of the Itô parallel transport and intertwiningformulaThe parallelism we have 
onsidered on the path spa
e should allow us to transferdi�erential 
al
ulus on this spa
e to di�erential 
al
ulus on the Wiener spa
e. Todo this we are bound to derivate the Itô map, that is, to derivate parallel transport.Theorem 2.1. Granted the parallelism of O(M), the Ja
obian matrix of the 
owof di�eomorphisms r0 7! rx(�) is given by a linear map Jx;� = (J1x;� ; J2x;� ) 2GL(Rd � so(d)) whi
h is de�ned by the following system of Stratonovi
h SDEs:8>>>><>>>>:d�J1x;� = dX�=1(J2x;� )�� Æ dx�(�)d�J2x;� = dX�=1
(J1x;� ; "�) Æ dx�(�)



8 A. B. CRUZEIRO AND P. MALLIAVINwhere (J2)�� denotes the �th 
olumn of the matrix J2 and 
 is the 
urvature tensorof the underlying manifold read on the frame bundle.Proof. (
f. [10, 14, 20℄, noting that here the sign of the 
urvature tensor followsa di�erent 
onvention). Let xn be a sequen
e of smooth approximations of theBrownian 
urve x. We 
onsider the O(M)-valued mapfn(�; t) = rxn+tz(�); r(�0) = r0;for z 2 H1([0; 1℄;Rd), �; t 2 [0; 1℄. The inverse image by fn of the di�erential formof the parallelism is given by f�n� = �n d� + �n dtf�n! = �n dtwhere �n = _xn + t _z. Thend(f�n�) = ���n�t � ��n�� �dt ^ d�and, by the stru
ture equations,f�n(d�) = �n�n dt ^ d�:Sin
e d(f�n�) = f�n(d�), for t = 0 we obtain_z � ��n�� = �n _xn:The se
ond stru
ture equation implies, in an analogous way,��n�� = 
(�n; _xn):The theorem follows from the 
onditions �n(0; 0) = 0, �n(0; 0) = 0 and from a limittheorem for SDEs (d�(�) = _z(�) � � Æ dx(�)d�(�) = 
(�; Ædx):Then we take z = 0.Remark 2.1. If one 
onsiders a metri
 
onne
tion with torsion on the manifold M ,the �rst stru
ture equation must be 
orre
ted by the 
orresponding term and inthe last theorem we derive(d�(�) = _z(�) d� � � Æ dx(�) + T (�; Ædx)d�(�) = 
(�; Ædx):Corollary. For �0 2 [0; 1℄ and 
onsidering I�0 : X ! M the spe
ialization of theItô map at time �0 de�ned by x! �(rx(�0)), we haveD�I�0 = tp�0 0(z(�0));where z(�0) = Z 10 Ĵx�0 � Æ d�(�);Ĵ is the horizontal�horizontal blo
k of matri
es J de�ned in last theorem and(d� = _z d� � � Æ dxd� = 
(z; Ædx):



RIEMANNIAN GEOMETRY ON THE PATH SPACE 9We en
ounter here a diÆ
ulty: the Itô map is not Cameron-Martin di�erentiable,sin
e the \ve
tor �eld" � is no longer a pro
ess of bounded variation! Neverthelessits martingale part is given by an antisymmetri
 matrix whi
h, by Levy's theorem,implies that Wiener measure is still 
onserved during the evolution.If we 
onsider a 
onne
tion with torsion, an extra martingale term appears, that
onserves Wiener measure only if the torsion satis�es the antisymmetri
 
onditionT k(ei; ej) = �T j(ei; ek)(Driver's 
ondition).From this result we see that we have to enlarge the tangent spa
e and that it willnot be enough to 
onsider (Cameron-Martin) tangent ve
tor �elds. We introdu
ethe following pro
esses:De�nition 2.2. A tangent pro
ess on the Wiener spa
e X is a Rd -valued semi-martingale pro
ess � de�ned on X with Itô di�erential given byd��(�) = a�� dx�(�) + 
� d�;where a�� = �a��, a��(0) = 0, a�� and 
� 2 L2[0; 1℄.The tangent spa
e of Pm0(M), that we shall denote by ~T (P), is the spa
e�~�(�) = tp� 0�(�); � tangent pro
ess on X	:Given a smooth 
ylindri
al fun
tional F (x) = f(x(�1); : : : ; x(�m)), we de�ne thederivative D�F by D�F = mXk=1 hdkf; �(�k)i : (2.1)The operator D� is 
losable in L2: this is a 
onsequen
e of the integration byparts (Theorem 3.1).De�nition 2.3. A fun
tional F is 
alled strongly di�erentiable in L2 ifF 2 Dom(D�) 8 tangent pro
ess �Whi
h fun
tionals on the Wiener spa
e are a
tually on the domain of D� orwhi
h is the 
hara
terization of the 
losure of this domain is a deli
ate question.We shall 
ome ba
k to these problems in the next paragraph.Theorem 2.4 (Intertwining formula [6℄). A s
alar-valued fun
tional F de�ned onthe path spa
e is strongly di�erentiable if and only if F Æ I is strongly di�erentiableon X. We have the intertwining formula(D��F ) Æ I = D�(F Æ I);where � and �� are related by the equations:(d� = d�� � � Æ dxd� = 
(��; Ædx):Proof. We 
onsider the following in�nitesimal Eu
lidean motion on the Wienerspa
e [��t (x)℄(�) = t�(�) + Z �0 exp(t�) Æ dx;and V �t = I Æ ��t Æ I�1;



10 A. B. CRUZEIRO AND P. MALLIAVINderivating in t = 0,ddt ����t=0 V �t = �0(rx(�)) � ddt ����t=0 r��t (x)(�) = rx(�) ��(�);and the result follows from last 
orollary.Remark 2.2. For a Driver-type 
onne
tion we have to repla
e the last equations by(d� = d�� � � Æ dx+ T (��; Ædx);d� = 
(��; Ædx);where T is read on the frame bundle, Tr(u; v) = r�1T (ru; rv).At this stage one 
ould think we are dealing with two di�erent notions of de-rivative on the path spa
e, the one de�ned in paragraph 1.3 and the one thatnaturally follows from the above results, namely, for F 2 S(Pm0(M)), F (p) =f(p(�1); : : : ; p(�m)), D�;�F (p) = ddt ����t=0 F (V ~e�;�t (p));the limit being taken in Lp(�) with p > 1.In fa
t both notions 
oin
ide; we have:ddt ����t=0 F �V ~e�;�t (p)� = mXk=1 �kf(p) � ddt ����t=0 V ~e�;�t (�k)= mXk=1 �kf(p) � �1�<�ktp�k 0"��= D�;�F:The next result gives a formula for the derivation of the parallel transport onthe path spa
e.Theorem 2.5. For �xed �0 2 [0; 1℄ and denoting �(p) = tp�0 0r0, the derivative of� 
an be expressed in the parallelism of O(M) as:hDZ�; �i = z(�0) �+ Z �0 T (z; Ædx)�;hDZ�; !i = Z �00 
(z; Ædx):Proof. Derivating on the path spa
e with respe
t to a tangent ve
tor �eld Z means,by the intertwining formula, derivating with respe
t to a tangent pro
ess(d� = _z d� � � Æ dx �+T (z; Ædx)�d� = 
(z; Ædx)the fun
tionals pulled ba
k to the Wiener spa
e through the Itô map.We have obtained the derivation of the parallel transport with a short proof, bytransferring the result to the Wiener spa
e. This result 
an also be proved by amore dire
t geometri
 analysis, an approa
h that may have the advantage of a moreintuitive argument, but requires a very deli
ate approximation pro
edure. Here wejust sket
h the main argument.We take 
ylindri
al approximations of the fun
tional tp�0 0r0 obtained by paralleltransporting along pie
ewise minimizing geodesi
s 
n based on points fp(�1); : : : ; p(�n)gof the manifoldM and 
onverging to Brownian motion onM . For su
h geodesi
s to



RIEMANNIAN GEOMETRY ON THE PATH SPACE 11be well de�ned one must pla
e ourselves inside a ball of radius less than the radiusof inje
tivity: that is, one must 
onsider a 
uto� fun
tion pro
edure together withthe approximation one (we refer to [6℄, paragraph II-4 for the development of su
hte
hniques).We want to di�erentiate parallel transport on the path spa
e. Working with anormal 
hart 
entered at a �xed point p(�k), this means that we want to 
omparein an in�nitesimal way parallel translation along the geodesi
s going from p(�k�1)to p(�k) and from p(�k) to p(tk+1) to parallel translation when p(�k) is perturbedin the dire
tion we want to 
onsider. So, modulo the bra
ket of the ve
tor �eldsinvolved, we are 
onsidering a loop going from p(�k�1) to p(�k+1) and ba
k. To
ompute parallel transport along this loop is pre
isely to 
ompute the holonomyof the 
urve in Di�erential Geometry, whi
h means integrating the 
urvature alongthe path ([17℄). The integrals 
onverge at the end to Stratonovi
h integrals withrespe
t to Brownian motion.3. The spa
e of tangent pro
essesWe 
onsider the theory of anti
ipative integrals a

ording to Nualart-Zakai-Pardoux, following referen
e [22℄. Given a s
alar valued pro
ess u� , its Skorohodand Skorohod-Stratonovi
h integrals, that we denote, respe
tively, by R 10 u dx andR 10 u Æ dx, are de�ned as the limit of the Riemannian sums (1.3) and (1.6), whenthey exist.Let �� be a tangent pro
ess, namely a pro
ess satisfying the sto
hasti
 di�erentialequation d��(�) = a�� dx�(�) + 
� d�(
f. de�nition 2.2).Theorem 3.1 (Integration by parts). For every smooth 
ylindri
al fun
tional Fwe have E(D�F ) = E(F Z 10 
� dx�);where D�F was de�ned in (2.1).Proof. The martingale part of the Itô representation of � de�nes a measure pre-serving isomorphism on the Wiener spa
e.We de�ne the Skorohod and the Skorohod-Stratonovi
h integrals of a pro
ess u�relatively to a tangent pro
ess � as the limit of the sumsXk Mk(u) � (�(�k+1 � �(�k))and Xk EÆk
(Mk(u)) � (�(�k+1 � �(�k));where Mk(u) was de�ned in (1.3) and EÆk
 denotes the 
onditional expe
tation
onstituted by averaging relatively to the �-�eld generated by x(�) � x(�k), � 2Æk = [�k; �k+1℄.



12 A. B. CRUZEIRO AND P. MALLIAVINTheorem 3.2. Assume that f 2 W p2 (X) 8p > 1 and that a�� 2 Lp(X ;L2[0; 1℄)8p � 1, a is adapted and a�� = �a��. If one of the two sto
hasti
 integrals belowexist, then the other exists as well andZ 10 (D�;�f) � d��(�) = Z 10 (D�;�f) Æ d��(�);where ��(�) = R �0 a�� dx� .Proof. The di�eren
e between the two integrals is given by the limit of the followingsums: Xk (EÆk
(Mk(D�;�f))�Mk(f))(��(�k+1)� ��(�k));using the Clark-O
one formula, this expression is equal to�Xk �Mk Z �k+1�k EP�(D2(�;
);(�;�)f) dx
(�)� � (��(�k+1)� ��(�k))and the limit when the mesh of the partition goes to zero is equal to the limit of�Xk;
 Z �k+1�k Mk(D2�;
);(�;�)f)a�
 (�) d�whi
h is equal to zero by the symmetry of the se
ond derivatives and the antisym-metry of a��.Generalizing the 
orresponding representation formula for derivatives along Cameron-Martin ve
tor �elds (
f. (1.2)), we have the following:Theorem 3.3. Let � be a tangent pro
ess su
h that a�� satis�es the assumptions oftheorem 3.2 and, furthermore, that a�� 2 W1;p(X) 8p � 1, and R 10 k
(�)kL2(X) d� <+1. Then W q2 � Dom (D�) 8q > 1 and we haveD�f =X� Z 10 �X� a�� D�;�f� � dx�(�) + Z 10 
�D�;� f d�:For a proof of this result we refer to [6℄ and to the appendix in [8℄.We may use the representation of last theorem to derive a formula for the deriv-ative of a sto
hasti
 integral with respe
t to a tangent pro
ess. These formulae forderivations with respe
t to Cameron-Martin spa
e valued pro
esses were obtainedin [25℄.Theorem 3.4 ([6℄). Let � be a tangent pro
ess with 
oeÆ
ients satisfying the as-sumptions of theorem 3.3. Let u be an adapted pro
ess su
h that, for some p > 1,R 10 ku(�)k2;p d� < +1. The derivative of the Itô sto
hasti
 integral of u is given by:D� Z 10 u � dx = Z 10 D�u � dx+ Z 10 u � d�:Also in [6℄ we have derived a 
orresponding formula for the derivation of Stratonovi
hintegrals. Under suitable assumptions that ensure the existen
e of su
h integrals,it reads: D� Z 10 u Æ dx = Z 10 D�u Æ dx+ Z 10 u Æ d�:Tangent pro
esses have the same regularity (in time) as the Wiener pro
ess;therefore it is not possible to extend to the spa
e of tangent pro
esses the H1
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. Considering H 12�" metri
s gives rise to serious diÆ
ulties, namely in thede�nition of 
orresponding metri
 (for instan
e, Levi-Civita) 
onne
tions (
f. [9℄).4. Integration by parts on the path spa
eA formula of integration by parts on the path spa
e was �rst derived by Bismut[2℄. There are di�erent proofs and approa
hes to this result: we refer to [1, 10, 14℄.In this paragraph we derive integration by parts on the path spa
e via transferringthe result to the Wiener spa
e and using the intertwining theorem.Let Z be a tangent ve
tor �eld on the path spa
e. From the results in paragraph2 we have, for 
ylindri
al fun
tionals F ,E�(DZF ) = E�0(D�(F Æ I));where d� = _z d� � � Æ dx, d� = 
(z; Ædx) and Z� = tp� 0z� . On the Wiener spa
e,we have E�0 (D�(F Æ I)) = E�0((F Æ I)Æ(�)):The pro
ess � is a tangent pro
ess whose bounded variation part is equal to_z d� + 12 d� � dx. From the equations of �, d� � dx = Ri

i(z) d� , where Ri

i(z)� =tp� 0 ÆRi

ip(�)Z Æ tp� 0. We have, therefore,Theorem 4.1 (Bismut integration by parts formula). For a 
ylindri
al fun
tion Fon the path spa
e and Z an adapted ve
tor �eld su
h that E R 10 jdp�Zj2 d� < +1,E(DZF ) = E�(F Æ I) Z 10 h _z + 12 Ri

i(z)i dx�:From this theorem it follows that D is a 
losable operator from Lp(Pm0(M)) tothe spa
enz : Z tangent ve
tor �eld, kZkpp = E�Z 10 kdp�Zk2 d��p=2 < +1o:We remark that, when the 
onne
tion 
onsidered on the manifold is of Drivertype, an extra term appears, namely12 dT � dx; where dT = T (z; Ædx):In this 
ase we derive the following integration by parts formula:E(DZF ) = E�(F Æ I) Z 10 h _z + 12 Ri

i(z) + T̂ (z)i dx�;where T̂ (z) =Pd�=1(re�T )(z; e�), a result whi
h is due to Driver [10℄.We have only 
onsidered adapted ve
tor �elds Z. A natural question is whathappens if Z is anti
ipative and whether in this 
ase the divergen
e 
ould be simplywritten, in analogy with what happens in the Wiener spa
e, asÆ(z) = Z 10 � _z + 12 Ri

i(z)� � dx;where the sto
hasti
 integral would be interpreted in the sense of Skorohod. Theanswer is no; another term involving derivatives of Z and a sto
hasti
 integral of the
urvature tensor appears. The 
orresponding formula was obtained in [7℄, wherewe have developed a 
omputational te
hnique of de
omposition of the pro
esses intheir \
ontinuous 
oordinates" expressed on the basi
 ve
tor �elds.



14 A. B. CRUZEIRO AND P. MALLIAVINWe have, for non ne
essarily adapted tangent ve
tor �elds Z, and for 
ylindri
alfun
tions F on the path spa
e,E(DZF ) = E�(F Æ I)�Z 10 _z dx + Z 10 _z� � g� d� � Z 10 Dq� � z� d���; (4.1)where g�;� = 12 Z 1� (Ri

i )�� dx�and q�;�(�) = 1�<� Z �� �Z �� 
(Ædx; "�)� Æ dx(�):The integration by parts formula (4.1) holds under suitable regularity assump-tions on Z that ensure the de�nition of the anti
ipative sto
hasti
 integrals involved(
f. [7℄). 5. Stru
tural equations of the path spa
eIn this se
tion we 
ompute the bra
ket of two 
onstant ve
tor �elds, namelyU(p)� = tp� 0u� ; V (p)� = tp� 0v� ;where u; v are non random.Let F (p) = f(p(�1); : : : ; p(�m)) be a smooth 
ylindri
al fun
tional; denote by ~Fthe lift of F to [O(M)℄m, namely~F (rp(�1); : : : ; rp(�m)) = F (�(rp(�1)); : : : ; �(rp(�m)));and by �i;� ~F the derivative of ~F in the 
oordinate rp(�i) and in the dire
tion ofthe horizontal ve
tor �eld A�:�i;� ~F = dd" ����"=0 ~F (rp(�1); : : : ; rp(�i) + "A�; : : : ; rp(�m)):Then the following equality holds:DUf = mXi=1 u�(�i) �i;� ~F (rp(�1); : : : ; rp(�m));and we haveDVDUF =Xi;j v�(�j)u�(�i) �j(�i ~F � r�(�i)) � r�(�j)=Xi;j v�(�j)u�(�i) ��j;� �i;� ~F + �i;
 ~F (�j;�r�(�i))
�:When i 6= j, �i and �j 
ommute; when i = j,�i;� �i;� � �i;� �i;� = �i;[A�;A� ℄:Sin
e A� and A� are horizontal ve
tor �elds, [A�; A� ℄ is verti
al; on the other hand,~F only depends on �(r), therefore this term vanishes. It remains to 
onsider the
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orresponding to the derivative of the parallel transportXj v�(�j) �j;�r�(�i) = DV r�(�i)= Z 10 _v�(�)�1�<�i Z �i� 
�;�;� Æ dx�� d�= Z �0 v�(�) 
��� Æ dx�:We have, therefore,(DUDV �DVDU )F= mXi=1 ��s;
f; v�(�i) Z �i0 
���u� Æ dx� � u�(�i) Z �i0 
���v� Æ dx�� ;from whi
h we dedu
e the followingTheorem 5.1. The bra
ket of two 
onstant tangent ve
tor �elds U and V on thepath spa
e is given by the following expression in the parallelism of the movingframe: [u; v℄� = Quv �Qvu; where Qu(�) = Z �0 
(u; Ædx):Corollary. The bra
ket of two 
onstant (Cameron-Martin) tangent ve
tor �elds isno longer a Cameron-Martin ve
tor �eld.Proof. In di�erential form, the bra
ket is given byd� [u; v℄ = 
(u; v) Æ dx+ [Qu _v �Qv _u℄ d�:We en
ounter here a new phenomena, the non-
losure of the tangent spa
e 
on-sisting of tangent ve
tor �elds under the bra
ket. We also en
ounter a new reasonto enlarge the tangent spa
e by 
onsidering tangent pro
esses.In parti
ular, we have, for basi
 ve
tor �elds,[~e�;�; ~e�;�℄(�;
) = 1�<� Z �� 

�;�;� Æ dx� � 1�<� Z �� 

�;�;� Æ dx�:We remark that, even inside the same time interval, there is no possibility ofsimplifying the 
urvature terms. In fa
t, and unless we are in a 
at manifold, thedi�usion term of the bra
ket does not vanish.Let us 
onsider a map A : Pm0(M)! End(H1(Rd )) whi
h is invertible and a newparallelism de�ned by ~� = AÆ�. For u1; u2 2 H1, let ~ui = (A�1)ui, ~Vi = ��1(~ui),i = 1; 2; we 
ompute DV3 = DV1DV2 �DV2DV1 and identify Vi with vi through theparallelism �, obtainingv3 = [v1; v2℄ + (Dv1A�1)u2 � (Dv2A�1)u1:Sin
e the last terms are Cameron-Martin ve
tor �elds, we see that a 
hange ofmetri
 on the path spa
e does not 
hange the fa
t that the bra
ket produ
es a truetangent pro
ess.Nevertheless a very interesting phenomena is that the tangent pro
esses (the \en-larged" tangent spa
e) do form a Lie algebra: the bra
ket of two tangent pro
essesis again a tangent pro
ess. The result was shown in [6℄ and [11℄.



16 A. B. CRUZEIRO AND P. MALLIAVINTheorem 5.2. Given two smooth tangent pro
esses �1 and �2 on Pm0(M), thereexists a tangent pro
ess �3 su
h that, denoting B = D�1D�2 �D�2D�1 , we haveBF = D�3F:6. Riemannian 
onne
tionsAs we have re
alled in 1.1, in �nite dimensions, the Levi-Civita 
onne
tion, theonly Riemannian 
onne
tion whi
h is torsion free, is determined by the stru
tureequations. As we have 
omputed those on the path spa
e, we 
an also 
onsider the
orresponding Levi-Civita 
onne
tion.For Ui = tp� 0ui, ui 2 H1, i = 1; 2; 3, and identifying again ve
tor �elds on thepath spa
e with the 
orresponding Cameron-Martin pro
esses through the paral-lelism, a Riemannian 
onne
tion without torsion (Levi-Civita 
onne
tion), ~rU1U2,will be de�ned by( ~ru1u2 j u3) = 12�([u1; u2℄ j u3)� ([u2; u3℄ j u1) + ([u3; u1℄ j u2)�:Using the expression for the bra
ket,([ui; uj ℄ j uk) = Z 10 _uk
(ui; uj)(Ædx) + Z 10 _uk[Qui _uj �Quj _ui℄ d�: (6.1)Integrating by partsZ 10 _u1
(u2; u3)(Ædx) = Z 10 

���u�2u�3 _u
1 Æ dx�;we obtain Z 10 �Z 1� 

���u�2 _u
1 Æ dx�� _u�3 d�:The sum of the 
ontributions of the Stratonovi
h integrals in expression (6.1) isequal to12 Z 10 
(u1; u2)(Ædx) _u3 + 12 Z 10 �Z 1� 
( _u1; Ædx)(u2) + 
( _u2; Ædx)(u1)� _u3 d�:Using the antisymmetry of the matri
es Q we obtain:Theorem 6.1. The Levi-Civita 
ovariant derivative ~ru1u2 of two 
onstant tangentve
tor �elds has the following expression in the parallelism of the moving frame:d� ( ~ru1u2) = 12
(u1; u2)(Ædx)+ hQu1 _u2 + 12 Z 1� 
( _u1; Ædx)(u2) + 12 Z 1� 
( _u2; Ædx)(u1)i d�:We remark that the expression obtained is a tangent pro
ess with an anti
ipativebounded variation part.Various other 
onne
tions 
an be de�ned on the path spa
e. We shall work inthe sequel with a parti
ular one, that we 
all the Markovian 
onne
tion.De�nition 6.2. For two 
onstant tangent ve
tor �elds U1, U2, the Markovian
ovariant derivative is de�ned by[dp�rU1U2℄(p) = DU1 [(exp�1p(�))�(dp�U2)℄:This expression is Markovian in the sense that dp� [rU1U2℄ depends only upondp�U2 and U1(�).



RIEMANNIAN GEOMETRY ON THE PATH SPACE 17Theorem 6.3. The Markovian 
onne
tion is expressed in the parallelism bydd� (ru1u2) = Qu1 _u2;for u1; u2 2 H1.Proof. Sin
e U2(p)(�) = tp� 0u2(�), we havedd� [�(rU1U2)℄ = h!;DU1(tp� 0)i � _u2(�)and the theorem of derivation of the parallel transport (se
tion 2) gives the result.We introdu
e the lo
alization of the 
ovariant derivative by the de�nitionr�;�Z = r~e�;�Z:For a tangent ve
tor �eld Y , we haverY Z = dX�=1 Z 10 r�;�Zdp�;�Y d�: (6.2)The Christo�el symbols of the Markovian 
onne
tion are de�ned byr�;�(~e�;�) = �
��(�; �) ~e�;� ;where �
��(�; �) = 1�<� Z �� 

��� Æ dx�: (6.3)Theorem 6.4. The Markovian 
onne
tion is Riemannian. Its torsion is given byT 
(~e�;�; ~e�;�)(s) = �1�_��s Z s�_� 

��� Æ dx�:Proof. Let Ûi(�), i = 1; 2, denote the ve
tor �elds d�Ui(�) read in the normal 
hartat exp�1p(�) and gij the metri
 tensor of M read in this normal 
hart. The fa
t thatthe derivatives of gij vanish at the origin, implies thatDY [gijÛ1iU2j ℄ = gij [DY Û1i℄U2j + gijU1i[DY U2j ℄and DY Û1i(�) = dp� [rY Ui(�)℄The expression for the torsion follows from the stru
tural equations.7. Weitzenb�o
k formulae7.1. Energy identities and 
urvature. As we have re
alled in se
tion 1.2 en-ergy identities are fundamental in Sto
hasti
 Analysis. They are at the basis ofthe de�nition of sto
hasti
 integrals of adapted pro
esses and they allow to deriveestimates for anti
ipative sto
hasti
 integrals. On the Wiener spa
e the energyequality for anti
ipative integrals is:E ����Z 10 u� dx(�)����2 = E Z 10 ju� j2 d� +E Z 10Z 10 D�u� �D�u� d� d�In Di�erential Geometry formulae of the typedd� + d�d = ��+Ri
;



18 A. B. CRUZEIRO AND P. MALLIAVINwhere d� denote the adjoint of the exterior derivative with respe
t to the Riemannmeasure dm and Ri
 is the Ri

i tensor asso
iated with the Levi-Civita 
onne
tionr are known under the name of Weitzenb�o
k formulae. For a metri
 
onne
tionwith torsion, one has dd� + d�d = ��+Ri
+ T̂ ;where T̂ (ej) = Pdi=1(rei � T )(ej ; ei). If we 
onsider Weitzenb�o
k formulae (withrespe
t to Levi-Civita 
onne
tion) on 1 forms !z (z denotes the dual 
orrespondentve
tor �eld) we obtainZ jd�zj2 dm+ Z jd!zj2 dm = Z jrzj2 dm+ Z hRi
 z; zi dm;whi
h is equivalent toZ jd�zj2 dm =Xi;j Z �reiz �� ej��rej z �� ei� dm+ Z hRi
 z; zidm;where feig denotes an orthonormal basis of the tangent spa
e.This 
orresponds to the energy identity written in the Wiener spa
e with respe
tto the underlying Gaussian measure. We may say, in an equivalent way, that theRi

i tensor of the Wiener spa
e is equal to the identity. This result was obtainedby Shigekawa in [23℄.If � = dd� + d�d denotes the Rham-Hodge operator on forms of degree one, thesemigroup e�t�f satis�es��t(de�t�f) = dd�de�t�f = �(de�t�f);sin
e ddu = 0. The problem of estimating the 
ommutator between de�t� ande�t�d redu
es to estimating the 
ommutator between the operators � and � ondi�erential forms (
f. [1℄ for a development of this point of view).On the Wiener spa
e Mehler's formula gives an expli
it representation of thesemigroup asso
iated to the Ornstein-Uhlenbe
k operator Lf = �Ædf . The 
om-mutation relation reads d(e�tLf) = e�t(e�tLdf)and is at the basis of Meyer's inequalities (
f. [21℄).7.2. First order 
ommutation relations. An energy identity, as we have seenin paragraph 1.2, follows from a 
ommutation relation between derivatives anddivergen
es whi
h means, in the 
ase of adapted ve
tor �elds, between derivativesan (Itô) sto
hasti
 integrals. We are therefore interested in studying su
h relationson the path spa
e.We have the followingTheorem 7.1. Given an adapted tangent ve
tor �eld Z su
h that the pro
ess _zsatis�es R 10 k _z(�)k2;p d� < +1 for some p > 1 we haveD�;� Z 10 dp�Z � dp(�) = Z 10 dp�(r�;�Z) � dp(�) + dp�;�Z � 12 Z 1� (Ri
 _z)� d�:Proof. We start from the 
hara
terization of the Itô integral on the path spa
e,Z 10 dp�Z � dp(�) = Z 10 _z� dx�



RIEMANNIAN GEOMETRY ON THE PATH SPACE 19and we observe that, by the intertwining theorem, the derivation D�;� 
orresponds,on the Wiener spa
e, to the derivation with respe
t to the tangent pro
ess��;�(�) = 1�<� "� + Z �� �Z s� 
(Ædx; "�)� Æ dx(s):By theorem 3.4, D� Z 10 _z � dx = Z 10 (D� _z) � dx+ Z 10 _z � d�:We have _z� = r�1(dp�Z) and we derivate parallel transport by making the deriv-ative at the point p(�) and using the normal 
hart 
entered at this point. Fromthe formulae of the derivative of the parallel transport and the de�nition of theMarkovian 
onne
tion it follows that�D�;� _z��� = �r�1(dp�r�;�Z)�� � ���
 (�; �) _z
� ;where � denotes the Christo�el symbols de�ned in (6.3).Con
erning the se
ond term,Z 10 _z � d� = _z�(�)� Z 1� �Z �� 
(Ædx; "�)� _z(�) � dx(�)�12 Z 10 X�;
 _z
(�) d���
 (�; �) � dx�(�):Sin
e d���
 (�; �) � dx�(�) = 
���
 d� , we obtain the result.We observe that the Markovian 
onne
tion appears naturally when dealing with�rst order 
ommutation relations on the path spa
e.An analogous formula for derivating Stratonovi
h sto
hasti
 integrals may bederived. Under suitable assumptions on the tangent ve
tor �eld Z, it readsD�;� Z 10 dp�Z Æ dp(�) = Z 10 dp�(r�;�Z) Æ dp(�) + dp�;�Z (7.1)(
f. [6℄).7.3. A �rst result for adapted tangent ve
tors. Using Bismut's 
hara
teri-zation of the divergen
e in terms of sto
hasti
 integrals, together with the 
om-mutation relations of the last paragraph, we may derive a �rst energy identity foradapted ve
tor �elds on the path spa
e.A di�erential form of degree p on the path spa
e is given by a fun
tional � 2Wrq (Pm0(M); [H1℄^p).De�nition 7.2. Given a form of degree 1 its 
oboundary is de�ned byhd�; Z1 ^ Z2i = DZ1(h�; Z2i)�DZ2(h�; Z1i)� h�; [Z1; Z2℄i :Granted the Hilbertian stru
ture of the underlying tangent spa
e, di�erential formsof degree 1 may be identi�ed with linear fun
tionals on the spa
e of tangent ve
tor�elds.



20 A. B. CRUZEIRO AND P. MALLIAVINLet Z be a tangent ve
tor �eld on the path spa
e. We haveE�Æ(Z)�2=E�DZ(ÆZ)�=E0�X� Z 10 dp�;� Z �D�;� Z 10 �dp�Z + 12(Ri
Z)�� � dp(�)� d�1A=E0�X� Z 10 dp�;� Z �Z 10 dp� (r�;� Z) + 12r�;�(Ri
Z)� � dp(�)� d�1A+ I;whereI = EkZk2H1 + 12E(Ri
Z j Z)H1� 12E0�X� Z 10 dp�;� Z �Z 1� Ri
 (dp� Z) +Ri
 (Ri
Z)�� d��1A :Then we de
omposer�;�(Ri
Z� ) = �r�;�Ri
 �Z� +Ri
 �r�;� Z�� :The �rst term gives rise to a sto
hasti
 integral whi
h is again a divergen
e,namelyE0�X� Z 10 Æ(r�;� Z)dp�;� Z d�1A = E0�X� Z 10 Dr�;� Z�dp�;� Z�d�1A= E0�X�;� Z 10 Z 10 dp�;�(r�;� Z)D�;� (dp�;� Z)d� d�1A :Now D�;�(dp�;� Z) = dp�;�(r�;� Z)� dp�;�(��;� Z).Sin
e Z is adapted and dp�;���;� is only di�erent from zero when � < �, this lastterm does not 
ontribute to the integration. We end up withE�Æ(Z)�2 = E0�X�;� Z 10 Z 10 dp�;�(r�;� Z)dp�;�(r�;� Z)d� d�1A+ I:Finally, the fa
t that, for the 1-di�erential form asso
iated to Z we havehd�; ~e�;� ^ ~e�;�i = � ( ~e�;� j r�;� Z ) + ( ~e�;� j r�;� Z )+ �T ((�; �); (�; �)) �� Z �;allows to dedu
e the following result (
f. [6℄ for details):Theorem 7.3. There exists two operators on H1, A0 and A1 su
h that, for anysmooth adapted tangent ve
tor �eld Z we haveE�Æ(Z)�2 +Ekd�Zk2 = EkrZk2H1
H1 +E�A0(Z) �� Z �+ E�A1(DZ) �� Z �;where A0 and A1 are given by H1-operators with integral kernels de�ned in termsof sto
hasti
 integrals.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 21This �rst result shows that, even for adapted ve
tor �elds, a Weitzenb�o
k formulaon the path spa
e with respe
t to the Markovian 
onne
tion gives rise to �rst ordernon trivial terms. At this stage we have 
onsidered the Markovian 
onne
tionmainly be
ause it naturally appears when dealing with �rst order 
ommutationformulae, as seen in last paragraph. On the other hand derivating on the pathspa
e means derivating on the Wiener spa
e with respe
t to tangent pro
esses; aswe have seen, assumptions on the se
ond derivatives of Z are needed to de�ne DZ.One 
ould of 
ourse expe
t things to be easier for Levi-Civita 
onne
tion. In fa
t,this is far from being the 
ase.We �rst noti
e that, sin
e we have an expli
it 
ontrol of the expressions A0 andA1 in terms of sto
hasti
 integrals, we 
an show thatE�Æ(Z)�2 +Ekd�Zk2 < +1under suitable integrable assumptions on the ve
tor �eld Z (
f. [6℄).Now let us 
onsider a Weitzenb�o
k-type formula valid for su
h ve
tor �elds Z.It should be given byE�Æ(Z)�2 +Ekd�Zk2 = Ek ~rZk2H1
H1 +E� ~R(Z) �� Z �: (7.2)The left-hand side of this equality being �nite, let us look at Ek ~rZk2H1
H1a

ording to the expression obtained in Theorem 6.1 for the Levi-Civita 
ovariantderivative. It is given in terms of a tangent pro
ess and therefore the H1-norm willbe in�nite. We en
ounter here the problem already mentioned in paragraph 3 ofthe diÆ
ulty of de�ning a Riemannian metri
 for tangent pro
esses.More pre
isely we have:Theorem 7.4 (Explosion of the Levi-Civita Ri

i tensor [6℄). The right-hand sideof the identity (7.2) is a sum of two in�nite terms even when the sum is �nite.To prove this result we may take f'kg an orthonormal basis of the spa
e H1 andwrite Ek ~rZk2 =Xk;l � ~r'lZ �� 'k �H1 :Using Theorem 6.1, the �rst term 
orresponds to12EXk;l �Z 10 
�
�� '�l Z� _'
k dx��2and the energy identity for Itô integrals impliesXk � _'k(�)�2 = +1 8�:7.4. A modi�ed Riemannian metri
. In [5℄ a Riemannian metri
 whi
h takesinto a

ount the perturbation of the divergen
e due to the Ri

i 
urvature termwas 
onsidered. With respe
t to a 
onne
tion de�ned a

ordingly, the �rst order
ommutation formula has a simpli�ed expression.We 
onsider in H the s
alar produ
t:((h1 j h2 )) = ( ĥ1 j ĥ2 )H1 ;where ĥ(�) = h(�) + 12 Z �0 Ri
 (h) ds;



22 A. B. CRUZEIRO AND P. MALLIAVINand we de�ne the 
ovariant derivative of a 
onstant tangent ve
tor �eld on the pathspa
e Z with respe
t to h by_�r̂hZ�(�) = Z �0 
(Ædx; h) _̂z(�):Then the following relation with the Markovian 
ovariant derivative holds:r̂hZ = rhẐ:The modi�ed 
onne
tion is still Riemannian and has a torsion.Theorem 7.5 (Commutation formula). For z; h 2 H, the following identity holds:DhÆ(z) = Æ(r̂hz) + (( z j h )):We 
onsider ve
tor �elds, whi
h are of the formZ(p)(�) =Xk;� fk�(p) vk�(�)where fk� are 
ylindri
al fun
tions on Pm0(M) and vk� are the adapted ve
tor�elds de�ned by _vk�(�) = 1�k<�<�k+1 "�for a partition f�kg of the interval [0; 1℄.Su
h pro
esses were 
alled by Fang (
f. [12℄) simple pro
esses.The Weitzenb�o
k formula 
orresponding to the 
ovariant derivative r̂ allows todedu
e the following estimation (
f. [5℄):Theorem 7.6. There exists a 
onstant 
 > 0 su
h thatE(ÆZ)2 � 
(EkZk2 +Ekr̂Zk2)for every simple pro
ess Z.8. Anti
ipative integrals and Weitzenb�o
k formulaeAs we have dis
ussed in se
tion 4, in the Riemannian setting the notion ofanti
ipative (Skorohod) integral no longer 
oin
ides, as is the 
ase in Rd , with thenotion of divergen
e with respe
t to Wiener measure in a dire
t way. In fa
t, notonly there is a 
orre
tion term due to the Ri

i tensor of the underlying manifold(already present in the adapted 
ase) but an extra term involving the 
urvatureappears (
f. formula (4.1)). In this se
tion, when referring to anti
ipative sto
hasti
integrals on the path spa
e, we shall be talking in fa
t about divergen
es.To obtain LP -estimates for su
h divergen
es, it is enough to pro
eed by ap-proximation by adapted ve
tor �elds and use the Weitzenb�o
k formulae alreadydeveloped for these �elds.For q > 1 we denote D q1 the 
ompletion of the spa
e of simple pro
esses underthe normkZkqDq1 = E �Z 10 jZ(�)j2 d�� q2 +E �Z 10 Z 10 jD�Z(�)j2 d�; d�� q2 :By an approximation pro
edure Fang showed in [12℄ that, if Z belongs to a spa
eD q1 for some q > 2, then the divergen
e of Z exists andkÆ(Z)kL2 � 
qkZkDq1 :



RIEMANNIAN GEOMETRY ON THE PATH SPACE 23The same kind of approximation methods were used [6℄ with respe
t to theMarkovian 
onne
tion as well as in [5℄ with respe
t to the modi�ed 
onne
tiondis
ussed in paragraph 7.4.At this stage we 
ould ask ourselves whether the passage from the adapted tothe non adapted 
ase is really a sour
e of extra diÆ
ulties (with respe
t to theWiener spa
e situation). So far we have only looked at this passage from the pointof view of estimating norms and not tried to obtain 
losed 
ommutation formulaefor anti
ipative ve
tor �elds.The �rst order 
ommutation relation for adapted �elds has shown thatD�(ÆZ) = Æ(r�Z) +B(Z);where B(Z) = dp�Z � 12 Z 1� Ri
 ( _Z) d� + 14 Z 1� Ri
 (Ri
 (Z)) d�+ 12(Ri
Z)� + 12 Z 1� �rRi
 �(z) � dx(�):Let Z be an adapted tangent ve
tor �eld and f a smooth fun
tional on the pathspa
e. We haveD��Æ(fZ)� = D��fÆZ �DZf�= (D�f) ÆZ + fÆ(r�Z) + fB(Z)Z �D�DZfOn the other hand,Æ(r�(fZ)) = fÆ(r�Z)�D(r�Z)f + (D�f)ÆZ �DZD�f:So, apart from the modi�
ation due to the Ri

i tensor of the manifold, the di�er-en
e between D�(Æ(fZ)) and Æ(r�(fZ)) makes intervene the stru
ture equations,whi
h are, as we have seen, nontrivial on the path spa
e.We refer to [13℄ for developments of �rst order 
ommutation formulae.Let �1 denote the Lapla
ian on 1-forms asso
iated to the Markovian 
onne
tion,namely: �1Z = �r�rZ:We have D�;�(Y j r�;�Z ) = (r�;�Y j r�;�Z ) + (Y j r�;�(r�;�Z) )and, sin
e E(�1Z j Y ) = �E(rZ j rY ), we derive the following expression,whi
h holds for general (not ne
essarily adapted) ve
tor �elds Z:dp�;�(�1Z) = X� Z 10 dp�;�(r2�;�Z) d� � Z 10 dp�;�(r�;�Z) Æ dx�(�)� 12 Z 10 Ri
 (r�;�Z)(�;�) Æ dx�(�); (8.1)where the Stratonovi
h integral is to be taken in the Stratonovi
h-Skorohod sense.Let us denote by � the de Rham-Hodge Lapla
ian, � = dÆ + Æd, on forms ofdegree one.



24 A. B. CRUZEIRO AND P. MALLIAVINTheorem 8.1. There exists an operator on H1, A, su
h that, for any smoothtangent ve
tor �eld Z we have(�+�)Z(�;�) = A(Z)(�;�) +X�;
 Z 10Z 10 D�;
 _z�;��dp�;�T �(�; 
); (�; �)�� dp�;
T �(�; �); (�; �)�� d� d�;where A has an integral kernel de�ned in terms of sto
hasti
 integrals.9. Adapted differential geometryWe are interested in 
onsideringWeitzenb�o
k formulae for exa
t di�erential forms! = df . If L denotes the Ornstein-Uhlenbe
k operator on the path spa
e, de�nedby Lf = �ÆDf; (9.1)this means 
omputing the 
ommutator between dLf and �1(df).In this se
tion (and following [8℄) we 
onsider a type of renormalization that
onsists in restri
ting identities (su
h as Weitzenb�o
k formulae) to adapted ve
-tor �elds. We refer also to [4℄ where, in the same spirit, a modi�ed Markovian
onne
tion has been de�ned.In a properly de�ned adapted di�erential geometry many identities simplify dras-ti
ally. The main result is that, through this renormalization by restri
tion the Ri

itensor asso
iated to the Markovian 
onne
tion on the path spa
e is equal to theidentity. In adapted di�erential geometry 1-di�erential forms are not identi�ed viathe Hilbertian stru
ture with ve
tor �elds; this allows to 
onsider simultaneously
losed forms and adapted ve
tor �elds in duality.Let us 
onsider the family of proje
tors on H1 = H1([0; 1℄;Rd), �� , for � 2 [0; 1℄,de�ned by d� (��z) = 1�<� _z(�):This family 
orresponds to the Itô time �ltration.We 
onsider A, the group of unitary transformations of H1 that 
ommute withthe proje
tors �� , thus restri
ting the group of all unitary transformations whi
hwould a priori de�ne the \orthonormal frames" on the path spa
e.Denoting, respe
tively, GL(d) and O(d) the linear group and the orthogonalgroup of Rd , and P(�) the bounded measurable maps of [0; 1℄ into �, we 
an iden-tify P(O(d)) and P(GL(d)) to, respe
tively A and to the group of bounded lineartransformations of H1 
ommuting with the family �� , through the following a
tion:(u � z)(�) = Z �0 u(�) _z(�) d�:The Lie algebra of the group A 
an be identi�ed with P(so(d)).De�nition 9.1. We 
all frame at a point p 2 Pm0(M) an isometri
 surje
tive mapof H1 into the spa
e of tangent ve
tor �elds on the path spa
e.We 
all adapted frame a frame whi
h intertwines with the family of proje
tionoperators on the spa
e of tangent ve
tor �elds de�ned by:(��(Z))(�) = Z� 8� < �;(��(Z))(�) = tp� �(Z�) 8� > �:The frame bundle O(Pm0(M) will 
onsist of the 
olle
tion of all adapted frames.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 25Using the notation � already used for the 
anoni
 frame de�ned by the paralleltransport, �(Z)� = tp0 �Z� = z� , the map z �7! ��1p (u � z) de�ned for u 2 h,z 2 H1, is a bije
tive isomorphism from A� Pm0(M) to O(Pm0(M)).Let �(p) = �(e; p), where e denotes the 
onstant path equal to the identity; � isthe se
tion of the bundle of adapted frames. If ' : O(Pm0(M))! Pm0(M) denotesthe 
anoni
 proje
tion, then ' Æ � = IdPm0(M).For �xed u 2 A, the mapQu : O(Pm0(M))! O(Pm0(M))Qu(r) = r Æ u�1de�nes a group a
tion of A on O(Pm0(M)).The Markovian 
onne
tion we have de�ned in se
tion 6, namely�z;p(�) = Z �0 
(z(�); Ædp(�));has a martingale part belonging to P(so(d)). An important observation is that,when the underlying manifold has a zero Ri

i 
urvature, then �z;p 2 P(so(d))sin
e, by Bian
hi identities, the 
ontra
tion in the sto
hasti
 integral disappears.The Markovian 
onne
tion de�nes a family of 
anoni
 horizontal ve
tor �elds onthe frame bundle O(Pm0(M)), AZ . We de�ne AZ(r) at a point r = �(p) Æ u byAZ(r) = (~�Z(r); ~Z(r)); (9.2)where ~�Z(�(p)u) = u�1 Æ dd" ����"=0 exp(�"�u�z;p) Æ u;~Z(r) = r(z):Given a tangent ve
tor �eld Z on the path spa
e FZ(r) = r�1(Z'(r)) de�nes itss
alarization. The Markovian 
ovariant derivative rZY is expressed on the framebundle by Frr(z)Y (r) = hdFY ; Azir : (9.3)We may then 
onsider ~Dz, the dire
tional derivative along the ve
tor �eld Az , op-erating on smooth 
ylindri
al fun
tionals on O(Pm0(M)). The 
ovariant derivativer�;� is de�ned by (r�;��)p = ( ~D�;��)�(p) (9.4)for a \ve
tor �eld" � : O(M)! L2([0; 1℄;Rd).On the frame bundle O(Pm0(M)) we 
an de�ne a parallelism, by 
onsidering a1-di�erential form with values in H1 � A. Let � = (�1; �2) denote this di�erentialfrom, de�ned by h�1; T ir = r�1('0(r)(T ));h�2; T ir = ~� _�(T ) +  0(r)T; (9.5)where  denotes the proje
tion of the domain of the map � on the �rst 
omponentand where the tangent spa
e at the point u 2 A is identi�ed to�u exp"g : g 2 P(so(d))	:



26 A. B. CRUZEIRO AND P. MALLIAVINTheorem 9.2 ([8℄). The stru
tural equations of the frame are�hd�1; T1 ^ T2i+ �2(T1)�1(T2)� �2(T2)�1(T1)��(p) =� Z �0 
��1(T2); �1(T1)� Æ dx�hd�2; T1 ^ T2i � �2(T1)�2(T2) + �2(T2)�2(T1)��(p) =� [�z1 ;�z2 ℄� (Dz1�z2) + (Dz2�z1) + �[z1;z2℄;where zi = �1(Ti), i = 1; 2.From the expressions of the last theorem we re
over the formula for the torsionof the Markovian 
onne
tion, namelyT (z1; z2) = � Z �0 
(z1; z2) Æ dx;and we obtain the 
urvature tensor, whi
h is equal to:C(z1; z2) = �[�z1 ;�z2 ℄� (Dz1�z2) + (Dz2�z1) + �[z1;z2℄:Corollary. The Ri

i type tra
e of the 
urvature of the Markovian 
onne
tion,namely Tra
eC(z) =X� Z 10 C(z; ~e�� ) � e�� d�is given by dp� Tra
eC(z) = Ri
p(�) (dp�Z):In parti
ular, if Ri

i(M) = 0, then the Ri

i tra
e on the path spa
e vanishes.We noti
e that these results are a 
onsequen
e of the Markovian 
hara
ter of the
ovariant derivative on the path spa
e (
f. [8℄).As we have already pointed out, when the manifold is Ri

i 
at we 
an repla
ethe Stratonovi
h integral de�ning the Markovian 
onne
tion by an Itô integral,sin
e the 
ontra
tion term vanishes; we have an analogous situation 
on
erning thetorsion. On the other hand,Theorem 9.3. For Zi, i = 1; 2, two adapted tangent ve
tor �elds, ifT (Z1; Z2)(�) = � Z �0 
(Z1; Z2) dxthen E�(DT F ) = 0 for every smooth fun
tional F .The Markovian 
hara
ter of the 
onne
tion together with the simpli�
ation inthe sto
hasti
 integrals when M is Ri

i 
at (as in theorem 9.3 above) indu
edrasti
 simpli�
ations on the 
orresponding Weitzenb�o
k formula in this adapteddi�erential geometry.In the situation where Ri

i(M) = 0 (whi
h does not imply that the 
urvaturetensor of M is trivial), the expression for the Ornstein-Uhlenbe
k operator on thepath spa
e is (
f. [16℄):Lf = 12X� Z 10 D2�;� d� �D�;� Æ dx�(�): (9.6)



RIEMANNIAN GEOMETRY ON THE PATH SPACE 27Theorem 9.4 ([8℄). Let Ri

i(M) = 0. If �1 denotes the Lapla
ian on ve
tor�elds, namely �1 = 12X� Z 10 r2�;� d� � Z 10 r�;� Æ dx�(�);then �1Z is an adapted ve
tor �eld for every adapted tangent ve
tor �eld Z and,for every smooth fun
tional f , the following identity holds:E hdLf; Zi+E hdf; Zi = E hdf;�1Zi :Referen
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