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We study the state-sum models of quantum gravity based on a representation 2-category18

of the Poincaré 2-group. We call them spin-cube models, since they are categorical gen-19

eralizations of spin-foam models. A spin-cube state sum can be considered as a path inte-20

gral for a constrained 2-BF theory, and depending on how the constraints are imposed,21

a spin-cube state sum can be reduced to a path integral for the area-Regge model with22

the edge-length constraints, or to a path integral for the Regge model. We also show23

that the effective actions for these spin-cube models have the correct classical limit.24

Keywords:25
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1. Introduction27

Spin foam models are discrete path-integral formulations of gauge theories and28

quantum gravity, see [1, 2]. The path integral for a spin foam model is defined as29

a state sum for a colored dual 2-complex of the spacetime manifold triangulation30

and the colors are chosen to be the objects and the morphisms of a representation31

category of the relevant symmetry group. In the case of General Relativity (GR),32

this group is the Lorentz group. A natural categorical generalization of a spin33

foam model would be a state sum model based on a colored 3-complex, where the34

colors are objects, morphisms and 2-morphisms of a 2-category representation of35

the relevant 2-group, see [3, 4]. We will refer to these models as spin cube models,36

and in the case of GR, the relevant 2-groups are the Poincaré 2-group [4] and the37

teleparallel 2-group [5].38

If one labels the 3-cells, 2-cells and 1-cells of a given 3-complex with the objects,39

morphisms and 2-morphisms of a given 2-category, this is equivalent to labeling the
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edges, triangles and tetrahedrons of a spacetime triangulation. Hence the spin cube1

models give a possibility of introducing the edge lengths as degrees of freedom,2

beside the triangle spins and the tetrahedron intertwiners, which are the spin foam3

variables. In the case of the Poincaré 2-group, there is a representation 2-category4

such that the objects (representations) are labeled by positive numbers. These rep-5

resentations satisfy the triangle inequalities when composed and the corresponding6

intertwiners are U(1) spins for non-zero area triangles [6, 7].7

The reason why one would like to introduce the edge lengths as additional8

degrees of freedom, is that in this way, one can solve the problems of spin foam9

models related with the fact that an arbitrary spin-foam configuration does not10

correspond to a metric geometry. Namely, the spins of triangles in a spin foam11

model correspond to the areas of triangles, and an arbitrary assignment of triangle12

areas does not give a well-defined metric geometry [8–10], unless the edge-length13

constraints are imposed [11]. In the current formulations of spin foam models [12,13],14

there are no Lagrange multipliers which would impose the edge-length constraints15

and therefore the only possibility for these constraints to appear is dynamically,16

which is not guaranteed and it is difficult to verify.17

Consequently, it is difficult to couple fermionic matter to spin foam models,18

since the fermions couple to the edge lengths, and these are not well defined in an19

arbitrary spin foam configuration. Also, when the effective action is computed in20

the semi-classical approximation, the classical limit is the area-Regge action [14,15].21

Hence the classical limit for smooth spacetimes cannot be automatically identified22

with the Einstein–Hilbert action. Although there are indications that the edge-23

length constraints may appear dynamically [14], it is difficult to prove that the24

usual Regge action will appear. The presence of the edge-length variables in spin25

cube models solves automatically the problem of coupling of fermionic matter, while26

the effective action for a spin cube model can naturally have the usual Regge action27

as its classical limit.28

The study of spin cube models started in [4], and there it was argued that a29

topological spin cube state sum can be transformed into a quantum gravity one by30

imposing the constraints which relate a triangle spin to the area of the triangle.31

Since the relationship between the triangle spin and the triangle area is not unique,32

in this article we will show that it is possible to implement the GR constraints such33

that the independent variables are the edge lengths. In this case, the spin-cube34

weights can be chosen such that the state sum reduces to the Regge model path35

integral for GR. We also show that it is possible to implement the GR constraints36

such that the triangle spins are left as the independent variables, in which case the37

state sum reduces to a path integral for the area-Regge model with the edge-length38

constraints.39

In Sec. 2, we review breifly the Poincaré 2-group and its relationship with GR.40

We also review the construction of a state sum for a Poincaré 2-group represen-41

tation 2-category, which is relevant for quantum gravity. In Sec. 3, we discuss the42

implementation of the GR constraints on the spin cube state sum, and we show how43
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to implement them such that a solution in terms of the triangle spins is obtained.1

This solution gives a spin foam model which is a discretization of a path integral2

for the area-Regge model with the edge-length constraints. A slight modification3

of the spin-cube weights gives a spin foam model such that one can easily show4

that the classical limit of the effective action is the area-Regge action with the5

edge-length constraints. In Sec. 4, we implement the GR constraints in the state6

sum such that the independent variables are the edge lengths, and the state sum7

becomes a discretized path integral for the Regge model. By using the effective8

action technique, we show that the classical limit is the Regge action. In Sec. 5, we9

present our conclussions.10

2. Poincaré 2-Group State Sum Models11

A 2-group is a categorification of a group, since a group is an invertible category
with one object, while a 2-group is an invertible 2-category with one object, see [16].
Any 2-group is equivalent to a crossed module, and the latter is simply a pair of
groups G and H such that there is a map ∂ : H → G which is a homomorphism
and a map � : G × H → H , which is a group action, such that

∂(g � h) = g(∂h)g−1, (∂h) � h′ = hh′h−1,

where g ∈ G and h, h′ ∈ H .12

A tipical example is the n-dimensional Euclidean 2-group, where G = SO(n) and13

H = Rn. The ∂ map is trivial while the � map is the usual action of a rotation on a14

vector. The semi-direct product G×sH corresponds to the group of 2-morphisms in15

a 2-group, so that the usual Poincaré group is only a part of the Poincaré 2-group16

where G = SO(3, 1) and H = R4.17

The reason why the Poincaré 2-group is relevant for GR is that GR can be
represented as a gauge theory for the Poincaré 2-group [4]. More precisely, the
Einstein equations can be derived from an action which describes a constrained
2-BF theory for the Poincaré 2-group

S =
∫

M

[Bab ∧ Rab + ea ∧∇βa − λab(Bab − εabcde
c ∧ ed)], (1)

where Rab is the curvature 2-form for the Lorentz group connection ωab and βa is
a 2-form which together with ωab forms a 2-connection (ωab, βa) for the Poincaré
2-group. The 2-forms Bab and the one-forms ea, which can be identified with the
tetrads, enforce the vanishing of the 2-curvature

(Rab,∇βa) = (dωab + ωac ∧ ωc
b , dβa + ωab ∧ βb),

in the topological case, when λab = 0. The constraint

Bab = εabcde
c ∧ ed, (2)

transforms the topological gravity theory

Stop =
∫

M

(Bab ∧ Rab + ea ∧∇βa),
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into GR and it is the same constraint which is used in the case of spin foam models.1

However, in the Poincaré 2-group case the GR constraint can be written in a simpler2

way since the tetrads appear explicitely in the theory.3

A quantum gravity theory can be constructed by using the path integral based4

on the action (1), see [4]. This theory takes a form of a state-sum model for a colored5

dual 3-complex of a triangulation of the spacetime manifold. The set of colors6

consists of positive numbers for the edges, which satisfy the triangle inequalities,7

while the colors for the triangles and the tetrahedrons can be the irreps and the8

corresponding intertwiners for the Lorentz group or its SO(3) and SO(2) subgroups.9

This result agrees with the categorical structure of a state sum for a 2-group,10

since the labels for the edges can be interpreted as the labels for 2-group representa-11

tions, while the labels for the triangles can be interpreted as the corresponding inter-12

twiners. The labels for the tetrahedrons can be interpreted as the 2-intertwiners,13

and they arise because a 2-group representation category is a 2-category, and hence14

the 2-intertwiners correspond to 2-morphisms.15

In the Poincaré/Euclidean 2-group case there is a 2-Hilbert space representa-
tion 2-category, see [6, 7], such that the object (representation) labels are positive
numbers. The corresponding triangle intertwiners are SO(2) or U(1) irreps if the
triangles have non-zero areas. The 2-intertwiner labels for the tetrahedra are trivial,
so that one can construct a state sum as

Z =
∫
R̃E

+

E∏
ε=1

µ(Lε)dLε

∑
m∈ZF

F∏
∆=1

W∆(L, m)
V∏

σ=1

Wσ(L, m), (3)

where ε are the edges of a triangulation T (M) of the 4-manifold M , ∆ are the16

triangles of T (M) and σ are the 4-simplices of T (M). E is the number of edges, F is17

the number of triangles, V is the number of 4-simplices and R̃E
+ is the subset of RE

+18

whose elements satisfy the triangle inequalities associated with the triangulation19

T (M).20

The weights µε, W∆ and Wσ should be chosen such that the state sum Z resem-
bles a discretized path integral for GR. More precisely, a choice of the weights
should be such that it implements the GR constraint (2) and that the correspond-
ing state-sum model defines a quantum gravity theory whose classical limit is the
Regge action

SR =
F∑

∆=1

A∆(L)θ∆(L), (4)

where A∆ is the area of a triangle ∆ and θ∆ is the deficit angle. We will refer to (4)
as the length-Regge action in order to distinguish it from the area-Regge action

SAR =
F∑

∆=1

A∆θ∆(A), (5)

which can be naturally associated to a spin foam model.21
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3. State Sum with the GR Constraint1

The GR constraint (2) can take the following form in the discrete setting

γm∆ = A∆(L), (6)

where m∆ ∈ N is an SO(2) spin of a triangle ∆, A∆(L) is the area of a triangle
with edge lengths L1, L2 and L3 and γ is a constant, which is analogous to the
Barbero–Immirzi constant which appears in the case of spin foam models. In order
to have simpler formulas, we are going to take γ = 1. The function A(L) is given
by Heron’s formula

A(L) =
√

s(s − L1)(s − L2)(s − L3), (7)

where 2s = L1 + L2 + L3 is the triangle perimeter.2

In order to get physical lengths and areas, one has to make the rescaling L →3

L/l0 in (6), where l0 is a unit of length. It is natural to choose l0 to be the Planck4

length lP . Note that choosing l0 to be a multiple of lP is equivalent to choosing5

γ �= 1.6

The constraints (6) can be implemented in the state sum (3) by choosing the
triangle weights as

W∆ = δ(m∆ − A∆(L)). (8)

In order to insure that the Regge action will be the classical limit of the model, we
will choose

Wσ = exp

(
i
∑
∆∈σ

m∆θ
(σ)
∆ (L)

)
, (9)

where θ
(σ)
∆ (L) is the interior dihedral angle [4]. The reason for this choice is simple

to understand, since
V∏

σ=1

exp

(
i
∑
∆∈σ

m∆θ
(σ)
∆ (L)

)
=

V∏
σ=1

exp

(
i
∑
∆∈σ

A∆(L)θ(σ)
∆ (L)

)
,

due to the constraint m∆ = A∆(L), so that
V∏

σ=1

exp

(
i
∑
∆∈σ

A∆(L)θ(σ)
∆ (L)

)
= eiSR(L).

Hence the constraints (6) can reduce the spin-cube state sum to a path integral
for the Regge model. However, there are certain caveats in this simple reasoning,
which we will demonstrate by an exact analysis. Let us start from the state sum
with the weights (8) and (9)

Z =
∑

m∈NF

∫
R̃E

+

E∏
ε=1

µ(Lε)dLε

F∏
∆=1

δ(m∆ − A∆(L))
V∏

σ=1

exp

(
i
∑
∆∈σ

m∆θ
(σ)
∆ (L)

)
.

(10)
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The form of (10) suggests to integrate first the lengths, which will transform (10)
into a sum over the spins subject to the constraints

mf − Af (L) = 0, f = 1, 2, . . . , F. (11)

In order to solve these constraints, note that in a four-manifold triangulation we
have

F ≥ 4
3
E,

since F triangles have 3F edges, and each edge is shared by at least four triangles,
so that 3F ≥ 4E. Consequently

F > E,

so that we can solve the first E constraints of (11) as

Lε = lε(m1, . . . , mE), (12)

where ε = 1, 2, . . . , E, while the remaining F −E constraints become the Diofantine
equations

mk = ϕk(m1, . . . , mE), E + 1 ≤ k ≤ F, (13)

where ϕk(m) = Ak(l(m)). Hence m ∈ DF ⊂ NF . However, it is difficult to deter-1

mine the structure of DF and it may be the empty set.2

This problem can be solved by relaxing the constraints (13) as

mk = [ϕk(m1, . . . , mE)], E + 1 ≤ k ≤ F, (14)

where [x] is the integer part of a real number x. In this case, the constraints are
given by

me = Ae(L), 1 ≤ e ≤ E,

mk = [Ak(L)], E + 1 ≤ k ≤ F,
(15)

and the solution is Lε = lε(m′) where m′ ∈ NE and m′′ = [ϕ(m′)] ∈ NF−E. Since3

the functions lε(m′) have to be real, this means that m′ ∈ DE ⊂ NE , which is4

related to the fact that Lε have to satisfy the triangle inequalities.5

Let us now introduce the new weights in the spin-cube state sum, so that we
start from (3) with

F∏
∆=1

W∆(L, m) =
E∏

f=1

δ(mf − Af (L))
F∏

f=E+1

δ(mf − [Af (L)]) (16)

1343008-6
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and Wσ is given by (9). By integrating the L variables we obtain the following spin
foam model

Z =
∑

m∈DE

E∏
ε=1

µε(l(m))J(m1, . . . , mE)

× exp


i

E∑
f=1

mfθf (m) + i

F∑
f=E+1

[ϕf (m)]θf (m)


, (17)

where

J(m1, . . . , mE) =
∣∣∣∣ ∂(L1, . . . , LE)
∂(m1, . . . , mE)

∣∣∣∣
is the Jacobian for Lε = lε(m).1

Note that this is a spin foam model with a nonlocal weight

WE(m) =
E∏

ε=1

µε(l(m))J(m1, . . . , mE) (18)

and the state sum has a form of a path integral for an area-Regge model

Z =
∑

m∈DE

WE(m) exp(iS∗
AR(m)),

where

S∗
AR(m) =

E∑
f=1

mfθf (m) +
F∑

f=E+1

[ϕf (m)]θf (m).

This is an area-Regge action, with integer areas, where the edge-length constraints2

are imposed via (14).3

The finiteness and the effective action for the spin-foam model (17) can be4

studied by using the techniques of [14, 15, 17]. We will not do this here, since the5

analysis gets complicated due to the presence of the non-local weight (18).6

Note that one can define a new model by choosing µ(Lε) = 1, Wσ as in (9) and
a non-local weight for the triangles in the spin-cube state sum

W̃ (L, m) = J−1(m1, . . . , mE)
F∏

∆=1

W∆(L, m)
E∏

∆=1

m−p
∆ ,

where W∆ are given by (16). This choice of the weights gives a spin foam state sum
model with local weights for the triangles

Z̃ =
∑

m∈DE

E∏
f=1

m−p
f exp(iS∗

AR(m)). (19)

1343008-7
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The semiclassical effective action for the area-Regge spin foam model (19) can
be easilly calculated by using the results of [14, 15]. We obtain for m → ∞E

Γ(m) = S∗
AR(m) + p

E∑
f=1

ln mf +
1
2
Tr(log(S∗

AR)′′(m)) + O(m−2), (20)

where (S∗
AR)′′(m) is the hessian matrix for the function (S∗

AR)(m). Since

S∗
AR(m) = O(m), p

E∑
f=1

ln mf = O(ln m), Tr(log(S∗
AR)′′(m)) = O(m−1), (21)

where the notation f(m) = O(mr) means that

f(λm1, . . . , λmE) ≈ λrg(m, λ)

and f(m) = O(ln m) means

f(λm1, . . . , λmE) ≈ (ln λ)g(m, λ)

for λ → ∞ and g(m, λ) is a bounded function of λ. From (21), it follows that the1

classical limit of the effective action (20) will be the area-Regge action S∗
AR(m).2

However, the action S∗
AR(m) is dynamically equivalent to the length-Regge action3

SR(L) due to the constraints (14).4

As far as the convergence of the state sum (19) is concerned, it is easy to see5

that it is absolutely convergent for p > 1, while the convergence for p ≤ 1 case is a6

more complicated issue and will not be analyzed here.7

4. Edge-Length State Sum Models8

The spin foam model (17) appeared because we integrated the edge-lengths first in9

the spin cube state sum. This was a natural way to proceed, because of the delta-10

function weights (8) and the fact that the spins m are integers. A natural question11

to ask is it possible to implement the constraints such that the edge lengths remain12

as the independent variables.13

A clue comes from the relaxed constraints (15), so that let us consider the
following set of constraints

mf = [Af (L)], f = 1, 2, . . . , F. (22)

These constraints have solutions for any L ∈ R̃E
+, and if we take

Wf (L, m) = δ(mf − [Af (L)]),

with Wσ given by (9), then the summation over the spins m in (3) gives

Z =
∫
R̃E

+

E∏
ε=1

µε(L)dLε exp(iS̃R(L)), (23)

where

S̃R =
F∑

∆=1

[A∆(L)]θ∆(L).

1343008-8
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Hence the constraints (22) reduce the state sum to a path integral for a
continuous-length integer-area Regge model. The mesure µ can be chosen such
that Z is finite. For example

µ(Lε) = (1 + Lε)−p, (24)

will give an absolutely convergent partition function for p > 1, since

|Z| ≤
∫
R̃E

+

E∏
ε=1

(1 + Lε)−pdLε <

∫
RE

+

E∏
ε=1

(1 + Lε)−pdLε,

so that

|Z| <

(∫ +∞

0

dL

(1 + L)p

)E

. (25)

The integral in (25) is convergent for p > 1. More generally, µ can be chosen such1

that µ(0) is finite and µ(L) = O(L−p) where p ∈ R. However, the convergence of2

the state sum for p ≤ 1 case is a more complicated problem and we will not attempt3

to resolve it here.4

The effective action Γ(L) can be found as a solution of the following integro-
differential equation

eiΓ(L) =
∫
RE

+

E∏
ε=1

µ(Lε + lε)dlε exp

(
iS̃R(L + l) − i

E∑
ε=1

∂Γ
∂Lε

lε

)
, (26)

see [15]. Note that the quantum fluctuations lε do not satisfy the triangle inequali-5

ties so that the integration region is RE
+. This is a natural requirement, which is also6

reinforced by the fact that requiring the triangle inequalities for the quantum fluc-7

tuations would prevent obtaining closed-form results for the quantum corrections.8

In the case when the background lengths are large (Lε � 1) the equation (26)
can be solved perturbatively as

Γ(L) =
∑
n≥0

Γn(L) + const., (27)

where

Γ0(L) = S̃R(L) − i

E∑
ε=1

log µ(Lε),

while

Γn(L) = O(L−n+ν(n)), (28)

for n ≥ 1, where ν(n) = δn,1.9

The explicit form of the perturbative terms Γn(L) can be obtained by introduc-
ing a formal perturbative parameter ε such that

Γ(L, ε) =
∑
n≥0

εnΓn(L) + const.,

1343008-9
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where Γ(L, ε) is a solution of

eiΓ/ε =
∫
RE

+

E∏
ε=1

dlε exp

(
i

ε
Sµ(L + l) − i

ε

E∑
ε=1

∂Γ
∂Lε

lε

)
. (29)

Here

Sµ(L) = S̃R(L) − i

E∑
ε=1

log µ(Lε)

and the initial condition is Γ0 = Sµ.1

By substituting the Taylor expansions for S̃R(L + l) and log µ(L + l) into (29),
one obtains

Γ1(L) =
i

2
Tr(log Ŝ′′

R(L)), (30)

where

(Ŝ′′
R)εε′ = (S̃′′

R)εε′ − ip
δε,ε′

L2
ε

,

and we have taken that µ(L) ≈ L−p for large L.2

A perturbative solution of (26) of the type (27) exists because the coefficients
in the Taylor expansion

S̃R(L + l) = S̃R(L) + 〈S̃′
R(L), l〉 +

1
2
〈S̃′′

R(L)l, l〉+ · · · ,
satisfy

S̃
(n)
R (L) = O(L2−n), (31)

due to the fact that

S̃R(L) = SR(L) + δSR(L),

where

δSR = −
F∑

∆=1

{A∆(L)}θ∆(L),

and {x} = x − [x] is the decimal part of a real number x.3

The asymptotics (31) follows from the fact that SR(L) is a homogeneous func-4

tion of degree 2 and δSR(L) is a homogeneous function of degree zero, while a par-5

tial derivative of a homogeneous function is a homogeneous function of the degree6

smaller by one. The choice of µ(L) has to be such that it has the asymptotics7

µ(L) = O(L−p), (32)8

which is dictated by the requirement that the Regge action is the classical limit of9

the effective action and that the quantum corrections are small for large L, which10

will be shown in the next paragraph.11

Since S̃R(L) = O(L2) and log µ(L) = O(log L) due to (32), the terms in the
expansion (27) satisfiy

|Γn(L)| � |Γn+1(L)|,

1343008-10
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for n ≥ 0, as well as

|SR(L)| �
∣∣∣∣∣

E∑
ε=1

log µ(Lε)

∣∣∣∣∣� |δSR(L)|.

This implies that the classical limit of Γ is the Regge action SR, i.e.

Γ(L) ≈ SR(L)

for L → ∞.1

Note that the solution (27) is not a real function, while a physical Γ(L) has to
be a real function. The same problem occurs in Quantum Field Theory, where it is
solved by using the Wick rotation iS → −SE, where S is the action while SE is the
action in a Euclidean background metric. In our case the Wick rotation transforms
Eq. (26) into

e−Γ(L) =
∫
RE

+

E∏
ε=1

µ(Lε + lε)dlε exp

(
−S̃ER(L + l) +

E∑
ε=1

∂Γ
∂Lε

lε

)
, (33)

which clearly allows for real solutions. However, Eq. (33) will have perturbative2

solutions only if S̃ER(L) is a positive function, which is not the case. The reason3

that Eq. (26) has perturbative solutions, while the Wick rotated version (33) does4

not, comes from the fact that
∫
R

eiax2
dx, a ∈ R, is defined for any sign of a, while5 ∫

R
e−ax2

dx is only defined for a > 0.6

Hence we are going to solve perturbatively the original Eq. (26), and a real
effective action will be obtained by the following transformation

Γ → Re Γ + Im Γ, (34)

which was introduced in [14] in the case of spin foam models. The prescription (34)
then gives for a physical solution

Γ(L) = SR(L) +
E∑

ε=1

p ln Lε + δSR(L) +
1
2
Tr(log S′′

R(L)) + O(L−2). (35)

In order to derive (35) the crucial identity was∫
Rn

dnxei〈x,Ax〉+〈b,x〉 = (iπ)n/2(detA)−1/2e〈b,A
−1b〉/4,

which is a consequence of the Fresnel integrals, i.e.7 ∫ ∞

−∞
dxeiax2

=

√
iπ

a
.8

5. Conclusions9

By imposing the GR constraints (6) on the 2-group state sum strongly via the10

delta-function weight (8) we obtained a spin foam model where the spins m are11

solutions of the Diophantine equation (13). Since the structure of the solution set is
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unknown and difficult to analyze, we relaxed the GR constraints to a form (15) and1

obtained an area-Regge spin foam model with the geometric areas. The geometric2

areas appear because the spins m are constrained such that they correspond to an3

assignment of lengths to the edges of the triangulation. The corresponding state4

sum takes a form of a path integral for the area-Regge action with the edge-length5

constraints and a non-local weight for the triangles. We expect that the corre-6

sponding effective action will have the length-Regge action as its classical limit. It7

is possible to modify the weights in the spin-cube state sum such that one obtains8

a spin foam model with local triangle weights (19), and it is easy to show that this9

model has the length-Regge action as its classical limit.10

If the GR constraints are further relaxed, such that each triangle spin is equal11

to the integer part of the triangle area, then the space of solutions is given by all12

possible edge lengths for a given triangulation. The corresponding state sum is a13

path integral for the length-Regge action with integer areas. The effective action14

can be calculated in the semi-classical limit and the classical limit is the usual15

length-Regge action.16

Note that in the case of quantum Regge calculus, the path integral is given by17

the state sum (23) where the integer-area Regge action S̃R is replaced by the usual18

Regge action SR. Then the semiclassical expansion of the effective action is given19

by (35) but without the δSR term.20

Therefore, we have constructed examples of state sum models of quantum grav-
ity whose effective actions have classical limit which is the Regge action. By refining
the triangulation, the Regge action becomes the Einstein–Hilbert action, and there-
fore we have constructed state sum models whose effective actions have GR as the
classical limit. An important issue to study is how the classical limit of a spin-cube
model effective action is related to the usual definition of the classical limit

Im log Ψ(Lb) ≈ S0(Lb),

for Lb large, where Ψ(Lb) is a wave function for a 3-boundary b and S0(Lb) is21

a solution of the Hamilton–Jacobi equation in the Hamiltonian formulation of a22

spatialy discretized GR where a metric on b is replaced by the edge lengths Lb of a23

triangulation of b. The wave function Ψ(Lb) is given by the spin cube state sum for24

a 4-manifold whose boundary is b and the boundary edge lengths are given by Lb.25

Note that the semi-classical effective action is defined for any p, independently26

of whether Z is convergent or not. However, if we want to find a non-perturbative27

solution, then it is important that Z is convergent, and hence it is important to28

know what happens in p ≤ 1 cases. One way to determine the non-perturbative29

solutions is to use a computer. Note that the numerical techniques which have been30

developed in the case of Casual Dynamical Triangulations (CDT) models [18], may31

be useful for such a task, since these models are related to our state sum models.32

Namely, instead of fixing a triangulation and summing over various edge-length33

assignments, in the case of CDT models one sums over different triangulations with34

fixed edge lengths.35
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