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2 A. B. CRUZEIRO AND P. MALLIAVINdimensions, the summation operators of di�erential geometry beome very oftendivergent series.Another approah to onstrut a geometry ould be the use of a frame bundle.The orresponding objet to the bundle of orthonormal frames would be the groupof unitary transformations of a Hilbert spae. Without further restritions, thisgroup seems too large to be onsidered in an eÆient way.But the path spae is more than a spae endowed with a probability: time andthe orresponding Itô �ltration provide a muh riher struture. In partiular,the parallel transport over Brownian paths an be naturally de�ned by a limitingproedure from ODEs to SDEs. The stohasti parallel transport de�nes a anonialmoving frame on the path spae: the point of view we have adopted is the one ofreplaing systematially the mahinery of loal harts by the method of movingframes (as in Cartan theory [3℄). In this way it is possible to transfer geometrialquantities of the path spae to the lassial Wiener spae and use Itô alulus torenormalize the apriori divergent expressions. An e�etive omputational proedureis then ahieved, where Stohasti Analysis and Geometry interat, not only on atehnial level, but in a deeper way: Stohasti Analysis makes it possible to de�negeometrial quantities, Geometry implies new results in Stohasti Analysis.1.1. Some geometrial preliminaries. Let M be a Riemannian manifold ofdimension d, that we shall always assume to be ompat. O(M) denotes the bundleof orthonormal frames over M , namelyO(M) = �(m; r) : r : Rd ! Tm(M) is a Eulidean isometry, m 2M	and � : O(M)!M , �(r) = m the anonial projetion.A smooth setion of O(M), namely a smooth map � : M ! O(M) suh that� Æ� = Id. is alled a Riemannian parallelism. In Cartan's theory of moving frameGeometry, an orthonormal moving frame is the data of d unitary vetor �elds Bkon M . Denote by �k the orresponding dual di�erential forms, hz;�ki = (z j Bk).Then the strutural equations are de�ned asd�k = aikj �i ^�j ;where aikj are (uniquely de�ned) funtions on M .The brakets of the vetor �elds Bk are then expressed by[Bk; Bl℄ = �Xaki lBi:The Christo�el di�erential form assoiated to � is the so(d) 1-di�erential form� suh that, for all vetor �elds A and B on M we havehA ^ B; d�i = �(B)�(A) � �(A)�(B):Suh form exists and is unique. Writing � = �kij�i, and using the struturalequations, we have aikj = �kij��kji and the oordinates of � are uniquely determinedby �kij = �12[aikj + akj i � aji k℄:Given a moving frame, the Levi-Civita ovariant derivative of a vetor �eld z isexpressed in the moving frame by�(rAz) = LA�(z) + T (A)�(z);where L denotes the usual derivative.It is possible to de�ne on O(M) a struture of parallelized manifold.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 3Let i denote the (unique) geodesi on M suh that i(0) = m, ddt ��t=0 i(t) =r(ei), where ei, i = 1; : : : ; d, are the vetors of the anonial basis of Rd , and let(i(t); ri(t)) represent the parallel transport of r along i, de�ned by the equationdridt = �� _iri; ri(0) = Id.Then Ai(r) = ddt ����t=0 ri(t)are the so-alled horizontal vetor �elds on M .Denote by � the form de�ned by h�; Aii = (ei; 0). It is a one-form de�nedon O(M) with values in Rd � so(d), � = (�; !), where !(m; r) = r�1 dr is theMaurer-Cartan form of the orthogonal group O(d).The struture equations of the parallelism are given by(d� = ! ^ �;d! = ! ^ ! +
(� ^ �);where 
 denotes the urvature tensor:
(A;B;X) = �rArB �rBrA �r[A;B℄�X:We de�ne the Laplaian on O(M) by�O(M) = 12 dXk=1L2Ak :Then for every smooth funtion on M we have�O(M)(f Æ �) = (�Mf) Æ �;where �M denotes the Laplae-Beltrami operator on M .An analogue onstrution an be performed with respet to any Riemannianonnetion with torsion. In this ase the struture equations are(d� = ! ^ � + T (� ^ �);d! = ! ^ ! +
(� ^ �):If the torsion satis�es the so-alled \Driver ondition", namely(T (A;B); C) = �(T (C;B); A);then the onstrution gives rise to the same Laplaian ([10℄ pg. 347).1.2. Stohasti analysis on the Wiener spae. We shall denote by X thelassial Wiener spae of ontinuous paths on Rd ,X = �x : [0; 1℄! Rd : x ontinuous; x(0) = 0	endowed with the Wiener measure �0 and the usual Itô �ltration Pt of the eventsbefore time t.A fundamental equality in Stohasti Analysis, that is at the basis of the de�ni-tion of Itô integral itself is the following energy identityE ����Z 10 u� � dx(�)����2 = E Z 10 ju� j2 d�



4 A. B. CRUZEIRO AND P. MALLIAVINfor Pt-adapted L2 funtionals of the Wiener spae, and whereZ 10 u� � dx(�) = Z 10 u�� dx�(�);using Einstein onvention for the sum of indies.If F 2 Lp(�) and z is suh that R 10 j _z� j2 d� < +1 (z belongs to the Cameron-Martin spae H1), we de�neDzF (x) = lim"!0 1" �F (x+ "z)� F (x)�;the limit being taken in the �0-a.e. sense. Cameron-Martin-Girsanov theorem im-plies that E�0(DzF (x)) = E�0�F (x) Z 10 _z dx�; (1.1)that is, Itô integral an be regarded as the dual of a derivation operator on theWiener spae.For a ylindrial funtional F (x) = f(x(�1); : : : ; x(�m)), f smooth, letD�F (x) = mXk=11�<�k�kf(x(�1); : : : ; x(�m)):The operator D is a losed operator on the spae W1;2, the ompletion of ylin-drial funtionals with respet to the normkFk21;2 = E�0 jF j2 +E Z 10 kD�Fk2 d�;and we an write DzF = Z 10 D�F � _z� d�: (1.2)Notie that, if we onsider the basi \vetor �elds" in the Wiener spae, e�;�(�) =1�<�"�, then D�;�F = De�;�F:The dual of the derivative, for non adapted proesses z, is well de�ned whenE Z 10 j _z� j2 d� +E Z 10 Z 10 jD� _z(�)j2 d� d� < +1:It was disovered by Gaveau and Trauber [15℄ that the divergene oinides with theSkorohod integral [24℄, previously de�ned for non-adapted proesses. Following theNualart-Pardoux-Zakai theory of non-adapted stohasti alulus [22℄, this integral,that we still denote by R 10 u dx, an be de�ned as the limit of the sumsXk Mk(u) � (x(�k+1)� x(�k))�Xk 1�k+1 � �k Z �k+1�k Z �k+1�k D�u� d� d�; (1.3)where Mk(u) = 1�k+1 � �k Z �k+1�k u� d�and is an extension of the Itô integral.So we have, extending (1.1) to the antiipative ase,E�0(DzF (x)) = E�0�F (x) Z 10 _z � dx�:



RIEMANNIAN GEOMETRY ON THE PATH SPACE 5This implies, in partiular,E�0�Z 10 u dx�2 = E�Z 10 D��Z 10 u � dx� � u(�) d��and a ommutation relation, namelyD� Z 10 u � dx = Z 10 D�u(�) � dx(�) + u(�) (1.4)allows us to derive the orresponding energy identity, whih isE �Z 10 u� dx(�)�2 = E Z 10 ju� j2 d� +E Z 10 Z 10 D�u� �D�u� d� d�: (1.5)Notie that (1.4) redues to the energy identity for the Itô integral when u isadapted, sine the last term vanishes.We reall here the notion of Stratonovih-Skorohod integral, again following [22℄:this integral, that we denote by R 10 u Æ dx, is de�ned as the limit of the sumsXk Mk(u) � (x(�k+1)� x(�k)): (1.6)Conditions for the existene of suh limit are more restritive than those requiredfor the de�nition of the Skorohod integral: in partiular, some uniform ontinuitynear the diagonal of [0; 1℄2 is required ([22℄). When both integrals exist they arerelated by Z 10 u� dx(�) = Z 10 u� Æ dx(�) � 12 Z 10 (D+� � u� +D�� � u� ) d�; (1.7)where D+� � u� = lim�!�+D� � u�;D�� � u� = lim�!��D� � u�:In the ase where u is Pt-adapted, D+� u� = 0 and 12 R 10 D�� � u� d� redues to theusual Itô stohasti ontration term.1.3. Stohasti analysis on the path spae. We denote by Pm0(M) the spaeof ontinuous maps p : [0; 1℄ ! M , where M is a (ompat) Riemannian manifoldof dimension d, m0 a �xed point in M . Pm0(M) is onsidered with its naturalpast �ltration and with �, the Wiener measure, onstruted via the fundamentalsolution of the operator �=�� � �, where � is the Laplae-Beltrami operator onM .We onsider the stohasti parallel transport of frames, whih is the ow of dif-feomorphisms on O(M) de�ned by the following Stratonovih stohasti di�erentialequation: 8><>:drx(�) = dXk=1Ak(rx) Æ dxk(�)rx(0) = r0;with �(r0) = m0. Then � sends Pr0(O(M)) into Pm0(M). The Laplaians on Mand on O(M) indue two probability measures; the map � realizes an isomorphismbetween these two probability spaes.



6 A. B. CRUZEIRO AND P. MALLIAVINDe�nition 1.1. The map I : X ! Pm0(M) given byI(x)(�) = �(rx(�))is alled the Itô map.This map is a.s. bijetive ([19℄) and provides an isomorphism of probabilityspaes; namely we have � = (I)��0:De�nition 1.2. The parallel transport along p is the isomorphism from Tp(�0)(M)!Tp(�)(M) de�ned by tp� �0 = rx(�)rx(�0)�1;where x = I�1(p).De�nition 1.3. A vetor �eld z along the path p is a setion proess of the tangentbundle of M , namely a measurable map Zp(�) 2 Tp(�)(M) de�ned for (p; �) 2Pm0(M)� [0; 1℄.For a vetor �eld Z along p we shall systematially denote by z the image of Zthrough the parallelism � given by the parallel transport; more preisely we shallwrite z� = [�(Z)℄� = tp0 � (Z� ): (1.8)We de�ne the Itô and the Stratonovih stohasti integrals of an adapted vetor�eld on the path spae Z, respetively, byZ 10 Z � dp = Z 10 z� dx�;Z 10 Z Æ dp = Z 10 z� Æ dx�:It is possible to haraterize these stohasti integrals without using the paralleltransport; they orrespond to the limit of the following Riemann sums, when themesh jSj of the partition S = f�0 = 0 < �1 < � � � < �m = 1g tends to zero:Z 10 Z dp = limjSj!0Xk �Zp(�k�1) ��� exp�1p(�k�1)(p(�k))�Tp(�k�1)(M)Z 10 Z Æ dp = limjSj!0 12Xk �Zp(�k) ��� exp�1p(�k)(p(�k+1))� exp�1p(�k)(p(�k�1))�Tp(�k)(M)(for a proof f. [14℄).In the moving frame type of geometry on the path spae, it is natural to onsiderat the origin the tangent spae whih orresponds to the one usually assoiated toWiener spae, namely the Cameron-Martin spae. As we have mentioned in thelast paragraph, Cameron-Martin vetors are preisely those with respet to whihintegration by parts an be performed and the orresponding spae is dense in X .In this perspetive, we de�neDe�nition 1.4. A tangent vetor �eld in Pm0(M) is a L2-setion proess Z, suhthat Z(0) = 0 and, de�ning,dp�Z = lim"!0 1" �tp� �+"(Z(� + "))� Z(�)�;we have dpZ 2 L2.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 7On the tangent vetor spae T (P(M)) we de�ne the Hilbertian normkZk2Tp(P (M)) = Z 10 kdp�Zk2Tp(�)(M)d�:The parallelism � de�ned in (1.8) provides a di�erential 1-form realizing anHilbertian isomorphism of Tp(Pm0(M)) with the Cameron-Martin spae H1 =H1([0; 1℄;Rd) and we have: dd� �(Z) = tp0 � (dp�Z): (1.9)Let S(Pm0(M)) denote the spae of smooth ylindrial funtionals on Pm0 ,namely the funtionals f for whih there exists a partition of [0; 1℄, 0 � �1 < � � � <�m � 1 and a smooth funtion f on Mm suh that F (p) = f(p(�1); : : : ; p(�m)).InMm we have the Riemannian produt struture. We de�ne, for f 2 S(Pm0(M)),the following operator: D�F = mXk=1 1�<�ktp� �k(�kf): (1.10)The map � 7! D�F de�nes a setion proess (f. de�nition 1.3); we introduethe norm kDFk2(p) =X� Z 10 (D�;�F )2 d�;where D�;� F = ( tp0 � D� F j "� ), f"�g the anonial basis of Rd .Then, for a tangent vetor �eld Z, we de�neDZF = Z 10 D�;�f _z�� d�: (1.11)In analogy with the Wiener spae ase, we an onsider the \basi vetor �elds"~e�;�(�) = 1�<�tp� 0"� and we have D�;� = D~e�;� .The operators D�;� may be regarded as forming a \ontinuous" basis of thetangent spae of Pm0(M).Theorem 1.5. With respet to the norms kDfkqLq = E(kDfkq), the operator D islosable in Lq. The domain of the operator D is, by de�nition, the Sobolev spaeW1;q(Pm0(M)).2. Differentiability of the Itô parallel transport and intertwiningformulaThe parallelism we have onsidered on the path spae should allow us to transferdi�erential alulus on this spae to di�erential alulus on the Wiener spae. Todo this we are bound to derivate the Itô map, that is, to derivate parallel transport.Theorem 2.1. Granted the parallelism of O(M), the Jaobian matrix of the owof di�eomorphisms r0 7! rx(�) is given by a linear map Jx;� = (J1x;� ; J2x;� ) 2GL(Rd � so(d)) whih is de�ned by the following system of Stratonovih SDEs:8>>>><>>>>:d�J1x;� = dX�=1(J2x;� )�� Æ dx�(�)d�J2x;� = dX�=1
(J1x;� ; "�) Æ dx�(�)



8 A. B. CRUZEIRO AND P. MALLIAVINwhere (J2)�� denotes the �th olumn of the matrix J2 and 
 is the urvature tensorof the underlying manifold read on the frame bundle.Proof. (f. [10, 14, 20℄, noting that here the sign of the urvature tensor followsa di�erent onvention). Let xn be a sequene of smooth approximations of theBrownian urve x. We onsider the O(M)-valued mapfn(�; t) = rxn+tz(�); r(�0) = r0;for z 2 H1([0; 1℄;Rd), �; t 2 [0; 1℄. The inverse image by fn of the di�erential formof the parallelism is given by f�n� = �n d� + �n dtf�n! = �n dtwhere �n = _xn + t _z. Thend(f�n�) = ���n�t � ��n�� �dt ^ d�and, by the struture equations,f�n(d�) = �n�n dt ^ d�:Sine d(f�n�) = f�n(d�), for t = 0 we obtain_z � ��n�� = �n _xn:The seond struture equation implies, in an analogous way,��n�� = 
(�n; _xn):The theorem follows from the onditions �n(0; 0) = 0, �n(0; 0) = 0 and from a limittheorem for SDEs (d�(�) = _z(�) � � Æ dx(�)d�(�) = 
(�; Ædx):Then we take z = 0.Remark 2.1. If one onsiders a metri onnetion with torsion on the manifold M ,the �rst struture equation must be orreted by the orresponding term and inthe last theorem we derive(d�(�) = _z(�) d� � � Æ dx(�) + T (�; Ædx)d�(�) = 
(�; Ædx):Corollary. For �0 2 [0; 1℄ and onsidering I�0 : X ! M the speialization of theItô map at time �0 de�ned by x! �(rx(�0)), we haveD�I�0 = tp�0 0(z(�0));where z(�0) = Z 10 Ĵx�0 � Æ d�(�);Ĵ is the horizontal�horizontal blok of matries J de�ned in last theorem and(d� = _z d� � � Æ dxd� = 
(z; Ædx):



RIEMANNIAN GEOMETRY ON THE PATH SPACE 9We enounter here a diÆulty: the Itô map is not Cameron-Martin di�erentiable,sine the \vetor �eld" � is no longer a proess of bounded variation! Neverthelessits martingale part is given by an antisymmetri matrix whih, by Levy's theorem,implies that Wiener measure is still onserved during the evolution.If we onsider a onnetion with torsion, an extra martingale term appears, thatonserves Wiener measure only if the torsion satis�es the antisymmetri onditionT k(ei; ej) = �T j(ei; ek)(Driver's ondition).From this result we see that we have to enlarge the tangent spae and that it willnot be enough to onsider (Cameron-Martin) tangent vetor �elds. We introduethe following proesses:De�nition 2.2. A tangent proess on the Wiener spae X is a Rd -valued semi-martingale proess � de�ned on X with Itô di�erential given byd��(�) = a�� dx�(�) + � d�;where a�� = �a��, a��(0) = 0, a�� and � 2 L2[0; 1℄.The tangent spae of Pm0(M), that we shall denote by ~T (P), is the spae�~�(�) = tp� 0�(�); � tangent proess on X	:Given a smooth ylindrial funtional F (x) = f(x(�1); : : : ; x(�m)), we de�ne thederivative D�F by D�F = mXk=1 hdkf; �(�k)i : (2.1)The operator D� is losable in L2: this is a onsequene of the integration byparts (Theorem 3.1).De�nition 2.3. A funtional F is alled strongly di�erentiable in L2 ifF 2 Dom(D�) 8 tangent proess �Whih funtionals on the Wiener spae are atually on the domain of D� orwhih is the haraterization of the losure of this domain is a deliate question.We shall ome bak to these problems in the next paragraph.Theorem 2.4 (Intertwining formula [6℄). A salar-valued funtional F de�ned onthe path spae is strongly di�erentiable if and only if F Æ I is strongly di�erentiableon X. We have the intertwining formula(D��F ) Æ I = D�(F Æ I);where � and �� are related by the equations:(d� = d�� � � Æ dxd� = 
(��; Ædx):Proof. We onsider the following in�nitesimal Eulidean motion on the Wienerspae [��t (x)℄(�) = t�(�) + Z �0 exp(t�) Æ dx;and V �t = I Æ ��t Æ I�1;



10 A. B. CRUZEIRO AND P. MALLIAVINderivating in t = 0,ddt ����t=0 V �t = �0(rx(�)) � ddt ����t=0 r��t (x)(�) = rx(�) ��(�);and the result follows from last orollary.Remark 2.2. For a Driver-type onnetion we have to replae the last equations by(d� = d�� � � Æ dx+ T (��; Ædx);d� = 
(��; Ædx);where T is read on the frame bundle, Tr(u; v) = r�1T (ru; rv).At this stage one ould think we are dealing with two di�erent notions of de-rivative on the path spae, the one de�ned in paragraph 1.3 and the one thatnaturally follows from the above results, namely, for F 2 S(Pm0(M)), F (p) =f(p(�1); : : : ; p(�m)), D�;�F (p) = ddt ����t=0 F (V ~e�;�t (p));the limit being taken in Lp(�) with p > 1.In fat both notions oinide; we have:ddt ����t=0 F �V ~e�;�t (p)� = mXk=1 �kf(p) � ddt ����t=0 V ~e�;�t (�k)= mXk=1 �kf(p) � �1�<�ktp�k 0"��= D�;�F:The next result gives a formula for the derivation of the parallel transport onthe path spae.Theorem 2.5. For �xed �0 2 [0; 1℄ and denoting �(p) = tp�0 0r0, the derivative of� an be expressed in the parallelism of O(M) as:hDZ�; �i = z(�0) �+ Z �0 T (z; Ædx)�;hDZ�; !i = Z �00 
(z; Ædx):Proof. Derivating on the path spae with respet to a tangent vetor �eld Z means,by the intertwining formula, derivating with respet to a tangent proess(d� = _z d� � � Æ dx �+T (z; Ædx)�d� = 
(z; Ædx)the funtionals pulled bak to the Wiener spae through the Itô map.We have obtained the derivation of the parallel transport with a short proof, bytransferring the result to the Wiener spae. This result an also be proved by amore diret geometri analysis, an approah that may have the advantage of a moreintuitive argument, but requires a very deliate approximation proedure. Here wejust sketh the main argument.We take ylindrial approximations of the funtional tp�0 0r0 obtained by paralleltransporting along pieewise minimizing geodesis n based on points fp(�1); : : : ; p(�n)gof the manifoldM and onverging to Brownian motion onM . For suh geodesis to



RIEMANNIAN GEOMETRY ON THE PATH SPACE 11be well de�ned one must plae ourselves inside a ball of radius less than the radiusof injetivity: that is, one must onsider a uto� funtion proedure together withthe approximation one (we refer to [6℄, paragraph II-4 for the development of suhtehniques).We want to di�erentiate parallel transport on the path spae. Working with anormal hart entered at a �xed point p(�k), this means that we want to omparein an in�nitesimal way parallel translation along the geodesis going from p(�k�1)to p(�k) and from p(�k) to p(tk+1) to parallel translation when p(�k) is perturbedin the diretion we want to onsider. So, modulo the braket of the vetor �eldsinvolved, we are onsidering a loop going from p(�k�1) to p(�k+1) and bak. Toompute parallel transport along this loop is preisely to ompute the holonomyof the urve in Di�erential Geometry, whih means integrating the urvature alongthe path ([17℄). The integrals onverge at the end to Stratonovih integrals withrespet to Brownian motion.3. The spae of tangent proessesWe onsider the theory of antiipative integrals aording to Nualart-Zakai-Pardoux, following referene [22℄. Given a salar valued proess u� , its Skorohodand Skorohod-Stratonovih integrals, that we denote, respetively, by R 10 u dx andR 10 u Æ dx, are de�ned as the limit of the Riemannian sums (1.3) and (1.6), whenthey exist.Let �� be a tangent proess, namely a proess satisfying the stohasti di�erentialequation d��(�) = a�� dx�(�) + � d�(f. de�nition 2.2).Theorem 3.1 (Integration by parts). For every smooth ylindrial funtional Fwe have E(D�F ) = E(F Z 10 � dx�);where D�F was de�ned in (2.1).Proof. The martingale part of the Itô representation of � de�nes a measure pre-serving isomorphism on the Wiener spae.We de�ne the Skorohod and the Skorohod-Stratonovih integrals of a proess u�relatively to a tangent proess � as the limit of the sumsXk Mk(u) � (�(�k+1 � �(�k))and Xk EÆk(Mk(u)) � (�(�k+1 � �(�k));where Mk(u) was de�ned in (1.3) and EÆk denotes the onditional expetationonstituted by averaging relatively to the �-�eld generated by x(�) � x(�k), � 2Æk = [�k; �k+1℄.



12 A. B. CRUZEIRO AND P. MALLIAVINTheorem 3.2. Assume that f 2 W p2 (X) 8p > 1 and that a�� 2 Lp(X ;L2[0; 1℄)8p � 1, a is adapted and a�� = �a��. If one of the two stohasti integrals belowexist, then the other exists as well andZ 10 (D�;�f) � d��(�) = Z 10 (D�;�f) Æ d��(�);where ��(�) = R �0 a�� dx� .Proof. The di�erene between the two integrals is given by the limit of the followingsums: Xk (EÆk(Mk(D�;�f))�Mk(f))(��(�k+1)� ��(�k));using the Clark-Oone formula, this expression is equal to�Xk �Mk Z �k+1�k EP�(D2(�;);(�;�)f) dx(�)� � (��(�k+1)� ��(�k))and the limit when the mesh of the partition goes to zero is equal to the limit of�Xk; Z �k+1�k Mk(D2�;);(�;�)f)a� (�) d�whih is equal to zero by the symmetry of the seond derivatives and the antisym-metry of a��.Generalizing the orresponding representation formula for derivatives along Cameron-Martin vetor �elds (f. (1.2)), we have the following:Theorem 3.3. Let � be a tangent proess suh that a�� satis�es the assumptions oftheorem 3.2 and, furthermore, that a�� 2 W1;p(X) 8p � 1, and R 10 k(�)kL2(X) d� <+1. Then W q2 � Dom (D�) 8q > 1 and we haveD�f =X� Z 10 �X� a�� D�;�f� � dx�(�) + Z 10 �D�;� f d�:For a proof of this result we refer to [6℄ and to the appendix in [8℄.We may use the representation of last theorem to derive a formula for the deriv-ative of a stohasti integral with respet to a tangent proess. These formulae forderivations with respet to Cameron-Martin spae valued proesses were obtainedin [25℄.Theorem 3.4 ([6℄). Let � be a tangent proess with oeÆients satisfying the as-sumptions of theorem 3.3. Let u be an adapted proess suh that, for some p > 1,R 10 ku(�)k2;p d� < +1. The derivative of the Itô stohasti integral of u is given by:D� Z 10 u � dx = Z 10 D�u � dx+ Z 10 u � d�:Also in [6℄ we have derived a orresponding formula for the derivation of Stratonovihintegrals. Under suitable assumptions that ensure the existene of suh integrals,it reads: D� Z 10 u Æ dx = Z 10 D�u Æ dx+ Z 10 u Æ d�:Tangent proesses have the same regularity (in time) as the Wiener proess;therefore it is not possible to extend to the spae of tangent proesses the H1



RIEMANNIAN GEOMETRY ON THE PATH SPACE 13metri. Considering H 12�" metris gives rise to serious diÆulties, namely in thede�nition of orresponding metri (for instane, Levi-Civita) onnetions (f. [9℄).4. Integration by parts on the path spaeA formula of integration by parts on the path spae was �rst derived by Bismut[2℄. There are di�erent proofs and approahes to this result: we refer to [1, 10, 14℄.In this paragraph we derive integration by parts on the path spae via transferringthe result to the Wiener spae and using the intertwining theorem.Let Z be a tangent vetor �eld on the path spae. From the results in paragraph2 we have, for ylindrial funtionals F ,E�(DZF ) = E�0(D�(F Æ I));where d� = _z d� � � Æ dx, d� = 
(z; Ædx) and Z� = tp� 0z� . On the Wiener spae,we have E�0 (D�(F Æ I)) = E�0((F Æ I)Æ(�)):The proess � is a tangent proess whose bounded variation part is equal to_z d� + 12 d� � dx. From the equations of �, d� � dx = Rii(z) d� , where Rii(z)� =tp� 0 ÆRiip(�)Z Æ tp� 0. We have, therefore,Theorem 4.1 (Bismut integration by parts formula). For a ylindrial funtion Fon the path spae and Z an adapted vetor �eld suh that E R 10 jdp�Zj2 d� < +1,E(DZF ) = E�(F Æ I) Z 10 h _z + 12 Rii(z)i dx�:From this theorem it follows that D is a losable operator from Lp(Pm0(M)) tothe spaenz : Z tangent vetor �eld, kZkpp = E�Z 10 kdp�Zk2 d��p=2 < +1o:We remark that, when the onnetion onsidered on the manifold is of Drivertype, an extra term appears, namely12 dT � dx; where dT = T (z; Ædx):In this ase we derive the following integration by parts formula:E(DZF ) = E�(F Æ I) Z 10 h _z + 12 Rii(z) + T̂ (z)i dx�;where T̂ (z) =Pd�=1(re�T )(z; e�), a result whih is due to Driver [10℄.We have only onsidered adapted vetor �elds Z. A natural question is whathappens if Z is antiipative and whether in this ase the divergene ould be simplywritten, in analogy with what happens in the Wiener spae, asÆ(z) = Z 10 � _z + 12 Rii(z)� � dx;where the stohasti integral would be interpreted in the sense of Skorohod. Theanswer is no; another term involving derivatives of Z and a stohasti integral of theurvature tensor appears. The orresponding formula was obtained in [7℄, wherewe have developed a omputational tehnique of deomposition of the proesses intheir \ontinuous oordinates" expressed on the basi vetor �elds.



14 A. B. CRUZEIRO AND P. MALLIAVINWe have, for non neessarily adapted tangent vetor �elds Z, and for ylindrialfuntions F on the path spae,E(DZF ) = E�(F Æ I)�Z 10 _z dx + Z 10 _z� � g� d� � Z 10 Dq� � z� d���; (4.1)where g�;� = 12 Z 1� (Rii )�� dx�and q�;�(�) = 1�<� Z �� �Z �� 
(Ædx; "�)� Æ dx(�):The integration by parts formula (4.1) holds under suitable regularity assump-tions on Z that ensure the de�nition of the antiipative stohasti integrals involved(f. [7℄). 5. Strutural equations of the path spaeIn this setion we ompute the braket of two onstant vetor �elds, namelyU(p)� = tp� 0u� ; V (p)� = tp� 0v� ;where u; v are non random.Let F (p) = f(p(�1); : : : ; p(�m)) be a smooth ylindrial funtional; denote by ~Fthe lift of F to [O(M)℄m, namely~F (rp(�1); : : : ; rp(�m)) = F (�(rp(�1)); : : : ; �(rp(�m)));and by �i;� ~F the derivative of ~F in the oordinate rp(�i) and in the diretion ofthe horizontal vetor �eld A�:�i;� ~F = dd" ����"=0 ~F (rp(�1); : : : ; rp(�i) + "A�; : : : ; rp(�m)):Then the following equality holds:DUf = mXi=1 u�(�i) �i;� ~F (rp(�1); : : : ; rp(�m));and we haveDVDUF =Xi;j v�(�j)u�(�i) �j(�i ~F � r�(�i)) � r�(�j)=Xi;j v�(�j)u�(�i) ��j;� �i;� ~F + �i; ~F (�j;�r�(�i))�:When i 6= j, �i and �j ommute; when i = j,�i;� �i;� � �i;� �i;� = �i;[A�;A� ℄:Sine A� and A� are horizontal vetor �elds, [A�; A� ℄ is vertial; on the other hand,~F only depends on �(r), therefore this term vanishes. It remains to onsider the



RIEMANNIAN GEOMETRY ON THE PATH SPACE 15term orresponding to the derivative of the parallel transportXj v�(�j) �j;�r�(�i) = DV r�(�i)= Z 10 _v�(�)�1�<�i Z �i� 
�;�;� Æ dx�� d�= Z �0 v�(�) 
��� Æ dx�:We have, therefore,(DUDV �DVDU )F= mXi=1 ��s;f; v�(�i) Z �i0 
���u� Æ dx� � u�(�i) Z �i0 
���v� Æ dx�� ;from whih we dedue the followingTheorem 5.1. The braket of two onstant tangent vetor �elds U and V on thepath spae is given by the following expression in the parallelism of the movingframe: [u; v℄� = Quv �Qvu; where Qu(�) = Z �0 
(u; Ædx):Corollary. The braket of two onstant (Cameron-Martin) tangent vetor �elds isno longer a Cameron-Martin vetor �eld.Proof. In di�erential form, the braket is given byd� [u; v℄ = 
(u; v) Æ dx+ [Qu _v �Qv _u℄ d�:We enounter here a new phenomena, the non-losure of the tangent spae on-sisting of tangent vetor �elds under the braket. We also enounter a new reasonto enlarge the tangent spae by onsidering tangent proesses.In partiular, we have, for basi vetor �elds,[~e�;�; ~e�;�℄(�;) = 1�<� Z �� 
�;�;� Æ dx� � 1�<� Z �� 
�;�;� Æ dx�:We remark that, even inside the same time interval, there is no possibility ofsimplifying the urvature terms. In fat, and unless we are in a at manifold, thedi�usion term of the braket does not vanish.Let us onsider a map A : Pm0(M)! End(H1(Rd )) whih is invertible and a newparallelism de�ned by ~� = AÆ�. For u1; u2 2 H1, let ~ui = (A�1)ui, ~Vi = ��1(~ui),i = 1; 2; we ompute DV3 = DV1DV2 �DV2DV1 and identify Vi with vi through theparallelism �, obtainingv3 = [v1; v2℄ + (Dv1A�1)u2 � (Dv2A�1)u1:Sine the last terms are Cameron-Martin vetor �elds, we see that a hange ofmetri on the path spae does not hange the fat that the braket produes a truetangent proess.Nevertheless a very interesting phenomena is that the tangent proesses (the \en-larged" tangent spae) do form a Lie algebra: the braket of two tangent proessesis again a tangent proess. The result was shown in [6℄ and [11℄.



16 A. B. CRUZEIRO AND P. MALLIAVINTheorem 5.2. Given two smooth tangent proesses �1 and �2 on Pm0(M), thereexists a tangent proess �3 suh that, denoting B = D�1D�2 �D�2D�1 , we haveBF = D�3F:6. Riemannian onnetionsAs we have realled in 1.1, in �nite dimensions, the Levi-Civita onnetion, theonly Riemannian onnetion whih is torsion free, is determined by the strutureequations. As we have omputed those on the path spae, we an also onsider theorresponding Levi-Civita onnetion.For Ui = tp� 0ui, ui 2 H1, i = 1; 2; 3, and identifying again vetor �elds on thepath spae with the orresponding Cameron-Martin proesses through the paral-lelism, a Riemannian onnetion without torsion (Levi-Civita onnetion), ~rU1U2,will be de�ned by( ~ru1u2 j u3) = 12�([u1; u2℄ j u3)� ([u2; u3℄ j u1) + ([u3; u1℄ j u2)�:Using the expression for the braket,([ui; uj ℄ j uk) = Z 10 _uk
(ui; uj)(Ædx) + Z 10 _uk[Qui _uj �Quj _ui℄ d�: (6.1)Integrating by partsZ 10 _u1
(u2; u3)(Ædx) = Z 10 
���u�2u�3 _u1 Æ dx�;we obtain Z 10 �Z 1� 
���u�2 _u1 Æ dx�� _u�3 d�:The sum of the ontributions of the Stratonovih integrals in expression (6.1) isequal to12 Z 10 
(u1; u2)(Ædx) _u3 + 12 Z 10 �Z 1� 
( _u1; Ædx)(u2) + 
( _u2; Ædx)(u1)� _u3 d�:Using the antisymmetry of the matries Q we obtain:Theorem 6.1. The Levi-Civita ovariant derivative ~ru1u2 of two onstant tangentvetor �elds has the following expression in the parallelism of the moving frame:d� ( ~ru1u2) = 12
(u1; u2)(Ædx)+ hQu1 _u2 + 12 Z 1� 
( _u1; Ædx)(u2) + 12 Z 1� 
( _u2; Ædx)(u1)i d�:We remark that the expression obtained is a tangent proess with an antiipativebounded variation part.Various other onnetions an be de�ned on the path spae. We shall work inthe sequel with a partiular one, that we all the Markovian onnetion.De�nition 6.2. For two onstant tangent vetor �elds U1, U2, the Markovianovariant derivative is de�ned by[dp�rU1U2℄(p) = DU1 [(exp�1p(�))�(dp�U2)℄:This expression is Markovian in the sense that dp� [rU1U2℄ depends only upondp�U2 and U1(�).



RIEMANNIAN GEOMETRY ON THE PATH SPACE 17Theorem 6.3. The Markovian onnetion is expressed in the parallelism bydd� (ru1u2) = Qu1 _u2;for u1; u2 2 H1.Proof. Sine U2(p)(�) = tp� 0u2(�), we havedd� [�(rU1U2)℄ = h!;DU1(tp� 0)i � _u2(�)and the theorem of derivation of the parallel transport (setion 2) gives the result.We introdue the loalization of the ovariant derivative by the de�nitionr�;�Z = r~e�;�Z:For a tangent vetor �eld Y , we haverY Z = dX�=1 Z 10 r�;�Zdp�;�Y d�: (6.2)The Christo�el symbols of the Markovian onnetion are de�ned byr�;�(~e�;�) = ���(�; �) ~e�;� ;where ���(�; �) = 1�<� Z �� 
��� Æ dx�: (6.3)Theorem 6.4. The Markovian onnetion is Riemannian. Its torsion is given byT (~e�;�; ~e�;�)(s) = �1�_��s Z s�_� 
��� Æ dx�:Proof. Let Ûi(�), i = 1; 2, denote the vetor �elds d�Ui(�) read in the normal hartat exp�1p(�) and gij the metri tensor of M read in this normal hart. The fat thatthe derivatives of gij vanish at the origin, implies thatDY [gijÛ1iU2j ℄ = gij [DY Û1i℄U2j + gijU1i[DY U2j ℄and DY Û1i(�) = dp� [rY Ui(�)℄The expression for the torsion follows from the strutural equations.7. Weitzenb�ok formulae7.1. Energy identities and urvature. As we have realled in setion 1.2 en-ergy identities are fundamental in Stohasti Analysis. They are at the basis ofthe de�nition of stohasti integrals of adapted proesses and they allow to deriveestimates for antiipative stohasti integrals. On the Wiener spae the energyequality for antiipative integrals is:E ����Z 10 u� dx(�)����2 = E Z 10 ju� j2 d� +E Z 10Z 10 D�u� �D�u� d� d�In Di�erential Geometry formulae of the typedd� + d�d = ��+Ri;



18 A. B. CRUZEIRO AND P. MALLIAVINwhere d� denote the adjoint of the exterior derivative with respet to the Riemannmeasure dm and Ri is the Rii tensor assoiated with the Levi-Civita onnetionr are known under the name of Weitzenb�ok formulae. For a metri onnetionwith torsion, one has dd� + d�d = ��+Ri+ T̂ ;where T̂ (ej) = Pdi=1(rei � T )(ej ; ei). If we onsider Weitzenb�ok formulae (withrespet to Levi-Civita onnetion) on 1 forms !z (z denotes the dual orrespondentvetor �eld) we obtainZ jd�zj2 dm+ Z jd!zj2 dm = Z jrzj2 dm+ Z hRi z; zi dm;whih is equivalent toZ jd�zj2 dm =Xi;j Z �reiz �� ej��rej z �� ei� dm+ Z hRi z; zidm;where feig denotes an orthonormal basis of the tangent spae.This orresponds to the energy identity written in the Wiener spae with respetto the underlying Gaussian measure. We may say, in an equivalent way, that theRii tensor of the Wiener spae is equal to the identity. This result was obtainedby Shigekawa in [23℄.If � = dd� + d�d denotes the Rham-Hodge operator on forms of degree one, thesemigroup e�t�f satis�es��t(de�t�f) = dd�de�t�f = �(de�t�f);sine ddu = 0. The problem of estimating the ommutator between de�t� ande�t�d redues to estimating the ommutator between the operators � and � ondi�erential forms (f. [1℄ for a development of this point of view).On the Wiener spae Mehler's formula gives an expliit representation of thesemigroup assoiated to the Ornstein-Uhlenbek operator Lf = �Ædf . The om-mutation relation reads d(e�tLf) = e�t(e�tLdf)and is at the basis of Meyer's inequalities (f. [21℄).7.2. First order ommutation relations. An energy identity, as we have seenin paragraph 1.2, follows from a ommutation relation between derivatives anddivergenes whih means, in the ase of adapted vetor �elds, between derivativesan (Itô) stohasti integrals. We are therefore interested in studying suh relationson the path spae.We have the followingTheorem 7.1. Given an adapted tangent vetor �eld Z suh that the proess _zsatis�es R 10 k _z(�)k2;p d� < +1 for some p > 1 we haveD�;� Z 10 dp�Z � dp(�) = Z 10 dp�(r�;�Z) � dp(�) + dp�;�Z � 12 Z 1� (Ri _z)� d�:Proof. We start from the haraterization of the Itô integral on the path spae,Z 10 dp�Z � dp(�) = Z 10 _z� dx�



RIEMANNIAN GEOMETRY ON THE PATH SPACE 19and we observe that, by the intertwining theorem, the derivation D�;� orresponds,on the Wiener spae, to the derivation with respet to the tangent proess��;�(�) = 1�<� "� + Z �� �Z s� 
(Ædx; "�)� Æ dx(s):By theorem 3.4, D� Z 10 _z � dx = Z 10 (D� _z) � dx+ Z 10 _z � d�:We have _z� = r�1(dp�Z) and we derivate parallel transport by making the deriv-ative at the point p(�) and using the normal hart entered at this point. Fromthe formulae of the derivative of the parallel transport and the de�nition of theMarkovian onnetion it follows that�D�;� _z��� = �r�1(dp�r�;�Z)�� � ��� (�; �) _z� ;where � denotes the Christo�el symbols de�ned in (6.3).Conerning the seond term,Z 10 _z � d� = _z�(�)� Z 1� �Z �� 
(Ædx; "�)� _z(�) � dx(�)�12 Z 10 X�; _z(�) d��� (�; �) � dx�(�):Sine d��� (�; �) � dx�(�) = 
��� d� , we obtain the result.We observe that the Markovian onnetion appears naturally when dealing with�rst order ommutation relations on the path spae.An analogous formula for derivating Stratonovih stohasti integrals may bederived. Under suitable assumptions on the tangent vetor �eld Z, it readsD�;� Z 10 dp�Z Æ dp(�) = Z 10 dp�(r�;�Z) Æ dp(�) + dp�;�Z (7.1)(f. [6℄).7.3. A �rst result for adapted tangent vetors. Using Bismut's harateri-zation of the divergene in terms of stohasti integrals, together with the om-mutation relations of the last paragraph, we may derive a �rst energy identity foradapted vetor �elds on the path spae.A di�erential form of degree p on the path spae is given by a funtional � 2Wrq (Pm0(M); [H1℄^p).De�nition 7.2. Given a form of degree 1 its oboundary is de�ned byhd�; Z1 ^ Z2i = DZ1(h�; Z2i)�DZ2(h�; Z1i)� h�; [Z1; Z2℄i :Granted the Hilbertian struture of the underlying tangent spae, di�erential formsof degree 1 may be identi�ed with linear funtionals on the spae of tangent vetor�elds.



20 A. B. CRUZEIRO AND P. MALLIAVINLet Z be a tangent vetor �eld on the path spae. We haveE�Æ(Z)�2=E�DZ(ÆZ)�=E0�X� Z 10 dp�;� Z �D�;� Z 10 �dp�Z + 12(RiZ)�� � dp(�)� d�1A=E0�X� Z 10 dp�;� Z �Z 10 dp� (r�;� Z) + 12r�;�(RiZ)� � dp(�)� d�1A+ I;whereI = EkZk2H1 + 12E(RiZ j Z)H1� 12E0�X� Z 10 dp�;� Z �Z 1� Ri (dp� Z) +Ri (RiZ)�� d��1A :Then we deomposer�;�(RiZ� ) = �r�;�Ri �Z� +Ri �r�;� Z�� :The �rst term gives rise to a stohasti integral whih is again a divergene,namelyE0�X� Z 10 Æ(r�;� Z)dp�;� Z d�1A = E0�X� Z 10 Dr�;� Z�dp�;� Z�d�1A= E0�X�;� Z 10 Z 10 dp�;�(r�;� Z)D�;� (dp�;� Z)d� d�1A :Now D�;�(dp�;� Z) = dp�;�(r�;� Z)� dp�;�(��;� Z).Sine Z is adapted and dp�;���;� is only di�erent from zero when � < �, this lastterm does not ontribute to the integration. We end up withE�Æ(Z)�2 = E0�X�;� Z 10 Z 10 dp�;�(r�;� Z)dp�;�(r�;� Z)d� d�1A+ I:Finally, the fat that, for the 1-di�erential form assoiated to Z we havehd�; ~e�;� ^ ~e�;�i = � ( ~e�;� j r�;� Z ) + ( ~e�;� j r�;� Z )+ �T ((�; �); (�; �)) �� Z �;allows to dedue the following result (f. [6℄ for details):Theorem 7.3. There exists two operators on H1, A0 and A1 suh that, for anysmooth adapted tangent vetor �eld Z we haveE�Æ(Z)�2 +Ekd�Zk2 = EkrZk2H1
H1 +E�A0(Z) �� Z �+ E�A1(DZ) �� Z �;where A0 and A1 are given by H1-operators with integral kernels de�ned in termsof stohasti integrals.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 21This �rst result shows that, even for adapted vetor �elds, a Weitzenb�ok formulaon the path spae with respet to the Markovian onnetion gives rise to �rst ordernon trivial terms. At this stage we have onsidered the Markovian onnetionmainly beause it naturally appears when dealing with �rst order ommutationformulae, as seen in last paragraph. On the other hand derivating on the pathspae means derivating on the Wiener spae with respet to tangent proesses; aswe have seen, assumptions on the seond derivatives of Z are needed to de�ne DZ.One ould of ourse expet things to be easier for Levi-Civita onnetion. In fat,this is far from being the ase.We �rst notie that, sine we have an expliit ontrol of the expressions A0 andA1 in terms of stohasti integrals, we an show thatE�Æ(Z)�2 +Ekd�Zk2 < +1under suitable integrable assumptions on the vetor �eld Z (f. [6℄).Now let us onsider a Weitzenb�ok-type formula valid for suh vetor �elds Z.It should be given byE�Æ(Z)�2 +Ekd�Zk2 = Ek ~rZk2H1
H1 +E� ~R(Z) �� Z �: (7.2)The left-hand side of this equality being �nite, let us look at Ek ~rZk2H1
H1aording to the expression obtained in Theorem 6.1 for the Levi-Civita ovariantderivative. It is given in terms of a tangent proess and therefore the H1-norm willbe in�nite. We enounter here the problem already mentioned in paragraph 3 ofthe diÆulty of de�ning a Riemannian metri for tangent proesses.More preisely we have:Theorem 7.4 (Explosion of the Levi-Civita Rii tensor [6℄). The right-hand sideof the identity (7.2) is a sum of two in�nite terms even when the sum is �nite.To prove this result we may take f'kg an orthonormal basis of the spae H1 andwrite Ek ~rZk2 =Xk;l � ~r'lZ �� 'k �H1 :Using Theorem 6.1, the �rst term orresponds to12EXk;l �Z 10 
��� '�l Z� _'k dx��2and the energy identity for Itô integrals impliesXk � _'k(�)�2 = +1 8�:7.4. A modi�ed Riemannian metri. In [5℄ a Riemannian metri whih takesinto aount the perturbation of the divergene due to the Rii urvature termwas onsidered. With respet to a onnetion de�ned aordingly, the �rst orderommutation formula has a simpli�ed expression.We onsider in H the salar produt:((h1 j h2 )) = ( ĥ1 j ĥ2 )H1 ;where ĥ(�) = h(�) + 12 Z �0 Ri (h) ds;



22 A. B. CRUZEIRO AND P. MALLIAVINand we de�ne the ovariant derivative of a onstant tangent vetor �eld on the pathspae Z with respet to h by_�r̂hZ�(�) = Z �0 
(Ædx; h) _̂z(�):Then the following relation with the Markovian ovariant derivative holds:r̂hZ = rhẐ:The modi�ed onnetion is still Riemannian and has a torsion.Theorem 7.5 (Commutation formula). For z; h 2 H, the following identity holds:DhÆ(z) = Æ(r̂hz) + (( z j h )):We onsider vetor �elds, whih are of the formZ(p)(�) =Xk;� fk�(p) vk�(�)where fk� are ylindrial funtions on Pm0(M) and vk� are the adapted vetor�elds de�ned by _vk�(�) = 1�k<�<�k+1 "�for a partition f�kg of the interval [0; 1℄.Suh proesses were alled by Fang (f. [12℄) simple proesses.The Weitzenb�ok formula orresponding to the ovariant derivative r̂ allows todedue the following estimation (f. [5℄):Theorem 7.6. There exists a onstant  > 0 suh thatE(ÆZ)2 � (EkZk2 +Ekr̂Zk2)for every simple proess Z.8. Antiipative integrals and Weitzenb�ok formulaeAs we have disussed in setion 4, in the Riemannian setting the notion ofantiipative (Skorohod) integral no longer oinides, as is the ase in Rd , with thenotion of divergene with respet to Wiener measure in a diret way. In fat, notonly there is a orretion term due to the Rii tensor of the underlying manifold(already present in the adapted ase) but an extra term involving the urvatureappears (f. formula (4.1)). In this setion, when referring to antiipative stohastiintegrals on the path spae, we shall be talking in fat about divergenes.To obtain LP -estimates for suh divergenes, it is enough to proeed by ap-proximation by adapted vetor �elds and use the Weitzenb�ok formulae alreadydeveloped for these �elds.For q > 1 we denote D q1 the ompletion of the spae of simple proesses underthe normkZkqDq1 = E �Z 10 jZ(�)j2 d�� q2 +E �Z 10 Z 10 jD�Z(�)j2 d�; d�� q2 :By an approximation proedure Fang showed in [12℄ that, if Z belongs to a spaeD q1 for some q > 2, then the divergene of Z exists andkÆ(Z)kL2 � qkZkDq1 :



RIEMANNIAN GEOMETRY ON THE PATH SPACE 23The same kind of approximation methods were used [6℄ with respet to theMarkovian onnetion as well as in [5℄ with respet to the modi�ed onnetiondisussed in paragraph 7.4.At this stage we ould ask ourselves whether the passage from the adapted tothe non adapted ase is really a soure of extra diÆulties (with respet to theWiener spae situation). So far we have only looked at this passage from the pointof view of estimating norms and not tried to obtain losed ommutation formulaefor antiipative vetor �elds.The �rst order ommutation relation for adapted �elds has shown thatD�(ÆZ) = Æ(r�Z) +B(Z);where B(Z) = dp�Z � 12 Z 1� Ri ( _Z) d� + 14 Z 1� Ri (Ri (Z)) d�+ 12(RiZ)� + 12 Z 1� �rRi �(z) � dx(�):Let Z be an adapted tangent vetor �eld and f a smooth funtional on the pathspae. We haveD��Æ(fZ)� = D��fÆZ �DZf�= (D�f) ÆZ + fÆ(r�Z) + fB(Z)Z �D�DZfOn the other hand,Æ(r�(fZ)) = fÆ(r�Z)�D(r�Z)f + (D�f)ÆZ �DZD�f:So, apart from the modi�ation due to the Rii tensor of the manifold, the di�er-ene between D�(Æ(fZ)) and Æ(r�(fZ)) makes intervene the struture equations,whih are, as we have seen, nontrivial on the path spae.We refer to [13℄ for developments of �rst order ommutation formulae.Let �1 denote the Laplaian on 1-forms assoiated to the Markovian onnetion,namely: �1Z = �r�rZ:We have D�;�(Y j r�;�Z ) = (r�;�Y j r�;�Z ) + (Y j r�;�(r�;�Z) )and, sine E(�1Z j Y ) = �E(rZ j rY ), we derive the following expression,whih holds for general (not neessarily adapted) vetor �elds Z:dp�;�(�1Z) = X� Z 10 dp�;�(r2�;�Z) d� � Z 10 dp�;�(r�;�Z) Æ dx�(�)� 12 Z 10 Ri (r�;�Z)(�;�) Æ dx�(�); (8.1)where the Stratonovih integral is to be taken in the Stratonovih-Skorohod sense.Let us denote by � the de Rham-Hodge Laplaian, � = dÆ + Æd, on forms ofdegree one.



24 A. B. CRUZEIRO AND P. MALLIAVINTheorem 8.1. There exists an operator on H1, A, suh that, for any smoothtangent vetor �eld Z we have(�+�)Z(�;�) = A(Z)(�;�) +X�; Z 10Z 10 D�; _z�;��dp�;�T �(�; ); (�; �)�� dp�;T �(�; �); (�; �)�� d� d�;where A has an integral kernel de�ned in terms of stohasti integrals.9. Adapted differential geometryWe are interested in onsideringWeitzenb�ok formulae for exat di�erential forms! = df . If L denotes the Ornstein-Uhlenbek operator on the path spae, de�nedby Lf = �ÆDf; (9.1)this means omputing the ommutator between dLf and �1(df).In this setion (and following [8℄) we onsider a type of renormalization thatonsists in restriting identities (suh as Weitzenb�ok formulae) to adapted ve-tor �elds. We refer also to [4℄ where, in the same spirit, a modi�ed Markovianonnetion has been de�ned.In a properly de�ned adapted di�erential geometry many identities simplify dras-tially. The main result is that, through this renormalization by restrition the Riitensor assoiated to the Markovian onnetion on the path spae is equal to theidentity. In adapted di�erential geometry 1-di�erential forms are not identi�ed viathe Hilbertian struture with vetor �elds; this allows to onsider simultaneouslylosed forms and adapted vetor �elds in duality.Let us onsider the family of projetors on H1 = H1([0; 1℄;Rd), �� , for � 2 [0; 1℄,de�ned by d� (��z) = 1�<� _z(�):This family orresponds to the Itô time �ltration.We onsider A, the group of unitary transformations of H1 that ommute withthe projetors �� , thus restriting the group of all unitary transformations whihwould a priori de�ne the \orthonormal frames" on the path spae.Denoting, respetively, GL(d) and O(d) the linear group and the orthogonalgroup of Rd , and P(�) the bounded measurable maps of [0; 1℄ into �, we an iden-tify P(O(d)) and P(GL(d)) to, respetively A and to the group of bounded lineartransformations of H1 ommuting with the family �� , through the following ation:(u � z)(�) = Z �0 u(�) _z(�) d�:The Lie algebra of the group A an be identi�ed with P(so(d)).De�nition 9.1. We all frame at a point p 2 Pm0(M) an isometri surjetive mapof H1 into the spae of tangent vetor �elds on the path spae.We all adapted frame a frame whih intertwines with the family of projetionoperators on the spae of tangent vetor �elds de�ned by:(��(Z))(�) = Z� 8� < �;(��(Z))(�) = tp� �(Z�) 8� > �:The frame bundle O(Pm0(M) will onsist of the olletion of all adapted frames.



RIEMANNIAN GEOMETRY ON THE PATH SPACE 25Using the notation � already used for the anoni frame de�ned by the paralleltransport, �(Z)� = tp0 �Z� = z� , the map z �7! ��1p (u � z) de�ned for u 2 h,z 2 H1, is a bijetive isomorphism from A� Pm0(M) to O(Pm0(M)).Let �(p) = �(e; p), where e denotes the onstant path equal to the identity; � isthe setion of the bundle of adapted frames. If ' : O(Pm0(M))! Pm0(M) denotesthe anoni projetion, then ' Æ � = IdPm0(M).For �xed u 2 A, the mapQu : O(Pm0(M))! O(Pm0(M))Qu(r) = r Æ u�1de�nes a group ation of A on O(Pm0(M)).The Markovian onnetion we have de�ned in setion 6, namely�z;p(�) = Z �0 
(z(�); Ædp(�));has a martingale part belonging to P(so(d)). An important observation is that,when the underlying manifold has a zero Rii urvature, then �z;p 2 P(so(d))sine, by Bianhi identities, the ontration in the stohasti integral disappears.The Markovian onnetion de�nes a family of anoni horizontal vetor �elds onthe frame bundle O(Pm0(M)), AZ . We de�ne AZ(r) at a point r = �(p) Æ u byAZ(r) = (~�Z(r); ~Z(r)); (9.2)where ~�Z(�(p)u) = u�1 Æ dd" ����"=0 exp(�"�u�z;p) Æ u;~Z(r) = r(z):Given a tangent vetor �eld Z on the path spae FZ(r) = r�1(Z'(r)) de�nes itssalarization. The Markovian ovariant derivative rZY is expressed on the framebundle by Frr(z)Y (r) = hdFY ; Azir : (9.3)We may then onsider ~Dz, the diretional derivative along the vetor �eld Az , op-erating on smooth ylindrial funtionals on O(Pm0(M)). The ovariant derivativer�;� is de�ned by (r�;��)p = ( ~D�;��)�(p) (9.4)for a \vetor �eld" � : O(M)! L2([0; 1℄;Rd).On the frame bundle O(Pm0(M)) we an de�ne a parallelism, by onsidering a1-di�erential form with values in H1 � A. Let � = (�1; �2) denote this di�erentialfrom, de�ned by h�1; T ir = r�1('0(r)(T ));h�2; T ir = ~� _�(T ) +  0(r)T; (9.5)where  denotes the projetion of the domain of the map � on the �rst omponentand where the tangent spae at the point u 2 A is identi�ed to�u exp"g : g 2 P(so(d))	:



26 A. B. CRUZEIRO AND P. MALLIAVINTheorem 9.2 ([8℄). The strutural equations of the frame are�hd�1; T1 ^ T2i+ �2(T1)�1(T2)� �2(T2)�1(T1)��(p) =� Z �0 
��1(T2); �1(T1)� Æ dx�hd�2; T1 ^ T2i � �2(T1)�2(T2) + �2(T2)�2(T1)��(p) =� [�z1 ;�z2 ℄� (Dz1�z2) + (Dz2�z1) + �[z1;z2℄;where zi = �1(Ti), i = 1; 2.From the expressions of the last theorem we reover the formula for the torsionof the Markovian onnetion, namelyT (z1; z2) = � Z �0 
(z1; z2) Æ dx;and we obtain the urvature tensor, whih is equal to:C(z1; z2) = �[�z1 ;�z2 ℄� (Dz1�z2) + (Dz2�z1) + �[z1;z2℄:Corollary. The Rii type trae of the urvature of the Markovian onnetion,namely TraeC(z) =X� Z 10 C(z; ~e�� ) � e�� d�is given by dp� TraeC(z) = Rip(�) (dp�Z):In partiular, if Rii(M) = 0, then the Rii trae on the path spae vanishes.We notie that these results are a onsequene of the Markovian harater of theovariant derivative on the path spae (f. [8℄).As we have already pointed out, when the manifold is Rii at we an replaethe Stratonovih integral de�ning the Markovian onnetion by an Itô integral,sine the ontration term vanishes; we have an analogous situation onerning thetorsion. On the other hand,Theorem 9.3. For Zi, i = 1; 2, two adapted tangent vetor �elds, ifT (Z1; Z2)(�) = � Z �0 
(Z1; Z2) dxthen E�(DT F ) = 0 for every smooth funtional F .The Markovian harater of the onnetion together with the simpli�ation inthe stohasti integrals when M is Rii at (as in theorem 9.3 above) induedrasti simpli�ations on the orresponding Weitzenb�ok formula in this adapteddi�erential geometry.In the situation where Rii(M) = 0 (whih does not imply that the urvaturetensor of M is trivial), the expression for the Ornstein-Uhlenbek operator on thepath spae is (f. [16℄):Lf = 12X� Z 10 D2�;� d� �D�;� Æ dx�(�): (9.6)
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