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Abstract

We describe how to obtain some probabilistic Bismut formulae for the
derivatives of the heat kernel on a Riemannian manifold and give an appli-
cation to the estimate of the energy in Euclidean Quantum Mechanics.

1. Introduction.

M shall denote a d-dimensional compact complete Riemannian manifold without
boundary although generalizations (concerning compactness and boundary) are
possible. With respect to the metric ds2 =

∑
i,j gi,jdm

idmj the Laplace-Beltrami
operator is defined by

∆ = (detg)
1
2
∂

∂mi
(gi,jdetg−

1
2
∂

∂mj
)

where gi,j denotes the inverse of the matrix gi,j. Here again we could consider a
more general operator by adding a first order term (a vector field) but we are more
interested in explaining the ideas rather then consider full generality. There exists
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a huge number of works concerning estimates of the heat kernel associated with ∆,
namely the function pt(m0,m) satisfying the p.d.e.

∂p

∂t
=

1

2
∆p with pt(m0,m) → δm0(m), t→ 0

A major insight on these problems is due to Kolmogorov ([10]), who associated
with the Laplacian and, more generally, with an elliptic second order linear opera-
tor, a stochastic flow of diffeomorphisms, generalizing the well known fact that one
can associate a deterministic flow with a vector field. The rôle of partial differen-
tial equations was since then made clear in the theory of Markov processes and,
”reciprocally”, stochastic processes turned out to be a central tool in the study of
these equations.

We refer also to two works, that can be seen as landmarks on the subject:
Varadhan’s results ([17]) that essentially states the behaviour of the heat kernel for
small times,

limt→0(−2tlog pt(m0,m)) = d2(m0,m)

and [11], where the authors prove (analytically) very precise estimates.
We are concerned here with estimates on the derivative of the heat kernel. Such

estimates allow, in particular, to deduce the smoothness of the corresponding heat
semigroup

(e
t
2
∆f)(m0) =

∫
M

f(m)pt(m0,m)dm

where dm denotes the Riemannian volume measure. Here again many authors have
considered these type of problems, concerning ponctual or Lp estimates (cf., for
example,[1],[7],[15],[16] and also [14], where large deviations arguments are used).

Bismut [1] showed that t∇m0log pt(m0,m) can be expressed in terms of a
conditional expectation of some stochastic process and used such an expression to
study the small time assymptotics of the logarithmic derivative of the heat kernel.
Other related formulae have been obtained since then (they are far from being
unique).

The logarithmic derivative is quite a natural object to investigate. For example
in (semiclassical) quantum physics, it has to do with the gradient of the action of
the system under consideration.

The heat semigroup can be expressed as an expectation with respect to some
stochastic process, in this case the M valued Brownian motion ρw(t), starting at
m0 at time zero,

(e
t
2
∆f)(m0) = Ef(ρw(t))

Therefore it is natural to think that derivatives of the heat kernel can be transfered
to some derivatives on the path space of the process. And, in order to accomplish
such task, one should use the stochastic calculus of variations on the path space or
Malliavin calculus ([13]).
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This paper is organized as follows: in the next paragraph we recall some no-
tions of Malliavin calculus (in the flat situation, namely on the Wiener space) and,
in particular, its integration by parts formula. This one can also be interpreted
a rigorous version of Feynman’s integration by parts formula (c.f. [2], Part 2)
in quantum physics. In paragraph 3 we describe a construction of the Brownian
motion on a Riemannian manifold, we consider the Itô map and present an inter-
twinning formula that allows to transfer derivatives on the path space of a manifold
to derivatives on the Wiener space. In paragraph 4 we show how to deduce Bismut
formula for the heat kernel derivative and, finally, the last paragraph is devoted to
an application: estimating the energy in Euclidean quantum mechanics.

2. Malliavin calculus.

Let X denote the Wiener space, namely the space of continuous paths γ : [0, 1] →
Rd, γ(0) = x0 endowed with the Wiener measure µ. This measure is the law of the
Rd valued Brownian motion and is associated to the Laplacian in the sense that
the corresponding heat semigroup has the representation

(e
t
2
∆f)(x0) = Eµ(f(γ(t)))

Let H be the (Hilbert) subspace of X, named after Cameron and Martin, of the

paths which are absolutely continuous and whose derivative satisfy
∫ 1

0
|γ̇(τ)|2dτ <

∞. Although dense in X, the (µ) measure of H is zero.
For a cylindrical functional F = f(γ(τ1), ..., γ(τm)) the Malliavin derivative

([13]) is defined by

DτF (γ) =
m∑

k=1

1τ<τk
∂kf(γ(τ1), ..., γ(τm))

The operator D is closed on the completion of the space of cylindrical function-
als with respect to the norm ||F ||2 = Eµ(|F |2 +

∫ 1

0
|DτF |2dτ) and can therefore be

extended to this space. For a ”vector field” z : X → H, we define the directional
derivatives

DzF =

∫
0

< DτF, ż(τ) > dτ

where <,> denotes the scalar product in Rd. They coincide with the more familiar
limit (taken in the a.e.-µ sense) of 1

ε
(F (γ + εz)− F (γ)) when ε→ 0.

Girsanov-Cameron-Martin theorem states that, when z is adapted to the in-
creasing filtration Pτ generated by the events before time τ (the Itô filtration), then
a shift γ → γ + z induces a transformation of the Wiener measure to a measure
which is absolutely continuous with respect to µ and we have an explicit formula
for the Radon-Nikodym density (c.f. [18]):
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EµF (γ + z) = Eµ

(
F (γ)exp{

∫ 1

0

< ż, dγ(τ) > −1

2

∫ 1

0

|ż|2dτ}
)

The integral in dγ is the Itô integral with respect to Brownian motion.
In the case of deterministic z, Cameron and Martin actually proved that be-

longing to H is a necessary and sufficient condition for the shifted measure to be
absolutely continuous with respect to µ. It is therefore natural to consider varia-
tions with respect to H valued functionals and therefore consider this space as a
tangent space (which explains the terminology ”vector fields” used before).

The dual of the derivative with respect to the measure µ is called the divergence
operator. For adapted vector fields z such that Eµ

∫ 1

0
|ż(τ)|2dτ < ∞ it follows

from Girsanov-Cameron-Martin theorem that the divergence coincides with the
Itô integral and we have the following integration by parts formula:

Eµ(DzF ) = Eµ

(
F

∫ 1

0

< ż(τ), dγ(τ) >
)

More generally the divergence coincides with an extension of this integral, the
so-called Skorohod integral (c.f.[13] and references therein).

We notice that there is, in particular, a class of adapted transformations pre-
serving the Wiener measure: these are the rotations (Levy’s theorem). So, if
dξi(τ) =

∑
j ai,jdγ(τ) where a ≡ ai,j is an antisymmetric matrix, a(0) = 0, and if

DξF =
∫ 1

0
DτFdξ(τ), we have

Eµ(Dξ(F )) = 0

The tangent space to the Wiener space can therefore be extended to include pro-
cesses ξ satisfying a stochastic differential equation of the form

dξi(τ) =
∑

j

ai,jdγ
j(τ) + zidτ

with a as above (the so-called tangent processes, c.f. [3]).

3. Brownian motion on a Riemannian manifold.

If M is a d-dimensional Riemannian manifold, let O(M) denote the bundle of
orthonormal frames over M , namely

O(M) = {(m, r) : m ∈M, r : Rd → Tm(M) is an Euclidean isometry}

and π : O(M) → M, π(r) = m the canonical projection. Let mk(t) denote the
(unique) geodesic starting at m at time zero and having initial velocity r(ek) with
ek,k = 1, ..., d, a vector in the canonical basis of Rd. The parallel transport of
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r along mk defined by the equation drk

dt
+ Γṁk

rk = 0, rk(0) = Id, where Γ are
the Christoffel symbols of the Levi-Civita connection, determines a vector field on
O(M): Ak(m, r) = d

dt |t=0
rk(t). We consider the horizontal Laplacian on O(M),

namely the second order differential operator

∆O(M) =
d∑

k=1

A2
k

Then

∆O(M)(foπ) = (∆f)oπ

where ∆ is the Laplace-Beltrami operator on M . These two Laplacians induce two
probability measures or two stochastic flows, defined in the path spaces of O(M)
and of M , respectively; and π realizes an isomorphism between these probability
spaces. The measure in

Pm0(M) = {ρ : [0, 1] →M,ρ continuous, ρ(0) = m0}

that we shall denote by ν, is the Wiener measure, or the law of the Brownian mo-
tion on M and satisfies (e

t
2
∆Mf)(m0) = Eν(f(ρ(t))). The measure in Pm0(O(M))

corresponds to the law of r(τ), the (Itô stochastic) parallel displacement along the
curve ρ(τ) with respect to the Levi-Civita connection. This lifted curve satisfies an
stochastic differential equation of the form drγ(τ) =

∑
k Ak(rγ(τ)dγ

k(τ), rγ(0) =
r0, with π(r0) = m0 (c.f., for example, [9]).

In [12] Malliavin defined the Itô map I : X → Pm0(M),

I(γ)(τ) = π(rγ(τ))

and proved that I is a.s. bijective and provides an isomorphism of measures.
A vector field along the path ρ is a section process of the tangent bundle of

M , namely a measurable map Zρ(τ) ∈ Tρ(τ)(M). We denote by z the image of Z
through the parallel transport,

z(τ) = r0o[rγ(τ)]
−1(Z(τ))

and assume that z belongs to the Cameron-Martin space H.
The derivative of a cylindrical functional F = f(ρ(τ1), ..., ρ(τm)) along a vector

field is given by

DZF (ρ) =
m∑

k=1

< r0o[rγ(τk)]
−1∂kf, Z(τk) >

This derivative can be extended by closure to a suitable Sobolev space of function-
als.

The theorem that follows expresses how derivatives in the path space can be
transfered to derivatives in the Wiener space. We shall not be precise, here, in the
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assumptions, namely in the regularity needed for the functionals and the vector
fields.

The result is a consequence of the formula for the derivative of the Itô map.
Since a (stochastic) parallel transport along the Brownian motion is differentiated,
the variation is given in terms of the integral of the curvature tensor along this
curve.

Theorem (Intertwinning formula [3], [4], [6], [8])
A functional F is differentialble along a vector field Z in Pm0(M) iff FoI is

differentiable in X along the process

dξ(τ) = [ż +
1

2
Ricc(z)]dτ − (

∫ τ

0

Ω(z, odγ))dγ(τ)

where dγ, odγ denote, resp., Itô and Stratonovich stochastic differentiation (c.f.[9]),
Ω and Ricci the curvature and the Ricci tensors in M . Furthermore we have:

(DZF )oI = Dξ(FoI)

From this theorem we can deduce, in particular, Bismut integration by parts
formula:

Eν(DZF ) = Eµ

(
(FoI)

∫ 1

0

[ż(τ) +
1

2
Rτ (z(τ))]dγ(τ)

)
with Rτ the Ricci tensor read in the frame bundle. This result follows from the
integration by parts formula on the Wiener space and from the fact that Ω is anti-
symmetric, the corresponding term in the intertwinning formula having therefore
zero divergence.

4. Heat kernel derivatives.

Given the probabilistic representation of the heat kernel, we differentiate this func-
tion by derivating the Brownian motion on M in a convenient direction. Then we
apply the intertwinning theorem to tranfer this derivative to the Wiener space (c.f.
[5]). The following result can be obtained:

Theorem (Bismut formula) Let f be a smooth function on M and v a vector
in the tangent space Tm0(M). For fixed t > 0 and denoting Ptf = e

t
2
∆f , we have:

< ∇Ptf, v >Tm0 (M)=
1

t
Eµ

(
f(ργ(t))

∫ t

0

[v +
1

2
(τ − t)Rτv]dγ(τ)

)
Idea of the proof:
Let U be the solution of the o.d.e.
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dU(τ)

dτ
= −1

2
RτU(τ), U(0) = IdTm0 (M)

Consider y(τ) = U(τ)v − 1
t
(t − τ ∧ t)v, which is a Cameron-Martin vector field.

From the intertwinning formula we derive

< ∇Ptf, v >Tm0 (M) = E < rγ(t)r
−1
0 ∇f, U(t)v >Tm0 (M)

= E < rγ(t)r
−1
0 ∇f, y(t) >Tm0 (M)

= E(DY f(γ(t)))

where Y denotes the parallel transport of the vector y. The result follows from the
integration by parts on the path space.

Remark 1. From this result we may, in particular, obtain Lp estimates for
the derivative of the heat semigroup. For example, in the situation where

||Ricc||Lp(dm) = Cp <∞

for every p > 1, we obtain

||∇Ptf ||Lp(dm) ≤ (
2

t
+
t

6
C2

pq
q−p

)
1
2 ||f ||

p
q

Lq(dm)

Remark 2.
Bismut formula appears sometimes as a probabilistic espression for the log-

arithmic derivative ∇logpt(m0,m) (c.f. [1]). Such expressions can be obtained
from the one in last theorem by taking conditional expectations on the underlying
stochastic processes.

Remark 3.
Formulae for derivatives of the heat kernel with respect to the second variable

written in terms of stochastic integrals can also be deduced by similar methods.

5. An application.

In Euclidean Quantum Mechanics (c.f. [2] and [18]) a family of stochastic processes
is associated to the self-adjoint Hamiltonian observable H = −1

2
∆ + V , where

V denotes a bounded below scalar potential. These processes solve stochastic
differential equations of the form (in local coordinates):

dzi(t) = ~
1
2σi,k(z(t))dγ

k(t)− ~
2
gj,kΓi

j,k(z(t))dt+ ~∂ilogηt(z(t))dt

where σ =
√
g and with respect to the (usual) past Itô filtration and

d∗z
i(t) = ~

1
2σi,kd∗γ

k
∗ (t)−

~
2
gj,kΓi

j,kdt− ~∂ilogη
∗
t dt
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with respect to the future filtratio. Here η and η∗ are, respectively, positive so-
lutions of final and initial value problems for the heat equation with potential V .
Considering time running in the interval [0, T ],

ηt(x) = e
1
~ (t−T )HηT

η∗t (x) = e−
1
~ tHη∗0

The law of z at time t is absolutely continuous with respect to the volume
measure and its density is ηtη

∗
t .

In this framework the energy is defined (following Feynman) by

E = −1

2
|~∇logηt|2 −

~2

2
div∇logηt + V

or, in the other filtration, by

E∗ = −1

2
|~∇logη∗t |2 −

~2

2
div∇logη∗t + V

We want to estimate the mean value of the energy along the trajectories of the
process z(t), namely the quantity

e(t) = E(E(z(t)) =

∫
M

Eηtη
∗
t dm

which is also equal to E(E∗(z(t)), and correspond to the path space counterparts
of < ψ|Hψ >L2(dm) in quantum mechanics, for a state ψ. Since∫

M

(div∇logη∗t )ηtη
∗
t dm = −

∫
M

< ∇logη∗t ,∇(ηtη
∗
t ) > dm

we have

e(t) =
~2

2

∫
M

< ∇ηt,∇η∗t > dm+

∫
M

V ηtη
∗
t dm

We observe that the energy (say, its Lp norm) in this framework can be entirely
estimated in terms of the heat kernel and its derivatives, together with the initial
and final conditions and the assumptions on the potential V .

In the absence of the potential (if V is different from zero we should introduce a
Feynman-Kac representation for the corresponding semigroups) and in the situation
of Remark 2. of the last paragraph, we can obtain, for example, the following
estimation:

|e(t)|4 ≤ ~8

24

( 2~
T − t

+
T − t

6~
C2

)(2~
t

+
t

2~
C2

)
||ηT ||2L2(dm)||η∗0||2L2(dm)
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