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For the largest class of physical systems having a classical analog, a new rigorous,
but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is
given, in terms of a notion of regularized action function. As a consequence of the
study of the symmetries of this action, an associated Nœther theorem is obtained.
All the quantum symmetries resulting from the canonical quantization procedure
follow in this way, as well as a number of symmetries which are new even for the
case of the simplest systems. The method is based on the study of a corresponding
Lie algebra and an analytical continuation in the time parameter of the probabilistic
construction given in paper I of this work. Generically, the associated quantum first
integrals are time dependent and the probabilistic model provides a natural inter-
pretation of the new symmetries. Various examples illustrate the physical relevance
of our results. © 2006 American Institute of Physics. �DOI: 10.1063/1.2199087�

. INTRODUCTION

This paper is the continuation of the one, referred hereafter simply as paper I, whose subtitle
as the “Theorem of Nœther in Schrödinger’s Euclidean quantum mechanics.”1 There, a proba-
ilistic �i.e., “Euclidean”� generalization of Nœther’s theorem of classical mechanics was pre-
ented, for a class of Lagrangians quadratic in the velocities, and involving a special family of
ime-symmetric R3-valued diffusion processes. At the end of paper I, our physical motivation was
ndicated: after an appropriate analytic continuation in the time parameters, the main conclusion of
he construction was preserved as a theorem on quantum symmetries, in the Heisenberg picture. In
ther words, although the probabilistic content of the theorem of Nœther was destroyed by this
ontinuation in time, its geometrical one survived.

The purpose of this second paper is to describe in a detailed way the reason of this apparently
urprising conclusion. This will provide us with a new Lagrangian version of the quantum theory
f such a class of systems. The symmetries of the associated new concept of regularized action
unctional will be expressed as a quantum version of the theorem of Nœther. All the unusual
egularizations introduced on the quantum side will correspond to the ones given for free with the
nderlying diffusion process, whose probability measures make sense only in the Euclidean set-
ing. In point of fact, it will be shown that the corresponding symbolic “quantum diffusions” in
eal time have all the properties of the heuristic ones manipulated by Feynman in his famous path
ntegral method.2 In this sense, our indirect method is very much along the line of Feynman’s
pace–time approach. It will be shown that we obtain many more quantum symmetries in this way
han using the usual theorems on quantum symmetries, even for the simplest class of elementary
ntegrable systems. Those “new” quantum symmetries are the keys of basic relations with sto-
hastic analysis. A general argument of Lie group theory assures us, in fact, that all quantum
ymmetries arise in this way.
The organization of this work is as follows.
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Section II introduces the notions �implicit in Feyman’s approach� of �complex-valued� space–
ime observables associated with a family of regular quantum observables and of quantum deriva-
ives along a state. Although these quantum derivatives are not observables in the sense of Von
eumann, they constitute a key tool of our construction. Under the quantum expectation, such
ifferential operators behave like derivations.

Then, we define the concept of quantum conditional expectation in a state, given a space–time
oint. In spite of the fact that this concept shares a number of properties with its counterpart in
robability theory, we show why it is not a conditional expectation in the probabilistic sense. The
ssociated “quantum diffusions” are precisely the ones introduced by Feynman in time discretized
anner.

Section III is devoted to the definition of the regularized action function for this class of
ystems and its relations with quantum dynamics.

The study of the symmetries of this quantum action is the subject of Sec. IV. In particular, the
efinition of the invariance of the action corresponds to a natural regularization of the classical
otion. The symmetry group of the underlying Schrödinger equation is used in an essential way
ere, and the regular concept of constant observable of the motion is adapted to our calculus on
pace–time observable �or quantum calculus, for short�.

In Sec. V the construction is specialized to the case of Hamiltonians which are polynomials of
egrees �2 in the position and momentum observables. This is the case where all the calculations
re explicit. Although this class is supposed to be completely known, our method provides, even
or the most elementary systems, more symmetries than the traditional approach. For general
amiltonians the main results hold true; but no explicit basis of the symmetry algebra can be

ound, in general and, therefore, the method is more indirect.
Section VI is devoted to the analysis of the content of our Nœther theorem in a Riemannian

anifold.
In Sec. VII we come back to the relation of what we did with the ideas of Feynman and show

n what sense the content of the present paper is a natural counterpart of paper I, where stochastic
nalysis is involved in an essential way.

Finally, the last section is devoted to a short collection of explicit examples of quantum
ymmetries with some emphasis on those not directly accessible to regular methods. Of course, as
oon as we know it, the theorem of Nœther in quantum mechanics can be verified without any use
f our detour via probability theory and stochastic analysis. However, it is argued in favor of this
etour for the intuition it provides, in the same sense as Feynman’s path integral approach has
roved to be very useful for the discovery of many new aspects of quantum theory. A short Errata
or paper I will conclude the present work.

I. THE CONCEPT OF QUANTUM MECHANICAL CONDITIONAL EXPECTATION

Let H be a self-adjoint, lower bounded Hamiltonian operator in the Hilbert space H
L2�Rn ,dx� of square integrable complex-valued function over Rn. Consider the one-parameter,

trongly continuous groups of unitary operators Ut :H→H , t�R,

Ut = e−�i/��tH,

ith the reduced Planck constant �. Then for any � in the definition domain DH�H of H,

�t = Ut� , �2.1�

olves the Schrödinger equation with the initial condition �:

i �
��t

�t
= H�t,

�2.2�

�0 = � .
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Let consider a one-parameter family A�t� , t�R, of self-adjoint operators in H. Assume that

A�t��HDH and A�t�DH�DH, so that the commutators �A�t� ,H�=A�t�H−HA�t� are well defined
n DH. Let 0�T�� and define DT

A�t��DA�t� by DA�t�=�T��t�0DA�t+�t�. In particular we have
A�t��DA�t�. If A�t� is weakly differentiable on DA�t� with respect to the time parameter t
�0,T�,then we can compute

lim
�t↓0

��,
A�t + �t� − A�t�

�t
�� � 	t

Ȧ��,�� .

t exists for any ��H ,��DA�t�, where �· , · � denotes the scalar product in H, and is linear in the

econd vector. Provided that DȦ�t� is dense in H ,	t
Ȧ :H
DA�t�→C is a densely defined sesqui-

inear form.
Now let us define, for �t�H and �t�DA�t� , I�,��t�= ��t ,A�t��t�.
When �t�DA�t� and �t is the solution of �2.2� with �t�DA�t� ,T� t�0 and �t�0, we can

ompute the relative time increment of I�,��t� as follows:

I�,��t,�t� �
I�,��t + �t� − I�,��t�

�t

=
1

�t
���t+�t,A�t + �t��t+�t� − ��t,A�t + �t��t+�t�

+ ��t,A�t + �t��t+�t� − ��t,A�t��t+�t�

+ ��t,A�t��t+�t� − ��t,A�t��t�� .

If, in addition, �t=Ut� with �0���D�H� then the strong derivative �t
˙ of �t with respect to

exists and �t
˙ = �1/ i� �H�t. But, by assumption, H�t�DA�t�. This, inserted in the above relative

ncrement of I�,��t� gives, when �t↓0, using the strong differentiability of �t ,�t, the strong
ontinuity of A�t��t on DA�t�, the fact that �t+�t�DA�t� and that A�t� is weakly differentiable on
A�t�,

lim
�t↓0

I�,��t,�t� = ��̇t,A�t��t� + 	t
Ȧ��t,�t� + ��t,A�t��̇t� .

By �2.2�, the corresponding equation for �t and the further assumption DA�t��HDH, we see
hat the latter relation can be rewritten as

lim
�t↓0

I�,��t,�t� = � 1

i�
H�t,A�t��t� + 	t

Ȧ��t,�t� + ��t,
1

i�
A�t�H�t� .

Since A�t�DH�DH by assumption, and so A�t��t�DH, this reduces, by the self-adjointness of
, to

1

i�
��t,�A�t�,H��t� + �t

Ȧ��t,�t� =
d

dt
��t,A�t��t� , �2.3�

here we used the definitions of I�,��t ,�t�, I�,��t�, and �t
Ȧ��t ,�t�.

We shall denote by 	D��t ,�t� the sesquilinear form on left-hand side �lhs� of �2.3�. So

	D��t,�t� =
d

dt
��t,A�t��t� . �2.4�

We recall that for T� t�0, 	D��t, �t� is well defined if �t�DA�t� and A�t�DH�DH.
Definition II.1: Let � be in H and such that �t�DA�t�. The complex-valued space–time

A
bservable a�t
�x , t� associated with the family of quantum observable A�t� in the state �t is defined
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or all x�Rn , t�R ,s . t .�t�x��0, by

a�t

A �x,t� �
�A�t��t��x�

�t�x�
. �2.5�

We shall consider, for any x , t, versions of �t�x� jointly measurable in t�R, x�Rn, and
enote them again by �t�x�. For x , t such that �t�x�=0 we set a�t

A �x , t��0. Therefore, for any �t in
and �t in DA�t� we have

��t,A�t��t� = �
�Nt

��c
�̄tA�t��t dx + �

Nt
�

�̄tA�t��t dx = �
�Nt

�̇�c
�̄tA�t��t dx ,

here Nt
�= 	x�Rn 
�t�x�=0� , �Nt

��c=Rn−Nt
�.

Using �2.5�, it is clear that, by construction,

��t,A�t��t� =� �̄t�ta�t

A dx . �2.6�

ssumption on the zeroes of the wave function

We shall need that Nt
� has zero Lebesgue measure. Sufficient conditions for this are known in

erms of assumption on H. See Sec. V.
Using �2.3� and �2.4� and our assumption that Nt

� has zero Lebesgue measure, we get

	D��t,�t� =
1

i�
��t,�A�t�,H��t� + 	t

Ȧ��t,�t� =
1

i�
�

�Nt
��c

�̄t�t
1

�t
�A�t�,H��t dx + 	t

Ȧ/�t��t�̄t,�t� ,

�2.7�

here we have defined 	t
Ȧ/�t, for f / �̄t�H and g�DA�t�, by

	t
Ȧ/�t�f ,g� � lim

�t↓0
� f ,

1

�t
�A�t + �t� − A�t�

�t

g� .

Now suppose that, in the strong sense on DA�t�, there exist a linear operator �A�t� /�t such that

lim
�t↓0

A�t + �t� − A�t�
�t

�t =
�A

�t
�t��t, 0 � t � T .

hen, for ��H ,�t�DA�t�, using the definition of 	t
Ȧ��t ,�t�,

��t,
�A

�t
�t��t� = 	t

Ȧ��t,�t� .

lso, for any �t�DA�t�,

� �A

�t
�t� +

1

i�
�A�t�,H���t

s well defined �recall that we have assumed HDH�DA�t� and A�t�DH�DH�. According to the
efinition �2.5�, a�t

A .�t=A�t��t is also well defined. Therefore in the sense of the identification of

he corresponding Bochner integrals,
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�

�t
�a�t

A · �t� =
�A

�t
�t��t +

1

i�
A�t�H�t,

or any �t�DA�t� and Lebesgue a.e. t� �0,T� �recalling our assumption that DA�t��HDH�. From
his it follows that

� �

�t
−

1

i�
H��a�t

A · �t�

s well defined and coincides, for Lebesgue a.e. t, with

� �A

�t
+

1

i�
�A�t�,H���t.

ow for any x� �Nt
��c we defined Dta�t

A by

�Dta�t

A ��x� =
1

�t
� �

�t
−

1

i�
H��a�t

A · �t��x� . �2.8�

sing the relation above, we get first on �Nt
��c but then in the L2�Rn�-sense

Dta�t

A =
1

�t
� �A

�t
+

1

i�
�A�t�,H���t. �2.9�

rom this, for all �0=��DH we obtain

��t,�Dta�t

A ��t� = ��t,� �A

�t
+

1

i�
�A�t�,H���t� =

d

dt
��t,A�t��t� ,

here �2.7� and �2.9� have been used. All equalities hold first for Lebesgue a.e. t but can be
xtended to all t if both sides of the equalities are continuous in t.

In summary, we have proved the following:
Proposition II.2:
Let H be a self-adjoint operator in H=L2�Rn ,dx� and A�t� a one-parameter family of self-

djoint operators in H with A�t�DH�DH and DA�t��HDH. For ��DH, consider �t=e−�i/��tH�
nd assume that Nt

� has a zero Lebesgue measure. Suppose that �A�t� /�t exists in the strong sense
n DA�t�. Define Dta�t

A by equations �2.8� and �2.9�. Then, for any ��DH and �t�DA�t�,with �t

atisfying �2.2�, we have

d

dt
��t,A�t��t� = ��t,�Dta�t

A ��t� , �2.10�

or Lebesgue a.e. t�R. If both sides of �2.10� are continuous in t, then �2.10� holds for all t
R.

Corollary II.3:
If A�t� is a quantum constant of motion of the system with Hamiltonian H, defined on a dense

omain D�H, in the sense that

� �A

�t
�t� +

1

i�
�A�t�,H��X = 0 for any X � D ,

hen the space–time observable associated with A�t� satisfies

Dta�t

A = 0,

A
or all �t�D �t�.
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Proof: By �2.9� we have Dta�t

A = �1/�t�Ȧ�t��t=0, for

Ȧ�t� �
�A

�t
�t� +

1

i�
�A�t�,H� .

˙ �t� is a closable operator since A�t�, ��A /�t��t� and H are all symmetric, defined on a common
omain.

By approximation of �t�DA�t� through vectors in D, and since A�t� is a quantum constant of

otion, we see that Ȧ
¯ �t��t=0, where the overbar denotes the closure. Since �t is in the domain of

˙ �t�, the conclusion follows. �

Remarks:

1� If we call quantum space–time observable any operator-valued map �x , t�→g�x , t� measur-
able in the sense that �x , t�→ �
 ,g�x , t��� is measurable for 
�H ,��D a dense domain
and g�x , t� self-adjoint in H, we can define Dt, t�R, on the set of such observables g by

Dtg �
1

�t
� �

�t
−

1

i�
H��g�t� , �2.11�

whenever the right-hand side �rhs� makes sense �with �g�t��x���g�x , t��t��x��. Then, for g
=a�t

A , Dta�t

A coincides with �2.9�. If g�t�DH, �g /�t exists in the strong sense on DH and
D�g/�t�DH, then the rhs of �2.11� is well defined �for �t�DH�. However, we are going to
show that there is a more natural definition of Dt regarded as differential operator densely
defined in an associated Hilbert space.

2� Dt, acting on space–time functions a�t

A , for example, should not be confused with the familiar
Heisenberg derivative D acting on the family of self-adjoint operators A�t� and defined
heuristically by

DA�t� =
�A

�t
�t� +

1

i�
�A�t�,H� .

Indeed, according to �2.9�, the relation between these two derivatives is Dta�t

A

= �1/�t��DA�t��t�. In particular, Heisenberg’s derivative D does not depend on the state �t.
In order to avoid any confusion, from now on we shall call Dt the quantum derivative along
�t.

3� Consider two arbitrary observables A and H, time independent and with DA=DH=D, a
common dense domain in H, invariant under A and H. We say that A and H commute, and
write �A ,H�=0 whenever for any f , g bounded and Borel measurable one has f�A�g�H�
−g�H�f�A�=0.

A necessary and sufficient condition for this property is, for example, that

�ei��/��A,ei�t/��H� = 0 " �, t � R .

cf., for example, Ref. 3�. If A is essentially self-adjoint on a domain D, invariant under ei�t/��H,
t�R, then A and H commute if

A�t�� � ei�t/��HAe−i�t/��H� = A�, " � � D and t � R .
o it suffices indeed to show that

29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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d

dt
�
,ei�t/��HAe−i�t/��H�� =

d

dt
�
t,A�t�

=�
t,
1

i�
�A�t�,H��t�

=0

ith


t � e−i�t/��H
, Xt � e−i�t/��H�, and " �,
 in D = DH � DA,

n order to prove that A and H commute �in the sense of the above-mentioned sufficient condition�
nd therefore that A�t� is a constant of motion. According to the Corollary II.3, when this holds,
e have Dta�t

A =0.
Lemma II.4:
Let �t be the solution of the Schrödinger equation �2.2� with initial condition � in L2�Rn� and

et Nt
� be a zero Lebesgue measure set. Then the quantum derivative Dt along the solution �t of

he Schrödinger equation �2.2� with initial condition � is a densely defined differential operator in
2�Rn , 
�t�x�
2 dx�.

Proof: Let �t be the solution of the Schrödinger equation �2.2� with the initial condition �
L2�Rn ,dx��H and consider the weighted Hilbert space L2�Rn , 
�t�x�
2 dx�. Since, by assump-

ion, Nt
� has zero Lebesgue measure, the two Hilbert spaces are unitarily equivalent through the

ransformation

U�t
: L2�Rn, 
�t�x�
2 dx� → L2�Rn,dx� ,

g � g�t.

Let K be the space of R-indexed families of functions f = �f �t��t�R with each f �t� strongly
ontinuously differentiable from R into H, such that

�

�t
f �t� � lim

�t↓0

f �t+�t� − f �t�

�t
� H ,

here the limit is taken in the strong H sense. Let us define the partial differential operator

Q =
�

�t
−

1

i�
H

n the subset KH of K consisting of those �f �t��t�R such that the mapping x�Rn� f �t��x� belongs
o DH for all t�R. We can also define the Hilbert space W1

2�R ,H�, consisting of the functions
f = �f �t��t�R, with f �K such that f �t��x� , �� /�t�f �t��x��L2�R ,dt� for dx a.e., x�Rn. The operator iQ
s well defined on KH

0 �	f �t��KH , t� f �t��C0
1�R��. This operator is symmetric in W1

2�Rn ,H�, on a
ense domain KH

S �DS �S for “Schrödinger”�, independent of time.
Let Kt be the “tth copy” of L2�Rn ,dx� so that f �t��Kt for any t�R. Let us consider the image

nder U�t

−1 of Kt. U�t

−1Kt is made of all functions of the form f �t��x� /�t�x�, with f �t��Kt and
x , t��Nt

�.

U�t

−1 can be extended to an operator Ũ�t

−1 from K into L2�Rn , 
�t�x�
2 dx�, defined by

�Ũ�t

−1f �s���x� =
f �s��x�
�t�x�

, �x,t� � Nt
�, s � R .

2 n 2 ˜ −1 2 n 2 2 n
estricted to L �R , 
�t�x�
 dx� ,U�t
is unitary from L �R , 
�t�x�
 dx� to L �R ,dx�, since

29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp
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�Ũ�t

−1f �s��L2�Rn,
�t�x�
2 dx� = �f �s��L2�Rn,dx�, " s,t � R ,

nd its inverse is Ũ�t
f �s�=�t f

�s�.

We can look at the image of the operator Qt in K under Ũ�t

−1 as an operator Q̂t whose action

n elements of L2�Rn , 
�t�x�
2 dx� is given by Ũ�t

−1QtŨ�t
=Q̂t on D�L2�Rn , 
�t�x�
2 dx� ,D being

uch that Ũ�t
D�DQt. Since iQt= i� /�t− �1/ � �H is symmetric on the dense domain DS of

1
2�R ,H�, this means that iQt is symmetric on the dense domain Ũ�t

−1DS in L2�Rn
R ,dx dt�. On

his domain, Q̂t is given by

Q̂tŨ�t

−1f =
1

�t
� �

�t
−

1

i�
H� f ,

ith f = �f �t��t�R�DS.
DS contains, for example, the subset DS

0 consisting of all families f = �f �t��t�R such that
f �t��·� as well as �� /�t�f �t��·� are both in C0

��Rn� �if DH�C0
��Rn��.

Setting h= Ũ�t

−1f for f �DS
0 we see that

Q̂th =
1

�t
� �

�t
−

1

i�
H���th� .

omparing with �2.11�, this means that, on Ũ�t

−1DS
0 we have indeed

Q̂t = Dt. �2.12�

�

Remarks:

1� Suppose that H is the Hamiltonian for a unit mass and charged particle in an electromagnetic
field, i.e., H=−��2 /2���−�i / � �A�2+V on C0

��Rn� or

H = −
�2

2
� + i � A · � +

i�

2
� · A +

1

2
�A�2 + V , �2.13�

where A :Rn�Rn is the vector potential and V :Rn�R the scalar potential, both continuous,
A being C1, and such that H has a unique self-adjoint extension, also denoted by H �cf., for
example, Ref. 4 for sufficient conditions such that this holds�. In this case, using �2.11�, we
obtain explicitly a quantum derivative along �t �in the sense of Lemma II.4� given by

Dt =
�

�t
+ �− i �

��t

�t
− A� · �−

i�

2
� �2.14�

on the domain of functions of the form � ·DS, which is dense in L2�Rn , 
�t�x�
2 dx�. Accord-
ing to our Remark 1 after Corollary II.3, Dt is also defined on a larger set of functions in
L2�Rn , 
�t�x�
2 dx�. For example, denoting by q the function

Rn 
 R → Rn, " t, we have Dtq = i �
��t

�t
− A

�x,t� � x

which is well defined, provided

� �̄t�x�x�H�t��x�dx � � .
This is the case under weak restrictions on the vector and scalar potentials A and V.
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2� We shall also need the complex conjugate of the operator Dt, denoted by D̄t. On complex
space–time observables of the form a�t

A , one has, by definition,

D̄ta�̄t

A =
1

�̄t
� �

�t
+

1

i�
H���̄ta�̄t

A � .

Proceeding as before in connection with �2.12�, i.e., considering vectors h of the form Ũ�̄t

−1f ,
with f �DS

0, we have

D̄th =
1

�̄t
� �

�t
+

1

i�
H���̄th� . �2.15�

In particular, when the Hamiltonian H is of the form �2.13�, D̄t reduces on Ũ�̄t

−1DS
0 to the

differential operator

D̄t =
�

�t
+ �i �

��̄t

�̄t

− A� · � +
i�

2
� �2.16�

defined on the elements 	Ũ�̄t

−1DS
0�t�R of W1

2�Rn ,H�. These elements form a dense domain of
W1

2�Rn ,H�, as discussed in the proof of the Lemma II.4. Using the terminology introduced

there, D̄t will simply be called the quantum derivative along �̄t.
3� It follows clearly from �2.11� and �2.15� that

Dtg = D̄tḡ ,

where the lhs denotes the complex conjugate of Dtg.

Motivated by Born’s probabilistic interpretation of the wave function, let us introduce the
atural definition.

Definition II.5: Let f = �f �t��t�R, with f �t��·� in L1�Rn , 
�t�x�
2 dx� and f �t� measurable in t. The
uantum �absolute� expectation of f in the state �t solving �2.1�, denoted by �f��t

, is the integral

�f��t
=� f �t��x�
�t�x�
2 dx �2.17�

nd we shall refer to 
�t�x�
2 as the density �with respect to dx� of the quantum probability in the
tate �t.

The terminology chosen for Dt and D̄t is due to the crucial observation that, under this
uantum expectation, these differential operators behave like derivations.

Proposition II.6:

Let f = �f �t��t�R, g= �g�t��t�R be in the domains of the quantum derivatives Dt and D̄t and with
ompact support in the space variables. Then �f ·g��t

is differentiable with respect to the time
ariable and the following Leibniz rule holds:

d

dt
�f · g��t

= �Dtf · g + f · D̄tg��t
. �2.18�

n particular,

d

dt
�f��t

= �Dtf��t
= �D̄tf��t

. �2.19�

Corollary II.7:
If f , g have supports with respect to the time variable strictly contained in the interior of an

nterval �t0 , t1� for some t0 , t1�R, then Dt
+=−D̄t where + denotes the adjoint with respect to

2 n
�t�x�
 dx dt on R 
 �t0 , t1�.
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Proof: Integrating �2.18�, we obtain

�
t0

t1

�Dtf · g��t
dt = − �

t0

t1

�f · D̄tg��t
dt .

�

Proof of Proposition II.6: By definition, �d /dt��f ·g��t
denotes

lim
�t↓0

�f �t+�t�g�t+�t���t+�t
− �f �t�g�t���t

�t
.

The term under lim�t↓0 means explicitly

1

�t
�� f �t+�t�g�t+�t�
�t+�t�x�
2 dx −� f �t�g�t�
�t�x�
2 dx


=
1

�t
�� �f �t+�t� − f �t��g�t+�t�
�t+�t�x�
2 dx

+� f �t��g�t+�t� − g�t��
��x�t+�t
2 dx

+� f �t�g�t��
�t+�t�x�
2 − 
�t�x�
2�dx
 .

he first term on the rhs converges, when �t↓0, to �� ḟ �t�g�t���x� 
�t�x�
2 dx by the dominated
onvergence theorem and the hypothesis that f �t� is strongly differentiable in L2�Rn ,dx� �here we

enote �� /�t�f �t� by ḟ �t� for simplicity�. Similarly we see that the second term of the rhs converges
o �f �t�ġ�t� 
�t�x�
2 dx.

For the third term we use again the dominated convergence theorem and the fact that, in the
trong L2�Rn ,dx� sense,

d

dt

�t
2 =

d

dt
�̄t · �t = −

1

i�
H�̄t · �t + �̇̄t

1

i�
H�t,

here the Schrödinger equation has been used, together with the fact that �̇̄t ·H�t as well as
�̄t ·�t are in L1�Rn ,dx� and f �t� ,g�t� have compact support as functions of the space variable. In
ther words the rhs above becomes

� � ḟ �t�g�t� + f �t�ġ�t� + f �t�g�t�� 1

i�

H�t

�t
−

1

i�

H�̄t

�̄t
���x�
�t�x�
2 dx

=� �Dtf
�t� · g�t� + f �t�D̄tg

�t���x�
�t�x�
2 dx ,

here the definition of Dt , D̄t have been used together with the self-adjointness of H, in order to
implify the term involving H�f �t��t�.

The second part of the calculation follows from the first one by approaching in the
2�Rn , 
�t�x�
2 dx�-norm f �t�=1, respectively, g�t�=1 through C0

��Rn� functions. �

Remarks:

1� When the Hamiltonian H is of the explicit form �2.13�, the relation �2.18� can be given a

more illuminating form if we use exclusively one of the quantum derivatives,
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d

dt
�f · g��t

= ��Dtf� · g + f�Dtg���t
− i � ��f · �g��t

�2.20�

=��D̄tf� · g + f�D̄tg���t
+ i � ��f · �g��t

. �2.21�

Proof: This follows directly from Proposition II.6, using the explicit expressions �2.14� and

2.16� of Dt and D̄t available for the Hamiltonian �2.13�. �

�2� Relations like �2.20� and �2.21� hold, in fact, also without integration with respect to

�t�x�
2 dx.

Proposition II.8:
For f ,g in a dense domain of the form �t ·DS�L2�Rn , 
�t�x�
2 dx� (cf. Lemma II.4) and an

amiltonian of the form �2.13�, one has

Dt�f · g� = �Dtf� · g + f�Dtg� − i � �f · �g , �2.20��

D̄t�f · g� = �D̄tf� · g + f�D̄tg� + i � �f · �g , �2.21��

or any �t ,x� such that �t�x��0.
Proof: Equations �2.20� and �2.21� can be written, for any �t=Ut�, and any �t ,x� s.t.

�t ,x��0,�A�x , t� 
�t�x�
2 dx=0 with A�x , t�= D̄�f ·g�− �D̄tf�g− f�D̄tg�− i��f ·�g, and so equa-
ions �2.20�� and �2.21�� hold a.e. with respect to dx. Alternatively, one can use directly the
efinitions �2.14� and �2.16� to show that the conclusion holds. �

Equations �2.20�� and �2.21�� show that the quantum derivatives behave, in fact, like quantum
eformations of derivatives in the �commutative� algebra of families of functions f = �f �t��t�R with

f �t��C0�Rn�. To regard Dt and D̄t as quantum deformations of derivations will prove, later on, to
e a very natural interpretation.

Now we are going to introduce the quantum counterpart of the probabilistic concept of
onditional expectation given a space point x�Rn in the past time t�0.

Definition II.9:
Let g= �g������R be complex valued, measurable functions defined on Rn and such that g���

�·����·��L2�Rn ,dx� where, as before, ��=U��. For 0� t�� and �t ,x� such that �t�x��0 �or,

or short, �t ,x� “�-admissible”� let us define the quantum conditional expectation Mt,x
�̄ in the state

, given �t ,x� and evaluated at g��� by

Mt,x
�̄ �g���� = ��̄t�x��−1�U�−t�g����̄����x� . �2.22�

Let us first assume that the Hamiltonian H is time-independent and that the evolution group

�−t has an integral kernel, denoted by

k�x,� − t,q� = �e−�i/����−t�H��x,q�, x,q � Rn, � � t .

hen the definition �2.22� means

Mt,x
�̄ �g���� = ��̄t�x��−1� k�x,� − t,q�g����q��̄��q�dq , �2.22��

hich is well defined for any �-admissible �t ,x��R+
Rn. We shall denote by

p̂�t,x,�,dq� = ��̄t�x��−1k�x,� − t,q��̄��q�dq, t � �, x,q � Rn, �2.23�

he integral kernel associated with �2.22�� and refer to it as the forward quantum transition kernel

“forward” because the conditioning x is in the past t�� and also because the initial quantum
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robability density 
�t�x�
2 is propagated towards the future by p̂�. More precisely since, for �
t the kernel k�x ,�− t ,q� coincides with the retarded �or “casual”� propagator

k+�x,� − t,q� = ��� − t��e−�i/����−t�H��x,q� ,

where � is Heaviside’s distribution� i.e., the distribution solving

�− i �
�

��
+ H�k+�x,� − t,q� = − i � ��q − x���� − t� ,

q. �2.23� means that

p̂�t,x,�,dq� = ��̄t�x��−1k+�x,� − t,q��̄��q�dq . �2.23��

Let us observe that sufficient conditions for the existence of k and therefore p̂ as continuous
unctions in all the variable are known; cf., e.g., Refs. 5, 6, and 60.

We remark that when H is time dependent, Eq. �2.23� still holds with k replaced by the
ntegral kernel of the two-parameter family of unitary operators U�t ,��, t ,��R defining the
orresponding time evolution.

The main properties of the quantum conditional expectation of Definition 2.9 are expressed by
he following:

Proposition II.10:
For all �-admissible �t ,x��R
Rn and g= �g������R as in �2.22��, with �� t,

�1� the quantum mechanical conditional expectation is linear: if �i�C and gi= �gi
������R ,

i=1,2 as above,

Mt,x
�̄ ��1g1

��� + �2g2
���� = �1Mt,x

�̄ �g1
���� + �2Mt,x

�̄ �g2
����;

�2� Mt,x
�̄ ���=�, ��C;

�3� Mt,x
�̄ �g����=g�t��x�, �� t;

�4� �Mt
�̄�g�������

= �g������
, �� t;

�5� when Ms,x
�̄ �g1

�s�g2
�t��, s� t, is well defined, then

Ms,x
�̄ �g1

�s�g2
�t�� = g1

�s��x�Ms,x
�̄ �g2

�t�� .

Proof: This follows from direct computations using the definitions �2.17� and �2.22�. �

Remarks:

1� We shall also need, for the same class of g= �g������R as in Proposition II.10, and any

�-admissible �t ,x��R
Rn, the definition �2.22� with � replaced by �̄ and U�−t replaced by
U�−t, 0��� t, i.e.,

M�
t,x�g���� = ��t�x��−1�Ut−��g��������x� . �2.24�

The properties of M�
t,x are, of course, similar to the ones of Mt,x

�̄ .
Let us stress that, for the latter quantum conditional expectation in the state �, the condi-
tioning x is lying in the future of the time interval under consideration �i.e., t��; this justifies
our alteration of notation with respect to �2.22��. For this reason, we shall occasionally call
backward �respectively, forward� the conditional expectation �2.24� �respectively �2.22��
when a confusion is possible between these two concepts. When needed, we shall denote by
p�� ,dq , t ,x� the backward quantum transition kernel associated with �2.24�, i.e.,

−1
p��,dq,t,x� = ���q�k−�q,t − �,x�����x�� dq, � � t , �2.25�
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for any �t ,x� �-admissible. Here, we denote by k− the advanced propagator defined in terms
of the causal one by

k−�x1,s − u,x2� = k+�x2,u − s,x1� . �2.26�

2� Comparing the definitions �2.23�� and �2.25�, it is clear that the relation between the forward
and backward quantum transition kernels can be expressed as

p̂�t,x,s,y� = p�s,y,t,x�, s � t, x,y � Rn. �2.27�

Definition II.11:
Let f = �f �t��t�R, �g�s��s�R as in the definitions �2.22�� and �2.23�. The quantum �absolute�

xpectation of their product f �t� ·g�s� in the state �, for t�s, is defined by

�f �t�g�s��� = �Ms,·
�̄ �f �t�� · g�s���s

�2.28�

=�f �t�M�
t,·�g�s����t

, �2.28��

hen Ms,·
�̄ �f �t�� ·g�s��L2�
�s�x�
2 dx� and f �t�M�

t,·�g�s���L2�
�t�q�
2 dq�.
The consistency of this definition is verified by observing that equation �2.28� reduces, after

implification, to

� � �s�x�g�s��x�k�x,t − s,q�f �t��q��̄t�q�dq dx ,

hen the integral kernel �2.23�� exists �since t�s�. On the other hand, using the forward condi-
ional expectation of �2.28��, this absolute expectation in the state �t reduces to

� � �s�x�g�s��x�k−�x,t − s,q�f �t��q��̄t�q�dq dx ,

.e., to the same expression as before, by definition of the advanced propagator k− when t�s.
This duality with respect to the time parameter suggests to introduce the following two-

arameters family of operators Ps,t
* ,s� t associated with quantum conditional expectations:

Ps,t
* :L2�
�s�x�
2 dx� → L2�
�t�q�
2 dq�

�2.29�

g�s��·� �� g�s��x�p�s,dx,t,q� � M�
t,q�g�s�� ,

here the backward transition kernel �2.25� has been introduced and its “time reversed” family
Pt,s, s� t,

Pt,s:L
2�
�t�q�
2 dq� → L2�
�s�x�
2 dx� ,

�2.29��

f �t��·� �� f �t��q�p̂�s,x,t,dq� � Ms,x
�̄ �f �t�� ,

o that the equality between �2.28� and �2.28�� can be rewritten as

��Pt,sf
�t�� · g�s���s

= �f �t� · �Ps,t
* g�s����t

. �2.30�

The properties of the operators Ps,t
* �or Pt,s� for s� t are as follows:

a� Ps,t
* are linear operators; as a map from R+
R+ into densely defined, bounded operators

2 2 2 2 *
from L �
�s�x�
 dx� into L �
�t�q�
 dq�, �s , t�� Ps,t is continuous;
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b� �Ps,t
* g�s��L2�
�t�q�
2 dq�= �g�s��L2�
�s�x�
2 dx�;

c� Ps,t
* 1�s�=1�t� where 1�s� is the function identically 1 in L2�
�s�x�
2 dx� �with 1�t� the same in

L2�
�t�q�
2 dq�� and Pt,s1�t�=1�s�;
d� Ps,s

* �Id, the identity operator from L2�
�s�x�
2 dx� into L2�
�s�x�
2 dx�;
e� Pt,u

* · Ps,t
* = Ps,u

* , s� t�u;

f� Ps,t
* · Pt,s=1�t� and Pt,s · Ps,t

* =1�s�.

We may summarize the situation as follows:
Proposition II.12:
The two-parameters family of bounded operators Ps,t

* and Pt,s are dual from L2�
�s�x�
2 dx�
nto L2�
�t�q�
2 dq� in the sense that for any f �t��DPt,s

and g�s��DPs,t
* , the relation �2.30� holds.

oreover, the properties �a� to �f� are satisfied �where �a� to �e� have their natural counterparts
or Pt,s�.

The proof follows directly from the definitions �2.23�� and �2.25� of the forward and backward
uantum transition kernels.

Remarks:

1� Let f �s��·� be non-negative in L2�
�s�x�
2 dx�. Then, clearly Ps,t
* does not, in general, transform

f �s��·� into a non-negative element of L2�
�t�q�
2 dq� since the backward quantum transition
kernel p is not even real. In particular, p�s , · , t ,q� is not a measure, although it shares
manifestly a number of properties with probability measures.

2� The equality between �2.28� and �2.28�� can be rewritten infinitesimally using the quantum

derivatives Dt and D̄t. To do this, we need another property of these derivatives, which will
be the first result of the next section.

Let Ps,t
* and Pt,s a pair of 2-parameters family of operators satisfying the properties of Propo-

ition II.12 and p , p̄, respectively, their associated quantum transition kernels.
Definition II.13:
The two dual kernels define a quantum diffusion if "s� t ,x�Rn ,	�0, we have

1� p̂�s ,x , t ,S	�x�c�=o�t−s�, where S	�x�c is the complement of the sphere S	�x� of radius 	 and
center x.

2� There is a Cn-valued function B̂�x ,s� s.t.,

�
S	�x�

�q − x�p̂�s,x,t,dq� = B̂�x,s��t − s� + o�t − s� .

There is an n
n complex-valued function Ĉ�x ,s� s.t.

�
S	�x�

�q − x��q − x�Tp̂�s,x,t,dq� = Ĉ�x,s��t − s� + o�t − s� .

Ĉ will be called the quantum diffusion matrix and B̂ the �forward� drift of the quantum
diffusion.

3� There is a Cn-valued function B�x , t� s.t.

�
S	�x�

�q − x�p�s,dx,t,q� = B�q,t��t − s� + o�t − s� ,

and an n
n complex-valued function C�x ,s� s.t.

�
S �x�

�q − x��q − x�Tp�s,dx,t,q� = C�q,t��t − s� + o�t − s� .
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These properties are satisfied, e.g., for the kernels associated with the Hamiltonians �2.13�
ompare also Refs. 5 and 6. Indeed we have the following.

Proposition II.14:
Let H be of the form �2.13� and its associated kernel k be such that

lim
�s↓0

1

�s
� �q − x�R�q,x,�s�k�x,�s,q�dq = 0,

here R�q ,x ,�s�=0��q−x�2�+0��s�2 is a term in the Taylor expansion of the integrand of B̂�x ,s�
n the proof below. Let �q , t��Rn
R be �-admissible, where �t is a regular solution of the
chrödinger equation for H, admitting a Taylor expansion in powers of the space and time
ariables around �t�q�. Then a quantum diffusion corresponds to this solution, whose drifts and
iffusion matrix are, respectively, given by

B̂�q,t� = i �
��̄t

�̄t

�q� − A�q� ,

B�q,t� = − i �
��t

�t
�q� − A�q� , �2.31�

C�q,t� = Ĉ�q,t� = i � 1 ,

here 1 denotes the n
n identity matrix.
Proof: By �3� and �2.23�,

B̂�x,s� = lim
�s↓0

1

�s
�

s	�x�
�q − x�p̂�s,x,s + �s,q�dq

= lim
�s↓0

1

�s
�

s	�x�
�q − x���̄s�x��−1k�x,�s,q��̄s+�s�q�dq

= lim
�s↓0

1

�s
�

s	�x�
�q − x��1 +

��̄s

�̄s

�x��q − x� +
�̄
˙

s

�̄s

�x��s + O��q − x�2� + O��s2�
k�x,�s,q�dq .

We can easily verify the following properties of the integral kernel k�x ,� ,q� of the evolution
roup U� for the Hamiltonian �2.13�:

lim
�↓0

1

��1 − �
Rn

k�x,�,q�dq
 =
1

2
� · A�x� +

i

2�
�A�x��2 +

i

�
V�x� ,

lim
�↓0

1

�
�

Rn
�q − x�k�x,�,q�dq = A�x� ,

lim
�↓0

1

�
�

Rn
�q − x��q − x�Tk�x,�,q�dq = i � 1 .

sing these in the above rhs of the expression of B̂�x ,s� we obtain the expected result. The other
esults follow in a similar way. �

Proposition II.15:

Let ��t /�t and A�q� be given and continuous, for a Hamiltonian of the form �2.13�. Assume
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hat, in the representations �2.29� and �2.29��, the partial derivatives with respect to �t ,q� �respec-
ively �s ,x�� of the quantum conditional expectations are well defined and continuous, and can be
xchanged with the integrals. Then the quantum equation of Kolmogorov for the transition kernel

p̂ for s� t�R, x ,y�Rn, is given by

a�

−
� p̂

�s
�s,x,t,q� =

i�

2

�2p̂

�xj � xj �s,x,t,q� + �i �
� j�̄t

�̄t

�q� − Aj�q�� �

�xj p̂�s,x,t,q� �2.32�

�with the usual summation convention over the indices j�. Equivalently, regarded as a func-
tion of the past variable, p̂ is the fundamental solution of

D̄su = 0, for u � DD̄s
, �2.33�

with D̄s defined in �2.16�.
b� If all the involved partial derivatives exist and are continuous, p̂, regarded as a function of

the future variables, solves the quantum Fokker-Planck equation

� p̂

�t
�s,x,t,q� =

i�

2

�2p̂

�qj � qj �s,x,t,q� −
�

�qj��i �
� j�̄t

�̄t

�q� − Aj�q�� p̂�s,x,t,q�
 .

�2.34�

Similarly, the transition kernel p�s ,x , t ,q� solves
c�

−
�p

�s
�s,x,t,q� = −

i�

2

�2p

�xj � xj �s,x,t,q� + �− i �
� j�t

�t
�q� − Aj�q�� �

�xj p�s,x,t,q� .

�2.35�

So that p is the fundamental solution of

Dsv = 0 for v � DDs
, �2.36�

with Ds given by �2.14� and the following backward quantum Fokker-Planck equation holds:
d�

�p

�t
�s,x,t,y� = −

i�

2

�2p

�qj � qj �s,x,t,y� −
�

�qj��− i �
� j�t

�t
�q� − Aj�q��p�s,x,t,y�
 .

�2.37�

Proof: �a� Let us consider �2.29��

�Pt,sf
�t���x� =� f �t��q�p̂�s,x,t,dq� � u�s,x�, s � t ,

or any f �t� of compact support in the class used to define �2.22�. By hypothesis, we can differen-
iate with respect to �s ,x� under the integral sign. Using Proposition II.12 �c� and the properties of

he quantum transition kernels before Proposition II.14,
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u�s1,x� − u�s2,x� = �
S	�x�

�u�s2,q� − u�s2,x��p̂�s1,x,s2,q�dq + o�s2 − s1�

=�
S	�x�

��q − x� � u�s2,x�+ �q − x��q − x�T1

2
�2u�s2,x� + R� p̂ dq + o�s2 − s1�

=��u�s2,x��
S	�x�

�q − x�p̂�s1,x,s2,q�dq

+
1

2
�2u�s2,x��

S	�x�
�q − x��q − x�Tp̂�s1,x,s2,q� dq + R
�s2 − s1� + o�s2 − s1�

=�B̂�x,s2� � u�s2,x� +
1

2
Ĉ�s2,x��2u�s2,x� + R
�s2 − s1� + o�s2 − s1� ,

here B̂ and Ĉ have been computed in Proposition II.14 and R�R�s1 ,s2 ,q ,x� is a remainder
�
q−x
2�. Dividing by �s2−s1� and taking lims2↓s, lims1↑s one verifies that u�s ,x� solves the
uantum Fokker-Planck equation �2.34�.

According to �2.29��, the boundary condition of this equation is provided by

u�s,x� − f �s��x� = �
S	�x�

�f �t��q� − f �s��x��p̂�s,x,t,q�dq + o�t − s� .

o

lim
s↑t

u�s,x� � lim
s↑t

Ms,x
�̄ �f �t�� = f �t��x� . �2.33��

b� Let f �t� be of compact support, twice continuously differentiable in the class used to define
2.22�. As before, one verifies that

lim
s1↑s,s2↓s

1

s2 − s1
�� f �s2��q�p̂�s1,x,s2,q�dq − f �s��x�
 = B̂�x,s� � f �s��x� +

1

2
Ĉ�x,s��2f �s��x� .

�2.38�

ow let us write

�

�t
� f �t��q�p̂�s,x,t,q�dq = lim

s1↑t,s2↓t

1

s2 − s1
� �p̂�s,x,s2,q� − p̂�s,x,s1,q��f �t��q�dq

= lim
s1↑t,s2↓t

� p̂�s,x,s1,q�� 1

s2 − s1
� f �s2��z�p̂�s1,q,s2,z�dz − f �s2��q�
dq .

sing �2.38� this reduces to

� p̂�s,x,t,q��B̂�q,t� � f �t��q� +
1

2
Ĉ�q,t��2f �t��q�
dq .

fter integration by parts, we get

� �

�t
p̂�s,x,t,q� · f �t��q�dq =� dq f �t��q��− �q�p̂�s,x,t,q�B̂�q,t� −

1

2
�q�Ĉ�q,t�p̂�s,x,t,q���
 .

�

Introducing B̂, Ĉ of Proposition II.14, �2.34� holds since f �t� is arbitrary in the chosen dense

lass.
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Starting from �2.29�, one proves �c� and �d� in the same way.
Proposition II.16:
Under the same conditions as in Proposition II. 15, the density of the quantum probability in

he state �t ,��x , t� dx= 
�t�x�
2 dx, solves the continuity equation

��

�t
+ � j� i�

2
��t�

j�̄t − �̄t�
j�t� − Aj�
 = 0,

r

��

�t
+ � j� i�

2 �� j�̄t

�̄t

−
� j�t

�t
− Aj��
 = 0. �2.39�

Proof: It follows from the definition �2.23�� of the forward quantum transition kernel
p̂�s ,x , t ,q� that, if ��s��dx� denotes the quantum probability density at time s� t, then

��q,t� =� ��s��dx�p̂�s,x,t,q� . �2.40�

pplying the integration with respect to ��s��dx� to the quantum Fokker-Planck equation �2.34�
ne can see that ��q , t� satisfies the same equation, namely

��

�t
= − � j��i �

� j�̄t

�̄t

− A��
 +
i�

2
�� . �2.41�

ut the quantum probability density � is also propagated backward in time by the transition kernel
p solving �2.37�. This means that � solves as well

��

�t
= − � j��− i �

� j�t

�t
− A��
 −

i�

2
�� . �2.42�

t follows that � also solves the average of �2.41� and �2.42�, i.e., the usual quantum continuity
quation �2.39�, as claimed. �

II. THE QUANTUM ACTION FUNCTION AND ITS DYNAMICAL CONTENT

Let us show first why, in relation with the quantum conditional expectation in a given state, it

s legitimate to call D̄� a quantum �time� derivative. The next proposition can be regarded as a
uantum version of the fundamental theorem of calculus.

Proposition III.1: Let f = �f ������R be any function continuous in the time variable �, and in the

omain of D̄�. Then, for any t�u we have

Mt,x
�̄ ��

t

u

D̄� f ��� d�
 = Mt,x
�̄ �f �u�� − f �t��x� , �3.1�

here D̄� is defined by �2.15�, for � replaced by �.

Proof: By the definition �2.22� of Mt,x
�̄ , the lhs of �3.1�, for �t ,x� �-admissible, is

��̄t�x��−1��
t

u

U�−t�D̄� f ��� · �̄��d���x� .

¯
ntroducing the definition �2.15� of D�, this means

29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



B
o

S

B

T
t
d

"

f

N

t
r

t

s

062107-19 Theorem of Nœther in quantum mechanics J. Math. Phys. 47, 062107 �2006�

Downloaded 
��̄t�x��−1��
t

u

U�−t · � 1

�̄
� �

��
+

1

i�
H���̄� f ���� · �̄�
d���x�

= ��̄t�x��−1��
t

u

U�−t�� �

��
+

1

i�
H���̄� · f �����d�
�x� .

y an integration by parts with respect to d� and using the self-adjointness of H in L2�Rn ,dx� we
btain

���̄t�x��−1�− �
t

u � �

��
U�−t���̄� f ����d� + U�−t��̄� f �����

t

u

�x� +
1

i�
�

t

u

�HU�−t���̄� f ����d�� .

ince U�−t solves, for �� t, �� /���U�−t�= �1/ i� �HU�−t� for all � in DH, this reduces to

��̄t�x��−1U�−t��̄� f ����
tu = ��̄t�x��−1	Uu−t��̄uf �t���x� − �̄t�x�f �t��x�� .

y definition of the quantum conditional expectation, this is the rhs of Eq. �3.1�. �

Remark:
When U� admits an integral kernel k, as in Sec. II, then the lhs of Eq. �3.1� becomes

��̄t�x��−1�
t

T � k�x,� − t,q�D̄� f ����q��̄��q�dq d� .

he integration by parts with respect to d� mentioned in Proposition III.1 is done using the fact
hat k coincides with the retarded �or causal� distribution k+ solving, for �� t, in the sense of
istributions

�− i �
�

��
+ H�k+�x,� − t,q� = − i � ��q − x���� − t� .

�

Corollary III.2:
Let f = �f �t��t�R strongly continuously differentiable from R into L2�Rn ,dx�, with f �t��·��DH,

t. Assume that �Hf �t��t�R is continuous in the time variable t. Then

D̄t f �t��x� = lim
�t↓0

Mt,x
�̄ � f �t+�t��·� − f �t��x�

�t

 . �3.2�

Proof: By Proposition III.1 for u= t+�t and property �3� of Proposition II.10,

�tMt,x
�̄ �D̄t*f �t*�� = Mt,x

�̄ �f �t+�t��·� − f �t��x�� , �3.3�

or some t*� t. The lhs is

�t��̄t�x��−1Ut*−t�� �

�t* +
1

i�
H���̄t*f �t*��
 .

ow f �t*��DH and H��̄t*f �t*��= �̄t*Hf �t*�→t*→t�̄tHf �t�=H��̄t f
�t��. By Lemma II.4 �� /�t*�f �t*� is con-

inuous in time, thus limt*→t Mt,x
�̄ �D̄t*f �t*�� exists. After division by �t, the rhs limit of �3.3� is the

hs of �3.2�.
Corollary III.2 provides another proof of Proposition II.14 regarding the forward quantum

ransition kernel p̂.
Corollary III.3:
Let us assume that f = �f ������R is as before and, moreover, admits a Taylor expansion up to the

n
econd order around a �-admissible �t ,x��R
R . Then if the Hamiltonian H is of the form
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2.13�, equation �3.2� implies, for f �t��x�=x,

D̄tx = lim
�t↓0

Mt,x
�̄ � f �t+�t��·� − x

�t

 = i �

��̄t

�̄t

�x� − A�x� , �3.4�

nd

lim
�t↓0

Mt,x
�̄ � �f �t+�t��·� − x�2

�t

 = i � 1 , �3.5�

here �f �t+�t��·�−x�2 refers to the tensor product �f �t+�t��·�−x� � �f �t+�t��·�−x� and 1 is the n
n
dentity matrix.

In equations �3.4� and �3.5� the dummy variable �·� is the one denoted by q in �2.23��. All such
quantum moments” of order higher than 2 vanish.

Proof: Let us consider the Taylor expansion up to the second order,

Mt,x
�̄ �f �t+�t��q� − f �t��x�� = Mt,x

�̄ � � f

�t
�x,t� � t + �q − x� · �f�x,t�

+
1

2�
i,j

��qi − xi��qj − xj��
�2f

�xi � xj �x,t� + o��t�
 .

sing the linearity of the quantum conditional expectation, as well as the properties �3� and �5� of

roposition II.15, the conclusion follows from the comparison with the explicit form �2.16� of D̄t

with � replacing �� for the Hamiltonian �2.13�. �

In a similar way one proves the following.
Proposition III.4:
Let f = �f ������R be continuous in the time variable � and in the domain of D�. Then, "t�s,

M�
t,x��

s

t

D�f ���d�
 = f �t��x� − M�
t,x�f �s�� , �3.6�

here D� is defined by �2.11�, with � replaced by �.
Corollary III.5:
Under the same conditions as in Corollary III.2 we have

Dtf
�t��x� = lim

�t↓0
M�

t,x� f �t��x� − f �t−�t��·�
�t


 . �3.7�

f f admits a Taylor expansion up to the second order around a �-admissible �t ,x��R
Rn, with
as in �2.13� we have, for f �t��x�=x,

Dtx = lim
�t↓0

M�
t,x� x − f �t−�t��·�

�t

 = − i �

��t

�t
�x� − A�x� , �3.8�

nd

lim
�t↓0

M�
t,x� �x − f �t−�t��·��2

�t

 = i � 1 , �3.9�

here �·� is the dummy space variable of the definition �2.24�. As before, all such moments of
rder higher than 2 vanish.

As mentioned in Remark 2 after Proposition II.12, in the conditions of Propositions III.1 and
II.4, the definitions of the quantum �absolute� expectation of f �t� ·g�s� in the state �, t�s, given in

¯
2.28� and �2.28�� can be reexpressed in terms of the quantum derivatives Dt and Dt as follows.
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Corollary III.6:

�f �t�g�s��� =�Ms,·
�̄ ��

s

t

D̄�f ��� d�
 · g�s� + f �s�g�s��
�s

=� f �t�g�t� − f �t�M�
t,·��

s

t

D�g
��� d�
�

�t

, t � s .

This relation could define, actually, the proper concept of time-dependent Dirichlet form
elevant to quantum dynamics �or its Euclidean counterpart—cf. Ref. 7�.

Let us apply the Proposition III.1 to a f = �f ������R in the domain of D̄� which is, in fact, time
ndependent and of the form f ����·�=F�·� for some regular F. Then the lhs of �3.1� can be made
xplicit using �2.16� for the Hamiltonian �2.13�, as well as �3.4�,

Mt,x
�̄ �

t

T

D̄�F d� = Mt,x
�̄ �

t

T �D̄�q · �F +
i�

2
�F�d� = Mt,x

�̄ �F�·�� − F�x� . �3.10�

This relation clearly displays a quantum deformation of the fundamental theorem of calculus
or line integrals along C1 trajectories

�:�t,T� � R → Rn

� � q��� .

e shall henceforth denote the lhs of �3.10� by

Mt,x
�̄ �

t

T

� F � dq �3.11�

n order to remind ourselves that it coincides simply with the rhs of �3.10� but involves the
entioned deformation of the classical calculus.

Using �3.6� instead of �3.1�, we shall write as well, when s� t,

M�
t,x�

s

t

� F � dq = F�x� − M�
t,x�F�·�� , �3.11��

nderstanding now the lhs as

M�
t,x�

s

t �D�q · �F −
i�

2
�F�d� . �3.10��

More generally, for any A :Rn→Rn regular such that

Mt,x
�̄ �

t

T �D̄�q · A +
i�

2
� A�d� �3.12�

akes sense, we shall denote the expression �3.12� simply by

Mt,x
�̄ �

t

T

A � dq . �3.13�

e preserve, however, the boundary value in the time variable, in order to stress that �3.13� is only
short notation for �3.12� and that, in particular, no assumption on the existence of some under-
ying continuous trajectories � �q��� is made. The same remark applies to
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M�
t,x��

s

t

A � dq
 = M�
t,x�

s

t �D�q · A −
i�

2
� · A�d� , �3.13��

o, with the conventions �3.13� and �3.13��, this “quantum calculus” satisfies the rules of the
lassical �Riemann-Stieltjes� calculus.

Let us come back to the special Lagrangian system whose quantum Hamiltonian is �2.13�, i.e.,
unit mass and charge particle in an electromagnetic field. Its associated classical action SL with

nitial condition S�s� is defined by

SL�x,t� = S�s��q�s�� + �
�
�1

2

q̇
2 + q̇ · A − V�q��d� , �3.14�

or s� t. It is a real valued function of x�Rn, t�R and a functional along a bundle of solutions
in C2��s , t� ;Rn� :��q��� of the classical Lagrangian equations of motion, with the mixed

oundary conditions on �s , t�,

q̇�s� = � �S�s�

�q
�

q�s�
and q�t� = x .

t is well known �cf., e.g., Ref. 8� that for 
t−s
 small enough �and A and V as in �2.13��, SL is a
ell-defined function. Notice that the Lagrangian L of SL �i.e., the integrand of �3.14�� can be

ewritten as

�
�

L d� = �
�
�1

2

q̇
2 − V�q��d� + �

�

A dq . �3.15�

We are going to show that, using various regularizations provided by the quantum mechanical
onditional expectation, we can define a quantization of the above classical action functional SL

hich will prove to be natural later on.
For any �� ,q��-admissible, let us define

S�q,�� = − i � ln ���q� , �3.16�

here �� is a regular solution of the Schrödinger equation �2.2� with Hamiltonian �2.1�, such that
= �S������R is continuous in the domain of D�. �We may choose the principal determination of the

ogarithm in the definition �3.16�.�
According to �3.8�, we observe that

D� q = �S�q,�� − A�q� �3.17�

s an element of L2�Rn , 
���q�
2 dq� when �
���
2 dq�� as well as �A2�q� 
���q�
2 dq��. Using
he definition �2.14� for our situation, we compute

D�S�q,�� =
�S

��
+ �− i �

���

��

− A� · �S −
i�

2
�S =

1

2
�D� q�2 −

i�

2
� · A + A · D�q − V�q� ,

�3.18�

here the relation �3.16� and the fact �i solves the Schrödinger equation with H as in �2.13� have
een used. The rhs of �3.18� is interpreted as the Lagrangian L�D� q ,q� of our quantum system.
hen, by Proposition III.4,

M�
t,x��

s

t �1

2
�D�q�2 − V�q��d� + �

s

t �A · D�q −
i�

2
� · A�d�
 = S�x,t� − M�

t,x�S�s��·�� .
With the convention �3.13�, this means that we have defined a regularized action function by
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S�x,t� = M�
t,x�S�s��·�� + M�

t,x��
s

t �1

2
�D�q�2 − V�q��d�
 + M�

t,x��
s

t

A � dq
 , �3.19�

o be compared with the corresponding classical action �3.14� and �3.15�. The relation �3.19�
rovides us with an exact representation of the solution �t of the Schrödinger equation.

Theorem III.7:
Let �t be the solution of the Cauchy problem in L2�Rn ,dx� , t�s,

i �
��t

�t
= H�t,

�s�x� = e�i/��S�s��x� � DH, with S�s� such that S�s� = − i � ln �s�x� exists ,

or H=−��2 /2���−�i� �A�2+V, with A,V continuous as in Remark 1 after Lemma II.4. We also
ssume that �
����q�
2 dq�� and �A2 
���q�
2 dq� � , "��s. Then the following exact integral
epresentation of the solution �t holds:

�t�x� = exp� i

�
M�

t,x��
s

t �1

2
�D�q�2 − V�q��d� + �

s

t

A � dq + S�s��·�
� = e�i/��S�x,t�, �3.20�

�t ,x��-admissible, where S is the (complex-valued) solution of the quantum Hamilton Jacobi
quation on Rn
 �s , � �

�S

�t
+

1

2
��S − A�2 + V +

i�

2
� · A −

i�

2
�S = 0,

�3.21�
S�s��x� = − i � ln �s�x� .

Remark: The kinetic energy term in �3.20� �i.e., the term with V=0,A=0� involves the scalar
roduct of real vectors and not an Hermitian product. So, since D�q is a complex function, the
inetic energy term is, in general, a complex function, denoted here by �D�q�2.

Proof: When t=s the representation �3.20� holds trivially, according to the property �3� of
roposition II.10 of the quantum mechanical conditional expectation. When t�s, using the rela-

ion �3.17�, Eq. �3.18� means

�S

�t
+ ��S − A� · �S −

i�

2
�S =

1

2
��S − A�2 −

i�

2
� · A + A · ��S − A� − V .

fter simplification, this reduces to �3.21�. The integral representation �3.20� follows from the
efinition �3.16� and the relation �3.19�.

Remarks: We shall interpret �3.20� as a rigorous substitute for Feynman’s path integral rep-
esentation of the wave function �t.

2 Like this one, �3.20� is built in term of the Lagrangian of the
nderlying classical system. We are going to need this for our study of quantum symmetries.
owever, the mathematical status of �3.20� is quite distinct from Feynman’s heuristic �and, in

ome cases, rigorous9,10 sum over a path space, as it involves in an essential way the regulariza-
ions provided by the quantum conditional expectation and no underlying path space whatsoever
cf. Sec. VII�.

Corollary III.8:

Let �̄t be the solution of the boundary problem in L2�Rn ,dx� which is complex conjugate to the

ne of Theorem III.7,
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� − i �
��̄t

�t
= H�̄t, 0 � t � T,H as in Theorem III.7,

�̄T�x� = e�i/��S�T��x�.
�

hen the following representation holds under the same assumptions as Theorem III.7:

�̄t�x� = exp� i

�
M�t,x�

�̄ ��
t

T �1

2
�D̄�q�2 − V�q��d� + �

t

T

A � dq + S�T��·�
� = e�i/��Ŝ�x,t�,

�3.22�
here Ŝ solves the equation adjoint to �3.21� on Rm
 �−� ,T�,

−
� Ŝ

�t
+

1

2
�− �Ŝ − A�2 + V −

i�

2
� · A −

i�

2
�Ŝ = 0,

�3.23�
Ŝ�x,T� = Ŝ�T��x� = − i � ln �̄T�x� .

Proof: Starting from the logarithmic transformation of �3.22�, Eq. �2.16� shows that
¯

�q=−�Ŝ−A. Also D̄iŜ�q ,��=−�1/2��D̄�q�2+V�q�− D̄�q ·A− �i� /2��. A reduces to �3.23�. The
onclusion follows from the definition �3.10� and Proposition III.1. �

Notice the change of signs in the two Hamilton-Jacobi equation �3.21� and �3.23�. In the
euristic classical limit �=0, this is a well-known observation when the action is computed as a
unction of the future or past configurations �Ref. 11�. This limit could be computed rigorously
sing, e.g., the methods of Ref. 12.

Also notice that, up to the convention �3.10� and �3.11� and the fact that the classical norm 
q̇
2
f �3.14� is replaced by the square of a complex-valued quantum derivative, the Lagrangian of
3.22� is indeed the classical one, but evaluated on regularized variables.

The regularized action �3.19� used in our integral representation �3.20� satisfies the following
dditivity property along an admissible family of states �� , s���u.

Corollary III.9:
For any t� �s ,u� and under the conditions of Theorem III.7,

M�
u,z��

s

t

L d� + A � dq
 + M�
u,z��

t

u

L d� + A � dq
 = M�
u,z��

s

t

L d� + A � dq
 .

Proof: According to the property �c� of the operator P* defined by �2.29�, using �3.19�, and for
�s� like in the definition �3.21�,

Pt,u
* · Ps,t

* �S�s�� = M�
u,z�M�

t,·�S�s���

=M�
u,z�S�t��·� − M�

t,·��
s

t

Ld� + A � dq


=M�

u,z�S�t��·�� − M�
u,z�M�

t,·��
s

t

Ld� + A � dq


=S�u��z� − M�

u,z��
t

u

L d� + A � dq
 − M�
u,z��

s

t

L d� + A � dq

=Ps,u

* �S�s��

=S�u��z� − M�
u,z��

s

u

L d� + A � dq
 .
�
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Let us see what the fundamental gauge invariance of quantum mechanics means in the context
f our integral representation �3.20�.

Proposition III.10:
Let �t be the solution of the Cauchy problem of Theorem III.7. Let �= ��������R be real

ontinuous and differentiable in the domain of D�. Then the gauge transformation

A � A� = A + �� ,

�3.24�

V � V� = V −
��

��

eaves the form of the Schrödinger equation invariant provided that the integral representation
3.20� becomes

�t�x� � �t��x� = exp� i

�
M�

t,x��
s

t �1

2
�D�q�2 − V�q��d� + �

s

t

A � dq+ �
s

t

D��
���d� + �S�s� + ��s���·�
� .

�3.25�

Proof: According to �2.14�, for �t replaced by 
t, and �3.11�,

M�
t,x��

s

t

D��
��� d�
 = M�

t,x��
s

t

� � � dq + �
s

t ��

��
d�
 = ��t��x� − M�

t,x���t��·�� . �3.26�

sing the representation of �t�x� in Theorem III.7 and �3.26�, the representation �3.25� reduces to

�t��x� = �t�x�e�i/��X�t��x�. �3.27�

hen the starting wave function �t is subject to the phase transformation �3.27�, it is well know
hat the Schrödinger equation is form invariant under the gauge transformation �3.24�. And indeed,
3.25� coincides with the representation �3.20� of �t��x� in term of V� and A� defined by �3.24�.

�

We shall need, later on, a dynamical characterization of what plays, for our regularized action
3.19�, the role of the critical points of the classical action �3.15�, regarded as a functional of the

2 path � :��q���.
Proposition III.11:
For the action �3.19�, the regularized equations of motion and conservation of energy in the

dmissible state �� solving the Schrödinger equation �2.2� with Hamiltonian H �2.13� in
2�R3 ,dq� are, respectively, when D�q is in the domain of D�,

D�D�q = − rot A Ù D�Z −
i�

2
rot�rot A� − �V , �3.28�

hen Ù denotes the exterior product in Rn and

D�h��

H �q,�� =
�h��

H

��
, �3.29�

here h��

H is the space–time observable associated by �2.5� with the Hamiltonian �2.13�, i.e.,

h��

H =
1

2
p2 − p · A +

i�

2
� · �A − p� +

1

2
A2 + V

or p the vector pj =−i� �� j�� /���=Bj −Aj , j=1,2 ,3 and B�q ,��=D�q. In �3.29�, �h��

H /�� denotes
he space–time observable associated with �H /��, i.e., here, �V /��. In particular, for V time

H H
ndependent, h��
is a quantum martingale along ��, i.e., D�h��

=0.
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Proof: According to �2.14�, we have D�q=−i� ���� /���−A. If D�q is in the domain of D� we
an compute D�D�q. Using the fact that �� solves the Schrödinger equation of Theorem III.7 one
ets, after some simplification, the rhs of �3.28�. Alternatively, taking the gradient � of the
uantum Hamilton-Jacobi equation �3.21� and, by �3.17�,

D�q = �S�q,�� − A�q� � B�q,�� ,

here we introduced the notation B=−i� ���� /���−A for the space–time observable a��

P−A asso-
iated by �2.5� with the quantum velocity observable P−A�Q� �P being the momentum and Q the
osition observable�. We verify that the resulting equation coincides with �3.28�. The additional
quantum” deformation on the rhs of �3.28� comes from the vector identity in R3 :��� ·A�
rot�rot A�+�A for the potential vector A. Besides this extra term, the rhs of �3.28� is the quantum

egularization of the classical Lorentz force acting, at the singular limit �=0, on the system with
amiltonian �2.13� �cf. remark below�. Concerning �3.29�, the space–time energy function h

ssociated with the Hamiltonian �2.13� is, by �2.5�, �H�� /��� for ���DH. After substitution in
2.11� and using the fact that i� ���� /���=H��, we obtain the conclusion. �

Remark: Using D̄�, as defined in �3.2�, instead of D�, we would find that

D̄�D̄�q = D̄�q Ù rot A +
i�

2
rot�rot A� − �V , �3.30�

nstead of �3.28�. In particular, only the average of D�D�q and D̄�D̄�q can provide a regularization
f the classical Lorentz force free of quantum corrections but involving, instead, the symmetric

elocity �1/2��D�q+ D̄�q�, namely

1
2 �D�D�q + D̄�D̄�q� = 1

2 �D�q + D̄�q� Ù rot A − �V . �3.31�

Let us stress that our quantum calculus over space–time observables is perfectly commutative.
or example, −rot AÙD�q=D�qÙ rot A in contrast with its operator counterpart,

− rot A Ù �P − A� = �P − A� Ù rot A + i � rot�rot A� , �3.32�

ut the quantum correction associated with the noncommutativity of the operators reappears now

n �3.28� as a consequence of the definition �2.14� of D�. Also we remark that the use of both D̄�

nd D� is really necessary for our quantum calculus. For example, as expressed by �3.32�,
rot AÙq and qÙ rot A differ after canonical quantization and, in fact, they do not even define,

ndividually, symmetric operators. So our symmetrization leading to �3.31� is the space–time
ounterpart of the canonical �symmetrized� Lorentz equations of motion13

d2Q

d�2 =
1

2
��P − A� Ù rot A − rot A Ù �P − A�� − �V , �3.33�

or Q and P, respectively, the position and momentum quantum observables in the sense of
eisenberg.

V. SYMMETRIES OF THE QUANTUM ACTION FUNCTION AND THE THEOREM
F NŒTHER

Let Rn be the configuration manifold of the classical system associated with the quantum
amiltonian H of �2.2�. The corresponding Lagrangian is

L:Rn 
 Rn 
 R → R

�4.1�
˙ ˙
�q,q,t� � L�q,q,t� .
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Let us consider a one-parameter local Lie group of transformations of the extended configu-
ation space Rn
R, of the form

U�:Rn 
 R → Rn 
 R

�q,t� � �Q,�� ,

here

Q = q + �X�q,t� + o���; � = t + �T�t� + o���; �4.2�

he generators X :Rn
R→Rn and T :R→R are real analytical functions and � is a real parameter.
Let us write the action function �3.19� associated with the special Hamiltonian H of Theorem

II.7. With an appropriate choice of the gauge ��t��x� �Proposition III.10�, we can get rid of the
nitial condition in the representation �3.19� for, say, s= t0 and t= t1,

SL�x,t1� = M�
t1,x��

t0

t1 �1

2
�Dt q�2 − V�q��dt + �

t0

t1

A � dq
 �4.3�

here � denotes the underlying solution of the associated Cauchy problem of Theorem III.7.
In analogy with the concept of invariance of the action involved in the classical Theorem of

œther14 we want to use the change of space–time variables, defined by �4.2�, for defining the
nvariance of our regularized action �4.3�.

Let us assume the existence of a further, complex analytic, generator ��t� in the domain of D�,
alled the “divergence.”

Definition IV.1: The action �4.3� is divergence invariant under the one-parameter group of
ransformations �4.2� if, any interval �t0 , t1�, we have

M�
t1,x1��

t0

t1 �1

2
�D�q�2 − V�q��dt + �

t0

t1

A � dq
 + �M�
t1,x1��

t0

t1

D��
�t�dt


= M
�̃

�1,Q1��
�0

�1 �1

2
�D�Q�2 − V�Q��d� + �

�0

�1

A � dQ
 + o��� , �4.4�

here �̃ denotes the associated solution of the same Cauchy problem as in Theorem III.7 but for
he new space–time variables �Q ,�� resulting from the transformation U�.

We remark that the definition �4.2� implies, up to the first order in �,

q + �X�q,t� = Q , �4.5�

here Q refers to the new configuration at the new time � �we do not denote Q by Q� only to avoid
he suggestion that paths ��Q� are involved�.

Clearly, the invariance condition �4.4� can only hold under severe restrictions on the genera-

ions X ,T, and �. These conditions are easier to find in terms of the two solutions � and �̃ of the
nderlying Cauchy problem.

First, Proposition III.10 suggests that the addition in �4.4� of the divergence term Dt�
�t� to the

iven Lagrangian should correspond to a relation similar to �3.27� between � and �̃. So, to the first
rder in the parameter �, it should hold that

�̃ = � − �
i

�
� · � . �4.6�

Now let us consider �4.2� and �4.6� together with the linear generator of the associated local
roup of transformations of the Schrödinger equation �2.2� �as before, Einstein’s sum convention

s used�
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L = Xj �

�xj + T
�

�t
+

i

�
�, j = 1, . . . ,n .

For further purposes, it will be more natural to consider, instead, the formal symmetry
enerator

N̂�t� = − i � L = Xj�x,t��− i �
�

�xj� − T�t��i �
�

�t
� + ��x,t� , �4.7�

s well as the Schrödinger partial differential operator �cf. �2.2��, already used in Lemma II.4 �up
o a factor i�,

Q = i
�

�t
−

1

�
H . �4.8�

Definition IV.2: N̂�t� is a symmetry operator for the Schrödinger equation �2.2� provided

�N̂�t�,Q� = �N̂�x,t�Q , �4.9�

here the complex analytic function �N̂�x , t� will depend, in general, on N̂�t� and is s.t.

N̂QDQ�L2�Rn
R ,dx dt�.
The domain DQ of Q has been defined in Lemma II.4. For the time being, we assume that

Q�QDQ and N̂�t�DQ�DQ so that the lhs commutator of �4.9� is well defined on DQ. We shall
e more specific about DN̂ in Sec. V.

In Refs. 15 and 67 it was shown that, in the algebraic sense, we have the following:

A symmetry operator N̂�t� generates a group, mapping solutions of the Schrödinger equation

2.2� into other solutions. The collection g of such symmetry operators N̂�t� is a complex Lie

lgebra, i.e., if N̂1 , N̂2�g, then �1� �1N̂1+�2N̂2�g , "�1, �2�C, �2� �N̂1 , N̂2��g.
The formal symmetry group G�exp g of Eq. �2.2� results from products of formal exponen-

ials of symmetry operators; it is a local Lie group.
Let us stress that, in order to make this claim analytical rigorous, we have first to define the

ymmetrization N�t� of such a formal generator N̂�t� then a self-adjoint extension N̂�t� and finally

he unitary group generated by N̂�t�. This will be done in Sec. V.
For a given Hamiltonian H, the property �4.9� implies the explicit conditions on the coeffi-

ients X ,T, and � that we are looking for.
Proposition IV.3:

N̂�t� is a symmetry operator for the Schrödinger equation in L2�Rn�, with Hamiltonian �2.13�
where V may depend on time), if and only if

1�

dT

dt
� jk =

�Xk

�xj +
�Xj

�xk , 1 � j, k � n ,

2�

�Xj

�t
= −

��

�xj −
1

2

dT

dt
Aj − Xk�Aj

�xk ,

3�

��

�t
− Aj ��

�xj −
i�

2
�� = Xj �

�xj� i�

2
� · A +

1

2

A
2 + V� +

dT

dt
� i�

2
� · A +

1

2

A
2 + V� + T

�V

�t
,

here Einstein’s sum convention has been used, �. A denotes the divergence of the vector field A

29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



a

f

I

r

I

t
c

t
i

O

f

B
t
v
f

H
a
�
W

c

d

062107-29 Theorem of Nœther in quantum mechanics J. Math. Phys. 47, 062107 �2006�

Downloaded 
nd n is the dimension of the configuration space of the underlying classical system.

Remark: If we allow space–dependent time transformation �= t+�T�q , t�+o��� in �4.2� then,

or the associated N̂�t� to be a symmetry operator it is necessary, in addition to �1�, �2�, �3�, that

�T

�xj = 0, j = 1, . . . ,n .

n other words, our initial choice of T=T�t� was not a restriction.
Proof: Using the definitions �4.7� and �4.8�, the conclusion follows from �4.9�, after a labo-

ious computation. One verifies that the coefficient �N̂�x , t� in �4.9� is

�N̂�x,t� = −
dT

dt
�t� . �4.10�

n particular �N̂ is not space dependent. �

Notice that the “determining equations” �1�–�4� �Ref. 16� for the coefficients Xj ,T, and � of
he symmetry operator �4.7� are linear. We shall come back later to discuss their integrability
onditions.

According to Theorem III.7, when N̂ is a symmetry operator for �2.2� with Hamiltonian H of

he form �2.13�, �̃ solves the same Schrödinger equation but in the new variables �Q ,��. Therefore
t follows from �3.16� and �3.19� that

− i � ln �̃�Q,�� = M
�̃

�,Q��
�0

� �1

2
�DsQ�2 − V�Q��ds + �

�0

�

A � dQ
 .

n the other hand, taken together, the relations �4.2� and �4.6� defining the Lie groups of trans-

ormation around the identity �=0 mean that � and �̃ are related, up to the first order in �, by

��q,t�exp�−
i�

�
��q,t�� = �̃�q + �X�q,t�,t + �T�t�� .

y considering �−i� ln� of this equality for the principal determination of ln, taking into account
he relation �4.5�, valid for � small enough, as well as the representations �3.20� and �3.26�, we
erify that the invariance condition �4.4� of the action �4.3� is satisfied. In other words, the
ollowing proposition holds.

Proposition IV.4:
When the determining equations �1�–�3� are satisfied for the Schrödinger equation with

amiltonian �2.13� i.e., when the operator N̂ of �4.7� is a symmetry operator for this equation, the
ssociated action �4.3� is divergence invariant under the Lie groups of transformations defined by
4.2� and �4.6�.

e shall need:
Proposition IV.5:
Let us denote by L=L�Dtq ,q , t� the Lagrangian involved in �3.18�–�3.20�. Then, a necessary

ondition for the divergence invariance �4.4� of the action is that

�L

�t
T +

�L

�qj X
j +

�L

��Dtq� j�DtX
j − �Dtq� j dT

dt
� + L

dT

dt
= − Dt� . �4.11�

Proof: For the Hamiltonian of Theorem III.7 we have, according to the definition �2.14� of Dt,
2 n 2
ensely defined in L �R , 
�t�x�
 dx�,
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DtX
j =

�Xj

�t
+ Bk�Xj

�qk −
i�

2
�Xj , �4.12�

here

Bk = − i �
�k�t

�t
− Ak, k = 1, . . . ,n .

y �1� and �2� of Proposition IV.3,

DtX
j = −

��

�qj −
1

2

dT

dt
Aj − Xk�Aj

�qk + Bk�Xj

�qk .

n particular,

DtX
j = − �Dtq� j dT

dt
= i �

� j�t

�t
·

1

2

dT

dt
−

��

�qj − Xk�Aj

�qk +
1

2
Bk� �Xj

�qk −
�Xk

�qj � .

After substitution of L�Dtq ,q , t�= �1/2��Dtq�2+A ·Dtq− �i� /2�� ·A−V in �4.11� we verify
hat this relation reduces to the condition �3� of Proposition IV.3 and therefore to one of the

onditions ensuring that the generator N̂ of �4.7� is a symmetry operator for the Schrödinger
quation of Theorem III.7. �

Proposition IV.6:

When the generator N̂�t� is a symmetry operator for the Schrödinger equation �2.2� s.t.

�t , N̂�t��t� is well defined and the assumption for �4.9� is satisfied, then we have "�t�DN̂�t�,

d

dt
��t,N̂�t��t� = 0.

Proof: The equation �2.3� for A�t�= N̂�t� holds even when the members of the one-parameter

amily of operators N̂�t� are not self-adjoint as long as H is, and if the N̂�t� are densely defined and

uch that ��t , N̂�t��t� makes sense.
Then, for any �t�DN̂�t�, using �2.3� for �t=�t,

d

dt
��t,N̂�t��t� =� �̄t� �N̂�t�

�t
+

i

�
�H,N̂�t����t dx

=− i� �̄t	Q�N̂�t��t� − N̂�t�Q�t�dx ,

here the operator −iQ= ��� /�t�− �1/ i� �H� of Lemma II.4 has been introduced.

On the other hand, it follows from the definition �4.9� that when N̂ is a symmetry operator for

2.2� then Q�t=0ÞQ�N̂�t��t�=0. So the conclusion follows. �

Let us prove a stronger version of Proposition IV.6 �without expectation� in terms of space–
ime observables.

Theorem IV.7 (Theorem of Nœther):
When N̂�t� is a symmetry operator for the Schrödinger equation �2.2� with Hamiltonian

2.13�, and when the action �4.3� is divergence invariant under the Lie group of transformations

enerated by N̂�t�, the associated space–time observable n�t

N̂ in the state �t satisfies Dtn�t

N̂ =0, for

ll �t-admissible elements in DN̂�t�. In this case we shall say that n�t

N̂ is a quantum martingale for
his Schrödinger equation.

N̂
Proof: According to the definition �4.7�, writing n instead of n�t
for simplicity, we have
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Dtn�x,t� = Dt�Xjpj − Th + ���x,t� , �4.13�

here the space–time functions associated with N̂, the momentum observable Pj and the Hamil-
onian observable H of �2.13� have been introduced.

Using the relation �4.12� and Proposition II.8, the derivative of the scalar product in �4.13� can
e written as

Dt�Xjpj� = �DtX
j�pj + Xj�Dtpj� − i �

�Xj

�xk

�pj

�xk , �4.14�

here we notice the quantum deformation of Leibniz rule. Since pj =−i� �� j�t /�t�, �pj /�xk is
ymmetric in j and k, so

Dt�Xjpj� = �DtX
j�pj + Xj�Dtpj� − i �

1

2
� �Xk

�xj +
�Xj

�xj � �pj

�xk

=�DtX
j�pj + Xj�Dtpj� −

�2

2

dT

dt
���t

�t
− ���t

�t
�2� ,

ince, by �1� of Proposition IV.3,

�Xk

�xj +
�Xj

�xk =
dT

dt
� jk. �4.15�

n the other hand, coming back to �4.13�, we have

h = −
�2

2

��t

�t
+ i �

��

�
· A +

i�

2
� · A +

1

2

A
2 + V . �4.16�

sing �2.11� it is easy to verify �cf. also Proposition III.11� that

Dth =
�V

�t
. �4.17�

e have already found, in Proposition IV.5, that

DtX
j = �Dtq�idT

dt
+ i �

� j�t

�t
·

1

2

dT

dt
−

��

�xj − Xk�Aj

�xk .

lso, by �3� of Proposition IV.3,

Dt� = � ��

�t
− Aj ��

�xj −
i�

2
��� − i �

� j�t

�t

��

�xj

=Xj �

�xj� i�

2
� · A +

1

2

A
2 + V� +

dT

dt
� i�

2
� · A +

1

2

A
2 + V�+ T

�V

�t
− i �

� j�t

�t

��

�xj .

y �3.28�, we also have, since pj = �Dtq� j +Aj,

Dtpj = �Dtq Ù rot A� j −
i�

2
rot�rot A� j − � jV + DtAj ,

here

DtAj = �− i �
��t

�t
· ��Aj − �A · ��Aj −

i�

2
�Aj .
fter substitution of all this in
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Dtn = �DtX
j�pj + Xj�Dtpj� −

�2

2
���t

�t
− ���t

�t
�2
 − hDtT − Dth · T + Dt� ,

e obtain, indeed, zero. �

Let us come back to the explicit definition �4.7� of a symmetry operator N̂�t� for the
chrödinger equation �2.2�. Introducing the definitions of the momentum and energy quantum
bservables P and H �in Heisenberg’s picture� we observe that

N̂�t� = XjPj − TH + � , �4.18�

here the coefficients Xj, T, and � solve the partial differential equations of Proposition IV.3.
Let us denote by Q�t� the time �Heisenberg� evolution of the position observable under an

amiltonian H of the form �2.13�. Then we define the following symmetrization of N̂�t�:

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� , �4.19�

here � denotes Jordan’s multiplication of operators, i.e., C �B= �1/2��CB+BC�. Then the phase �
hould be redefined by

�̂ = � +
i�

2
� · X . �4.20�

Proceeding heuristically, without worrying about domains �cf. Sec. V for precise definitions�,
e see that by the Corollary II.3 and Theorem IV.7, n�t

N̂ satisfies

Dtn�t

N̂ =
1

�t
� �N̂

�t
+

1

i�
�N̂,H���t = 0, �4.21�

r, equivalently, for n�t

N . So we can also verify, using the definition �4.19� of N�t�, the following
eisenberg equations of motion for the Hamiltonian �2.13�:

dQ

dt
= P − A�Q� ,

dP

dt
= �P,H� =

1

2
	�P − A� Ù rot A − rot A Ù �P − A�� − �V +

1

i�
�A,H� , �4.22�

dH

dt
=

�H

�t
,

nd the equations �1�, �2�, and �3� of Proposition IV.3, that N�t� is indeed a constant of motion, i.e.,
atisfies

�N�t�
�t

+
1

i�
�N�t�,H� = 0. �4.23�

o we have heuristically checked that the family of operators N�t� defined by �4.19� in terms of
ny solution 	Xj ,T ,�s� of the system of determining equations of Proposition IV.3 are constants of
otion of the system with Hamiltonian H �2.13�, associated with the Lie groups of space–time

ransformations generated by N̂�t�.
From now on, we shall refer to N�t� as above as a Nœtherian operator. We must now prove

hat any Nœtherian operator is indeed a respectable quantum observable, in the sense of Von

eumann.
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. STUDY OF THE NŒTHERIAN OPERATORS

. Quadratic Hamiltonians

We shall start from the special class of Hamiltonian observables used in Theorem III.7, i.e., of
he form

H�Q,P,t� = 1
2 �P − A�Q��2 + V�Q,t� on C0

��Rn� �5.1�

ut where, in addition, H is a real-valued polynomial of degree �2 in Q and P, which may be time
ependent.

Let us denote by Hc the classical observable �or symbol� on the phase space R2n
R to which
�HW is associated by the Weyl calculus17 of pseudodifferential operators. The set of quadratic

nhomogeneous polynomials in q , p on R2n, denoted by IQ�2n�, constitutes a Lie algebra under the
lassical Poisson bracket of observables

	Fc,Gc� = �
j=1

n
�Fc

�qj

�Gc

�pj
−

�Fc

�pj

�Gc

�qj . �5.2�

Since the algebra generated under �5.2� by IQ�2n� and any additional polynomial of order �2
s the set of all polynomials, IQ�2n� will be maximal for our purpose.

Let us consider a smooth family of initial conditions ���DH�L2�Rn ,dx� ,��R, for the
chrödinger equation of a quadratic Hamiltonian �5.1�, such that �0=�. The infinitesimal genera-

or N of the associated one-parameter group in DH is defined formally by

N� =� d

d�
���

�=0
. �5.3�

Using the notation �4.7� for the symmetry operator N̂�t� of this Schrödinger equation, we
onsider the family of transformations N of the initial conditions � such that, under the quantum
volution generated by the quadratic Hamiltonian H,

�N��t�x� = N̂�t��t�x� , �5.4�

here, as before, �t denotes the solution of the above-mentioned Cauchy problem of Schrödinger
ith initial condition ��DH.

On the other hand, the �“Weyl”� quantization �−i / � �FW�Q , P� of any observable F�q , p�
IQ�2n� provides a linear map between Lie algebras, preserving the Lie bracket operation, i.e., a

epresentation of such quadratic polynomials by skew-symmetric operators, such that Dirac’s
orrespondence holds,

�FW�Q,P�,GW�Q,P�� =
i

�
	Fc,Gc�W�Q,P� �5.5�

or Q and P the quantum position and momentum observables, respectively. We consider first the
implest quadratic Hamiltonian �5.1�, i.e., the free case A=V=0. This will prove to be sufficient
or any quadratic case �cf. Proposition V.4�.

Proposition V.1:
The above (faithful) representation of IQ�2n� can be exponentiated to a representation of a

ie group, called the inhomogeneous (or extended) metaplectic group and denoted iMp�n�, which
s the semidirect product of Mp�n�, the (“metaplectic”) group generated by the quadratic observ-
bles and Wn, the Heisenberg group generated by the linear and constant observables. In par-
icular, any generator N satisfying �5.4� belongs to the inhomogeneous metaplectic algebra,
enoted by imp�n�.
Proof: Let us denote by k0�q , t ,x� the propagator of the free Schrödinger equation �2.2� �i.e.,
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ith H=H0 in �5.1�, where A=V=0�. Using the definition �4.7� of N̂�t�, the rhs of Eq. �5.4� can be
ritten as

�
Rn

��q��Xj�x,t��− i �
�k0

�xj � − T�t�i �
�k0

�t
+ ��x,t�k0��q,t,x�dq

=�
Rn
�i � Xj�x,t�

���q�
�qj + T�t�

�2

2

�2��q�
��qj�2 + ��x,t��k0�q,t,x�dq ,

here the space translation invariance of k0 has been used. Taking limt↓0, this provides the
ollowing explicit form of N defined on C0

��Rn� by �5.4�:

N = − Xj�Q,0�Pj − 1
2T�0�Pj

2 + ��Q,0� . �5.6�

�

Clearly, the maximal Lie algebra generated by such infinitesimal operators is a subalgebra,
enoted by Gs�n�, of the above-mentioned Weyl quantization of IQ�2n�.

Equivalently, each Xj�x ,0� can be an inhomogeneous polynomial of degree 1, T�0� is a
onstant and ��x ,0� an inhomogeneous polynomial of degree 2. Taking into account the restric-
ions imposed by �5.4� and the special form of our free Schrödinger equation, one computes that
he dimension of this �“symmetry”� Lie algebra Gs�n� of skew-symmetric operators is �n /2��n
3�+4= l.

Here is a basis of Gs�n�, for j ,k=1,2 , . . . ,n:

Bs�n� = �i,iqk, �
�

�qk ,i�
k

�qk�2,i
�2

2 �
k

�2

��qk�2�,� � �
k

qk �

�qk +
�

2
n, � �qj �

�qk − qk �

�qj�� .

�5.7�

We shall denote by N j , j=1,2 , . . . , �n /2��n+3�+4� l, the skew-Hermitian operators of Bs�n�
n L2�Rn�. A necessary condition for exponentiating this representation of the Lie algebra Gs�n� is
hat all the generators N j should be essentially skew-adjoint on a common domain in the Hilbert
paces. We shall use the following general result of Nelson18 �cf. also Ref. 19�:

Let G be a simply connected Lie group with an �-dimensional Lie algebra G, and a given
epresentation of G by unbounded skew-Hermitian operators N j , j=1, . . . ,�, on a Hilbert space H.
hen this representation of G arises by differentiation of a unique unitary representation of G if

here is dense set vectors � in the domain of any product N j1
, . . . ,N jm

and such that

�N j1
¯ N jm

��H
m!

� CKm, �5.8�

m�N and "ji� 	1, . . . , � �, for C ,K two positive constants. Such a ��H is called “analytic for
N j� j=1

� .”
In our case we have the following.
Lemma V.2:
The finite linear combinations of the Hermite functions on Rn (i.e., the products of one-

imensional Hermite functions) are analytic vectors for any products N j1
. . .N jm

of the generators
isted in the basis �5.7� of Gs�n�.

Proof: Since the set of finite linear combinations of Hermite functions is dense in L2�Rn�, one
eeds only to show that each Hermite function is an analytic vector for any N j1¯N jm. Instead of
he standard basic 	i , iqk , �� /�qk� ,k=1, . . . ,n, used in �5.7� for the Heisenberg algebra �of con-
tant and linear observables in q and p�, consider the linear combinations called creation and

nnihilation operators:
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�i,Ak �
1
�2

�qk + �
�

�qk�, Ak
+ �

1
�2

�qk − �
�

�qk�� . �5.9�

xpressing the Hermite function in terms of Ak
+, one shows that those functions are analytical

ectors for qk and −i� �� /�qk� �see, e.g., Ref. 4, p. 204�. On the other hand, the operators of Bs�n�
uadratic in q and p are generated by all possible double products of creation and annihilation
perators and it is known that the Hermite functions are analytic vectors as well for such quadratic
bservables �Ref. 19, p. 190�. �

So there is indeed a unique representation of a Lie group Gs�n� whose infinitesimal version �or
ifferential� is the symmetry algebra Gs�n�. The representation is included in the so-called ex-
ended metaplectic representation19 which is the semidirect product of the n�2n+1�-dimensional

etaplectic group Mp�n�, generated by all quadratic observables, and the �2n+1�-dimensional
eisenberg group Wn generated by the constant and liner observable.

In particular, let us consider matrices D in the symplectic Lie algebra Sp�2n�, i.e., of the form

D = �WT Z

Y − W
� , �5.10�

here Y and Z are n
n real matrices of the form Y =�1 ,Z=�1, with � ,� two real constants, 1 the

n identity matrix, and W is a n
n real matrix of the form

W =�
� − W21 − W31 . . . . . . − Wn1

W21 � − W32 . . . . . . − Wn2

W32 W32 � . . . . . . − Wn3

� � �
� � − Wnn−1

Wn1 Wn2 . . . . . . Wnn−1 �

� �5.11�

or � a constant. Then we use the faithful representation of Sp�2n� by skew-Hermitian quadratic
perators associated with the names of Segal, Shale, and Weil,20

D � − iPD
W�Q,P� � �

i�2

2

�2

�qk
2 − � qkWjk

�

�qj −
�

2
n� + �

i

2
qk

2, �5.12�

hich is the infinitesimal version of the representation of some elements M� of the symplectic
roups Sp�2n� by unitary groups U� ,��R, on L2�Rn�,

M� = e�D � U� = e�PD
W�Q,P�.

On the classical side, each M� is a one-parameter group of linear difeomorphisms of the
lassical phase space R2n, whose associated quadratic Hamiltonian vector field vD is defined by

vD�Fc� =
d

d�
Fc�M��q,p��
�=0 = �WTq + �p��qFc + ��q − Wp��pFc
 = �pPD

c · �qFc − �qPD
c · �pFc

= 	Fc,PD
c � �5.13�

n any Fc in the Schwartz space of smooth and rapidly decreasing functions, which are C� vectors
or the metaplectic representation. Equation �5.13� holds since the classical observable PD

c in

Q�2n� associated with D�Sp�2n� is
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PD
c �q,p� =

�

2
p2 + qWp −

�

2
q2. �5.14�

otice that the only additional constant term in the representation �5.12� with respect to �5.14� is
ue to the Weyl �Jordan� symmetrization of the classical qWp term in �5.14�.

The relation D�Sp�2n��vD preserves the respective Lie parentheses, i.e., is a Lie algebra
omomorphism. As mentioned before, the Heisenberg algebra Wn adds to the previous picture the
epresentation of the linear observable on R2n,

ap − bq + c � − i � ak
�

�qk
− bkq

k + c , �5.15�

here a ,b�Rn and c�R, so that, finally, the classical quadratic observable

PD
c �q,p� =

�

2
p2 + qWp −

�

2
q2 + ap − bq + c �5.16�

f Hamiltonian vector field vP associated with the �affine� equation of Hamilton,

�q̇

ṗ
� = � �pPc

− �qPc � = �WT �1

�1 − W
��q

p
� + �a

b
� ,

s quantized, according to Weyl, by

PD
W�Q,P� = −

�

2
�2 �2

�qk
2 − i � qkWjk

�

�qj
−

�

2
qk

2 − i � ak
�

�qk
− bkq

k + �c −
i�

2
n�� �5.17�

with the usual convention of summing over repeated indices�. We can now be more specific about
he comments at the beginning of this section: The Lie algebra IQ�2n� associated with the semi-
irect product of the metaplectic group Mp�n� and the Heisenberg group Wn is isomorphic to the
lgebra of all polynomial observables of degree �2 on R2n equipped with the Poisson bracket
5.2� and the representation of the classical observables is Weyl quantization procedure.

Let us observe that some subgroups of Sp�2n� have, under this representation, explicit integral
ormulations. We will not need them here. See Ref. 19 for some particular cases.

In particular, let us consider D= �0 1

0 0 ��Sp�2n�, i.e., the case �=1,�=0,W=0 in �5.14�. So

he associated classical observable reduces to our free Hamiltonian

PA
c �q,p� = 1

2 p2 � H0�p� ,

nd its Weyl quantization is, of course,

PA
W�Q,P� = −

i

�
H0�P�

r iN�2n+3� in term of the �2n+3�th element of the basis Bs�n� �5.7�. Denoting the associated
arameter � by t, let us consider

Ut = etPA
W

= e−�i/��tH0, t � R,

.e., the strongly continuous unitary group evolution in L2�Rn�, solving the free Schrödinger
quation, and defined on DH0

. This groups acts on the symmetry algebra Gs�n� generated by the

ymmetry operators N j , j=1, ¯ �n /2��n+3�+4 via the adjoint representation
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N � UtNUt � N̂�t� . �5.18�

ince this representation sends analytic vectors into analytic vectors, the domains are preserved,

N=DN̂�t�. In other words, although H0 and the operators −iN are unbounded symmetric opera-
ors, they are essentially self-adjoint and defined on a common dense invariant domain of analytic
ectors in L2�Rn�. By a variant of the commutator theorem,4 the Baker-Campbell-Hausdorff for-
ula still holds. The image of the basis Bs�n� under �5.18� is, therefore, computed as follows:

�i,iqk − t �
�

�qk , �
�

�qk ,i�
k

�qk�2 − 2t��
k

qk �
�

�qk +
�

2
n� − 2t2 �

�

�t
, �

�

�t
,

� �
k

qk �

�qk +
�

2
n + 2t �

�

�t
, � �qj �

�qk − qk �

�qj�� , �5.19�

here j ,k=1, ¯ ,n. We shall denote by N̂j�t� , j=1, ¯ ,�, any of those �= �n /2��n+3��4 result-
ng skew-symmetric operators.

Theorem V.3:
For fixed t�R, let us define by UtV0

j ���U−t=Vt
j���, ��R, a one-parameter family of opera-

ors in L2�Rn�, with V0
j ���=e��/��Nj and Vt

j���=e��/��N̂j�t�, N̂j�t� being any of the skew-symmetric
perators of �5.19�, image under the adjoint representation �5.18� of the one-parameter group of
perators V0

j ���, j=1, . . . ,�, generated by the basis �5.7� of the symmetry algebra Gs�n�. Then, the

t
j��� are symmetry operators of the free, Schrödinger equation i� �� /�t��t=H0�t in L2�Rn�, i.e.,

hey map any regular solution �t of this equation in another solution of the same equation �̃t

Vt
j����t, and the iN̂j�t� are constant observables of the free quantum system.
Proof: Let us consider �t=Ut�, ��DH for Ut=e−�i/��tH0, t�R. Then Vt

j����t�e−�i/��tH0��,
�R, is, by construction, solution of the same free Schrödinger equation, for the one-parameter

amily of initial conditions in DH�L2�Rn� defined by ���e��/��Nj�.
It follows from the definition of Vt

j��� and the computation of �� /���
�=0 in the relation above
hat

�N j��t�x� = N̂j�t��t�x�, j = 1, . . . ,
n

2
�n + 3� + 4, �5.20�

s the infinitesimal version of this relation, as required by the definition �5.4� of a symmetry
perator.

Now by �5.18�, Ut N jUt
−1= N̂j�t�. Proceeding like in Sec. II �or observing, as before, that the

aker-Campbell-Hausdorff formula holds here�, we see that

d

dt
��t,N̂j�t��t� = ��t,� �N̂j

�t
+

1

i�
�N̂j,H0���t� .

ut, by definition �4.9� of a symmetry operator N̂�t� for the free Schrödinger operator

Q�t � �i
�

�t
−

1

�
H0��t, �5.21�

e had

�N̂�t�,Q��t = �NQ�t = 0 �5.22�

or any �t�DN̂�t� �in the notations of Proposition II.2�. In particular, for any N̂j�t� as before we

nd, by Proposition IV.6,
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d

dt
��t,N̂j�t��t� = 0, �5.23�

.e., that iN̂j�t� is a constant observable of the free Schrödinger equation. �

Any quadratic Hamiltonian H of the form �5.1� can, in fact, be handled in the same way since
he infinitesimal generators of Bs�n� �cf. �5.7�� form a vector space. Let us see how, in the special
ase n=2 for the simplicity of the illustration �and notations�.

Proposition V.4:
All Schrödinger equations in L2�R2�, of the form

i �
�

�t
�t = �−

�2

2
� + c1��x1�2 + �x2�2� + c2�− i �

�

�x1� + c3�− i �
�

�x2� + c4�− i � �x1 �

�x2 − x2 �

�x1��
+ c5x1 + c6x2 + c7�− i � �x1 �

�x1 + x2 �

�x2�� + c8
�t, �5.24�

ith ck�R such that the Hamiltonian is essentially self-adjoint on C0
��R2�, have isomorphic

ymmetry algebras and are equivalent to the free equation

i �
�

�t
�t = H0�t, �5.25�

here H0 is the two-dimensional free Hamiltonian

H0 = −
�2

2
� �2

��x1�2 +
�2

��x2�2� .

Proof: Given in Ref. 15. �

In order to illustrate this isomorphism, let us consider the following linear combination of
lements of Gs�2� �using the notations of �5.7��:

N = − N6 +
1

2
N7 = i�−

�2

2
� +

1

2
��x1�2 + �x2�2�� � iH0s. �5.26�

H0s is the Hamiltonian observable of the isotropic two-dimensional harmonic oscillator. So,
or any ��DH0s

,

�t�x� = �e−�i/��tH0s���x� �5.27�

olves in L2�R2�

i �
��t

�t
= H0s�t,

�0�x� = ��x� .

�5.28�

ow pick any N j, j=1, . . . ,9 in Bs�2�, the basis �5.7� of the free symmetry algebra Gs�2�. Then,
ccording to �5.18�, but now for Ut

0s=exp�−�i / � �tH0s�,

N̂j
0s�t� = Ut

0sN j�Ut
0s�−1 �5.29�

s a symmetry generator of the harmonic oscillator, for the same reason as in Theorem V.3.

herefore iN̂j
0s�t� is a constant observable of the quantum harmonic oscillator �5.28�. All such

armonic symmetry operators N̂j
0s�t�, j=1, . . . ,9, are linear combinations of the N j in Bs�2�, with

k
ime-dependent coefficients denoted by X �x , t�, k=1,2 ,T�t� and ��x , t� in �4.7�.
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By Proposition IV.3, we already know the system of partial differential equations solved by
hese coefficients Xk, T, and � regarded as functions. In our case, since V�q�= 1

2 ��x1�2+ �x2�2� and
he vector field A in �5.26� vanishes, they reduce to

�X1

�x2 +
�X2

�x1 = 0,
�X1

�x1 +
�X2

�x2 =
dT

dt
,

�Xj

�t
= −

��

�xj , j = 1,2,

��

�t
−

i�

2
�� = X1x1 + X2x2 +

dT

dt
·

1

2
��x1�2 + �x2�2� .

�5.30�

In particular, instead of solving �5.30�, we could use the Baker-Campbell-Hausdorff formula
n �5.29�, for N j any explicit element of the free basis Bs�2� of �5.7�. Let us take, for example,

4= �� /�x1. According to �5.19� this generator is invariant under �5.18�, i.e., N̂4�t�= �� /�x1. On
he other hand, under �5.29� we obtain, on C0

��R2�,

N̂4
0s�t� = exp�−

i

�
tH0s�N4 exp� i

�
tH0s� = �1 −

t2

2!
+

t4

4!
− ¯ ���

�

�x1� − x1�t −
t3

3!
+

t5

5!
− ¯ � .

omparing with the general form �4.7�, this means that the coefficients of N̂4
0s�t� are, respectively,

X1�x,t� = cos t, X2�x,t� = 0, T�t� = 0, ��x,t� = x1 sin t . �5.31�

One verifies easily that �5.31� makes up a solution of the system �5.30�. In other words,

cos t · P1�t� + sin t · Q1�t� �5.32�

s a constant of motion of the quantum harmonic oscillator. This can also be easily verified
therwise: Consider the solution of the equation of motion of this system, in the Heisenberg
icture. Those �linear� equations are, for j=1,2,

�Qj�t�
Pj�t�

� = ��t��Qj

Pj
�, with ��t� = � cos t sin t

− sin t cos t
� � SO�2� . �5.33�

In particular, the �constant� operators which are initial conditions of this solution are given by

�Qj

Pj
� = �cos t − sin t

sin t cos t
��Qj�t�

Pj�t�
�, j = 1,2. �5.34�

o the constant of motion �5.32� provided by Nœther’s theorem coincides, in this elementary case,
ith the initial momentum P1 of the solution �5.33�. Another trivial example of symmetry gen-

rator is

cos tQ2�t� − sin tP2�t� � Q2, �5.35�

ssociated with the following solution of the system �5.30�

X1�x,t� = 0, X2�x,t� = − sin t, T�t� = 0, ��x,t� = x2 cos t .

ortunately, many nontrivial examples follow as well from this constructions �cf. Sec. VIII�. In
his way, the free basis Bs�2� allows us to compute the basis of the symmetry Lie algebra of any

uadratic Hamiltonian of the form �5.24� and then their associated symmetry operators N̂�t�. We
ummarize this result �in two dimensions, for simplicity� as follows.

Proposition V.5:
Let us consider any essentially self-adjoint quadratic Hamiltonian HQ in L2�R2�, as in the rhs
f equation �5.24�, i.e., resulting from a linear combination of elements of Gs�2�. For any �
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DHQ
, �t= �e−�i/��tHQ���x� solves the Cauchy problem for the associated Schrödinger equation. If

j, j=1, . . . ,9, denotes any element of the basis Bs�2� of the free symmetry algebra Gs�2� then, on
he dense invariant domain of analytic vectors of Lemma V.2,

N̂j
HQ�t� = Ut

QN j�Ut
Q�−1 �5.36�

s a symmetry generator of the HQ-system, where Ut
Q, t�R, denotes the one-parameter strongly

ontinuous group of unitary operators

Ut
Q = e−�i/��tHQ:L2�R2� → L2�R2� .

n particular, iN̂j
HQ�t� is a constant of the motion of the HQ-system. By construction, the time-

ependent coefficients Xj�x , t� ,T�t� and ��x , t� of this constant observable solve the system of
quations of Proposition IV.3, for the quadratic Hamiltonian HQ.

Moreover, if Wt denotes the one-parameter, strongly continuous, group of unitary operators in
2�R2� defined by

Wt = Ut
Q · e�i/��tH0 �5.37�

n the invariant domain of Lemma V.2, and for H0 as in �5.25�, then Wt provides the time-
ependent canonical transformation from the free system �5.25� to the one of Hamiltonian HQ. In
articular, we have

HQ = WtH0Wt
−1 + i �

dWt

dt
Wt

−1. �5.38�

Proof: The Hamiltonian defined by the rhs of �5.24� is of the general quadratic form �5.18�
ith

� = 1, W21 = − c4, � = − 2c1, a1 = c2, a2 = c3,

b1 = − c5, b2 = − c6, � = c7, c − i � c7 = c8
�5.39�

nd results indeed from a linear combination of elements of Gs�2�. Let HQ denote a self-adjoint
xtension of this �lower-bounded� operator in L2�R2�. By Stone’s theorem, Ut

Q=e−�i/��tHQ is a
trongly continuous unitary group of evolution in L2�Rn� solving the associated Schrödinger equa-

ion. Using �5.36�, any N j �Bs�2� , j=1, . . . ,9, evolves into a symmetry generator N̂j
HQ�t� of the

Q-system, as in the above-mentioned example.

Let us define a time-dependent unitary operator Wt on the invariant domain of Lemma V.2 by

Wt = Ut
Qe�i/��tH0.

learly, if �t is a solution of the free Schrödinger equation �5.25� with initial condition �0=�
DH0

then 
t=Wt�t solves the Schrödinger equation with quadratic potential HQ and the same
nitial condition. Equivalently, an HQ-solution 
t is given by a quadrature from a solution �t of the
ree equation. �One could also introduce an extra unitary generator M acting as well on the initial
ondition �, so that

Wt� = Ut
QMe�i/��tH0

s unitary.�
Then, it is well known that such a time-dependent unitary transformation Wt the Hamiltonian

0 is transformed into HQ given by �5.38�. Precisely, this goes as follows.
Let us write HQ=H0+ �HQ−H0� and denoted by DQ the above-mentioned common dense

omain of analytic vectors of H0 and HQ. Then HQ=Ut
QH0�Ut

Q�−1+Ut
Q�HQ−H0��Ut

Q�−1 on DQ. By
he definition �5.37� of Wt this is also HQ=WtH0Wt

−1+Ut
Q�HQ−H0��Ut

Q�−1 on DQ. Now on DQ �in
2 n
he strong L �R � sense�
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i �
dWt

dt
· Wt

−1 = ih
d

dt
�Ut

Qe�i/��tH0�e−�i/��tH0�Ut
Q�−1

=HQ − Ut
QH0�Ut

Q�−1

=Ut
Q�HQ − H0��Ut

Q�−1,

o HQ=WtH0Wt
−1+ i� �dWt /dt�Wt

−1 on DQ.
Since DQ is a domain of essential self-adjointness, this implies �5.38�. �

Let us make a remark on the problem of the zeroes set Nt
�= 	x�Rn 
�t�x�=0�.

As mentioned in Sec. II, our construction �see the definitions �2.5� and �2.14�, for example�
equires to consider �t ,x�-admissible states �, i.e., such that �t�x��0.

The study of the zeroes of �t�x� amounts to investigate the wave front set WF of the integral
ernel of Schrödinger,

k�x,t,y� = kernel�e−�i/��tH��x,y�

or fixed initial configuration x and time t. This problem has been considered by Zelditch21 and
einstein22 for H slight perturbations of a quadratic Hamiltonian HQ.

For example, in the case of the classical harmonic oscillator Hamiltonian PA
c �q , p�= �1/2�p2

��2 /2�q2 �i.e., the case �=1,�=−�2 and W=0 in �5.14�� the initial zero �cf. Mehler formula� of
he associated �t reappears at times k� /� and positions �−1�kx=y ,k�Z.

For more about this, see also Fujiwara �Ref. 23�.
Under bounded perturbations with bounded derivative, the singularities of �t behave as if H

as the harmonic Hamiltonian, i.e., the wave front sets are stable under these weak perturbations.
The study of these singularities is made using the geometry of the underlying Hamiltonian

ow on the classical phase space.

. General Hamiltonians

When the Hamiltonian H of our given quantum system is not of the quadratic form HQ

onsidered in Sec. V A �cf., for example, Proposition V.5�, the symmetry operators N�t� defined
ormally in �4.19� with coefficients X ,T ,� solving the PDE of Proposition IV.3 are still quantum
onstants of motion.

However, Dirac’s correspondence �5.5� does not hold anymore and the metaplectic represen-
ation used in Sec. V B is of no help. In general, no explicit basis of the associated symmetry
lgebra can be found. But since, by hypothesis, the coefficients X ,T, and � of the symmetry
perator N�t� are analytic functions, it is easy to show that N�t� is well defined for a large class of
amiltonians H.

Proposition V.6: Let us consider H=−��2 /2��+V, with V :Rn→R as in the Kato-Rellich
heorem, so that H is self-adjoint in L2�R2�. Let X :Rn
R→Rn ,� :Rn
R→C and T :R→R be
nalytic functions, respectively, of the form X�q , t�=�n=0

� �n�t�qn, with �n real-valued smooth func-
ions, ��q , t�=�n=0

� �n�t�qn with �n complex-valued and smooth. If �n=0
� 
�n�t� 
 �QnP� � �� and

n=0
� 
�n�t�
 �Qn� � � � , "��A�H�, the set of analytic vectors for H, then the Nœtherian symme-

ry operator

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� �5.40�

s a densely defined operator in L2�Rn�.

I. THE QUANTUM THEOREM OF NŒTHER IN A RIEMANNIAN MANIFOLD

Let us consider now a classical system like the one of Sec. IV but with a configuration space
hich is, instead of Rn, any n-dimensional smooth Riemannian manifold M, with positive-definite

etric tensor gi,j.
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The state � of the associated quantum system evolves in L2�M ,dM�, with volume element
M�q�=�g dq, where g=det�gij�, according to

i �
��t

�t
= H�t �6.1�

or the Hamiltonian of the form �2.13�

H = −
�2

2
� j� j + i � Aj� j +

i�

2
�kA

k +
1

2
�A�2 + V , �6.2�

here � · � denotes the Riemannian norm and � j is the covariant derivative with respect to the
evi-Civita connection. Let us recall that for this connection, the Christoffel symbols are sym-
etric: � jk

i =�kj
i , i.e., we are in the torsion-free case.

Conditions on the vector and scalar potentials V and A ensuring the self-adjointness of H on
dense domain of L2�M ,�gdq� are known; see, e.g., Refs. 24–27.

The relevant one-parameter group U� ,��R, of transformations of the extended configuration
pace will be denoted, like in the flat case, by

U�:M 
 R,�qi,t� � �Q�
i = qi + �Xi�q,t� + o���,�� = t + �T�t� + o���� , �6.3�

here qi are local configuration coordinates and

X:M 
 R → M, T:R → R ,

re real analytic. For g any scalar field on M 
R such that g�t�DH and such that ġ exists, let us
efine, like in �2.11�, the quantum derivative along �t by

Dtg =
1

�t
� �

�t
−

1

i�
H��g�t� . �6.4�

Introducing �6.1� and �6.2�, this means that

Dtg = � �

�t
+ �− i �

� j�t

�t
− Aj�� j −

i�

2
� j� j�g . �6.5�

ince this can be interpreted as a quantum deformation of the classical “absolute” �or “intrinsic”�
erivative of the scalar g along a smooth continuous curve qj =qj�t�, we shall define Dtq

j by the
ector

Dtq
j = − i �

� j�t�q�
�t�q�

− Aj�q� � Bj�q,t� , �6.6�

n analogy with what we have done in the proof of Theorem III.7 of Sec. III. Choosing, like in Eq.
3.16�, g�q ,��=S�q ,��, with

S�q,�� = − i � ln ���q� �6.7�

or any � ,q �-admissible solution of the Schrödinger equation �6.1�, we can compute

D�S�q,�� =
1

2
D�q

jD�qj −
i�

2
� jA

j + AjD�q
j − V�q� . �6.8�

he rhs of �6.8� defines the Lagrangian L�D�q ,q� associated with the quantum system �6.1�.
efining, for any g= �g�s��s�R complex-valued, measurable and such that g�s��·��s�·�

2
L �M ,dM�, the �forward� quantum conditional expectation in the state � by
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E�
t,x�g�s�� =� g�s����p�s,�,t,x�dM��� , �6.9�

here, for any �t ,x� �-admissible, s� t,

p�s,�,t,x�dM��� = �s���k−��,t − s,x���t�x��−1 dM��� �6.10�

ith k− the advanced propagator of the Schrödinger equation �6.1�, one verifies that Theorem III.7
till holds. So, canceling the boundary term without loss of generality, the regularized action
unctional �6.3� becomes

SL�x,t1� = M�
t1,x��

t0

t1 �1

2
�Dtq�2 − V�q��dt + �

t0

t1 �AjDqj −
i�

2
� jA

j�dt

= M�

t1,x��
t0

t1 �1

2
�Dtq�2 − V�q��dt + �

t0

t1

A � dq
 , �6.11�

here we have used on M the same notations as in the Euclidean case of equations �3.10� and
3.11�.

Given an additional analytic generator � :M 
R→C, called the divergence, the invariance of
he action �6.11� �up to this divergence term� is defined as in �4.4�.

The formal symmetry operator on M becomes, instead of �4.7�,

N̂�t� = Xj�x,t��− i � � j� − T�t��i �
�

�t
� + ��x,t� , �6.12�

nd it is defined by the same commutation property �4.9� with the Schrödinger equation as in the
uclidean case. This property implies the following conditions on X ,T, and �.

Proposition VI.1:

N̂�t� is a symmetry operator for the Schrödinger equation �6.1� in L2�M ,dM�, with Hamil-
onian �6.2� �where V may depend smoothly on time� if and only if the following determining
quations hold:

1�

dT

dt
gjk = � jXk + �kXj ,

2�

�Xj

�t
= − � j� −

1

2

dT

dt
Aj − Xk�kA

j ,

3�

��

�t
− Aj� j� −

i�

2
� j�

j� = Xj� j� i�

2
�kA

k +
1

2
�A�2 + V�

+
dT

dt
� i�

2
�kA

k +
1

2
�A�2 + V� + T

�V

�t
.

Proof: This is based on a simple computation of �N̂�t� ,Q�=�N̂�x , t�Q, where Q= �� /�t�

�i / � �H with the Hamiltonian �6.2�. Like in the flat Euclidean case, one finds that
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�N̂�x,t� = −
dT

dt
�t� . �6.13�

�

Remark: As in the flat Euclidean case, if we allow space-dependent time transformations in

6.3�, a further condition is needed for N̂�t� to be a symmetry operator for �6.1�. This is

� jT = 0. �6.14�

n other words �6.3� is indeed the most general space–time transformation for our purpose.
The integrability conditions of the determining equations �1�–�3� are not as obvious as in the

at Euclidean case, but they have already been investigated.28

When the determining equations �1�–�3� hold, the divergence invariance of the action �6.11�
in the sense of the relation �4.4�� is guaranteed by construction.

In order to obtain the general form of the invariance of the Lagrangian under our groups of
ransformations �Proposition IV.5� we need first to define the quantum derivative along �t of a
ector field Y j on M 
R.

In classical mechanics on a Riemannian manifold M, it is well known that the time derivative
f the velocity field is, in general, not a tensor. In consequence, the acceleration is defined as the
absolute” �or “intrinsic”� derivative of the velocity.29 The result is indeed a contravariant tensor
f rank one.

Definition VI.2: Let Rk
j be the Ricci tensor of the Riemannian manifold M. Then the quantum

“absolute”) derivative of the complex-valued vector field Y, on M 
R is defined by

DtY
j =

�Y j

�t
+ Bk�kY

j −
i�

2
��k�kY

j + Rk
jYk� , �6.15�

here Bk is given by �6.6�.
To be short, we shall denote simply by � the operator �k�k+R, so that

DtY
j =

�Y j

�t
+ Bk�kY

j −
i�

2
� Y j . �6.15��

On scalars and covariant vectors, the Laplacian � coincides with the Laplace-Kodaira-de
ham operator.30 One easily shows that this Laplacian commutes with the gradient and the diver-
ence, i.e., for g a scalar field as before,

� j � g = � � jg ,

nd for Y a vector field,

� j � Y j = � � jY
j .

Notice, in contrast, that �� j� j ,�i� is not zero, in general.
Proposition VI.3:
Let L�Dtq ,q , t� be the Lagrangian, defined by the rhs of �6.8�, of the quantum system, when the

otential V is allowed to be a smooth function of the time. A necessary condition for the diver-
ence invariance of the action functional �6.11� is

�L

�t
T +

�L

�qj X
j +

�L

��Dtq� j�DtX
j − �Dtq� j dT

dt
� + L

dT

dt
= − Dt� . �6.16�
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roof:

DtX
j =

�Xj

�t
+ Bk�kX

j −
i�

2
��k�kX

j + Rk
jXk� . �6.17�

rom the determining equation �1� �Proposition VI.1� and �dT /dt�= �2/n�� jX
j �where n=dim M�

e have

�l�kXj + �l� jXk = 0.

sing this in the Ricci identity we get

�l�kXj = Rkjl
m Xm, �6.18�

here Rkjl
m denotes the Riemannian-Christoffel curvature tensor. The rhs of �6.18� coincides with

kn,jlX
n, so

�n�kXj = gn,lRkn,jlX
n

nd

�k�kX
j = − Rk

jXk. �6.19�

fter introduction of the determining equation �2� �Proposition VI.1� and of �6.19� in the definition
6.17� we obtain

DtX
j = − � j� −

1

2

dT

dt
· Aj − Xk�kA

j + Bj�kX
j .

n particular,

DtX
j − �Dtq� j dT

dt
= − � j� −

1

2

dT

dt
· Aj − Xk�kA

j −
1

2
Bj dT

dt
+

1

2
Bk��kX

j − � jXk� . �6.20�

ow consider the invariance condition �6.16�. Using the rhs of �6.8� as a definition of the La-
rangian �for V smoothly time dependent� this condition means explicitly, after simplification,

��

�t
− Aj� j� −

i�

2
� j�

j� = Xj� j� i�

2
�kA

k +
1

2
�A�2 + V
 +

dT

dt
� i�

2
�kA

k +
1

2
�A�2 + V� + T

�V

�t
.

his is the determining equation �3� of Proposition VI.1 and, therefore, the invariance condition
6.16� constitutes indeed a necessary condition for the divergence invariance of the action �6.11�
nder the Lie group of transformations �6.13�. �

The main results of the flat case are, now, easily generalized. Using the definition of the
uantum derivative along �t of the scalar field S defined by �6.7�, one verifies that S solves the
uantum Hamilton-Jacobi equation on M 
R,

�S

�t
+

1

2
��S − A�2 + V +

i�

2
� jA

j −
i�

2
� j� jS = 0, �6.21�

here the same remark as after �3.21� applies, as far as our notations are concerned. The quantum
amilton-Jacobi equation �6.21� provides us with a direct derivation of the regularized equation of
otion generalizing �3.28� and the Riemannian version of conservation of energy �3.29�.

Let us compute

� jS = Bj + Aj . �6.22�
e first notice that
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� j
1
2 ��S − A�2 = 1

2� j�BkBk�=Bk�kBj + �� jBk − �kBj�Bk.

ince, for the Levi-Civita connection, there is no torsion, � jBk−�kBj is the exterior derivative of

k, generalizing the curl operator of Proposition III.11. By �6.22� this coincides with −�� jAk

�kAj� so

� j
1
2 ��S − A�2 = Bk�kBj − �� jAk − �kAj�Bk. �6.23�

n the other hand, as observed after �6.15��, �� ,� j�S=0 implies that

� j�
k�kS = �k�k� jS + Rj

k�kS .

inally, using �6.15� and �6.22�, the covariant derivative of the quantum Hamilton-Jacobi equation
6.21� reduces to

DtDtqj = − �� jAk − �kAj�Bk −
i�

2
�� j�kA

k − �Aj� − � jV . �6.24�

ow let us consider the space–time observable of energy h�t

H associated with �6.2�, namely

h�t

H =
H�t

�t
= −

�2

2

� j�t

�t

� j�t

�t
−

�2

2
� j�� j�t

�t
� + i � Aj� j�t

�t
+

i�

2
�kA

k +
1

2


A

2 + V . �6.25�

ccording to �6.6�, it is consistent to denote the space–time momentum by

pj = Bj + Aj , �6.26�

o that the energy becomes

h�t

H =
1

2
p2 − Ajpj +

i�

2
� jAj −

i�

2
� jpj +

1

2
A2 + V . �6.25��

ssociated with the quantum Hamilton-Jacobi equation �6.21� we notice the following integrabil-
ty condition:

� jh�t

H = −
�Bj

�t
. �6.27�

ndeed, from the definition �2.5� and Schrödinger equation �6.1�, h�t

H =−�� /�t�S, where the relation
6.7� has been used. In other words, according to �6.6�, the relation �6.27� holds. Since the energy
pace–time observable is a scalar, its quantum derivative along �t is given by �6.5�,

Dth�t

H =
�h

�t
− Bj�Bj

�t
+

i�

2
� j�Bj

�t
, �6.28�

here the integrability condition �6.27� was used. On the other hand, by the definition �6.25�� of

�t

H ,

�H�t

H

�t
= Bj�Bj

�t
−

i�

2
� j�Bj

�t
+

�V

�t
.

fter substitution in �6.28� we obtain the conservation of the energy

Dth�t

H =
�V

�t
. �6.29�
et us collect this information in the
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Proposition VI.4:
For the action functional SL defined by �6.11�, the regularized equation of motion and con-

ervation of energy in an admissible state �t, solution of the Schrödinger equation �6.1� in
2�M ,�gdq�, are given respectively by

DtDtqj = − �� jAk − �kAj�Bk −
i�

2
�� j�kA

k − � Aj� − � jV �6.30�

nd

Dth�t

H =
�V

�t
. �6.31�

n particular, when the scalar potential V is time independent, the energy space–time observable
s a quantum martingale.

More generally, one shows, like in the flat case �cf. Ref. 31 and 32 for the probabilistic case�,
he following.

Theorem VI.5 (Theorem of Nœther):
Let us consider the Jordan symmetrization of the formal symmetry operator N̂�t� in

2�M ,dM� defined in �6.12�, i.e., the Nœtherian operator

N�t� = Xj�Q�t�,t� � Pj�t� − T�t�H�t� + �̂�Q�t�,t� , �6.32�

here � denotes Jordan’s multiplication of operators,

�̂ = � +
i�

2
� jX

j �6.33�

nd X, T, and � are solutions of the determining equations �1�, �2�, and �3� of Proposition VI.1, for
he symmetry groups of the Schrödinger equation �6.1�. In �6.32� Pj and H are, respectively, the
omentum and Hamiltonian observable in Heisenberg’s picture [cf. �6.26� and �6.2�].

Then N�t� is a quantum constant observable, densely defined on DN�t��L2�M ,dM� and the
ssociated space–time (scalar) observable n�t

N is a quantum martingale, i.e., Dtn�t

N =0, "�t admis-
ible.

II. QUANTUM PHYSICS, FEYNMAN PATH INTEGRAL AND STOCHASTIC ANALYSIS

Von Neumann axiomatization of quantum mechanics in Hilbert space is the mathematical
orm of the original version of this theory.33 It can be regarded as a generalization of classical
amiltonian mechanics, where the commutative algebra of the �real� observables in phase space is

eplaced by a noncommutative one.
It is well known that there is no mathematically rigorous Lagrangian version of quantum

heory. To construct such a framework was precisely one of Feynman’s original motivations.2 But,
n spite of its success �founded on its extraordinary heuristic power�, Feynman’s path integral
heory still cannot be regarded as such a satisfactory framework, from the mathematical point of
iew. Let us recall that Feynman represents the solution of the initial value problem �2.2� by the
ymbolic expression

�t�x� = �
�t,x

����0��e�i/��S��;t�D� , �7.1�

here �t,x denotes the path space 	��C��0, t� ,Rn� 
��t�=x�. S�� ; t� is the action functional of the

nderlying classical Lagrangian system. For example, when H is as in �2.13�, with A=0,
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S��;t� = �
0

t �1

2

�̇���
2 − V�������d� � S0��;t� − �

0

t

V������d� , �7.2�

� is the heuristic “flat measure” on the path space �t,x �used as a Lebesgue measure�

D� = �
0���t

d���� ,

nd

e�i/��S��;t� � e−�i/���0
t V������d�e�i/��S0��;t�

s a complex weight.
Note that to make sense of the kinetic energy term in S0 one should a priori assume that the

aths ������ are absolutely continuous and in the Cameron-Martin Hilbert space HCM with
finite� norm

��,��H = �
0

t


�̇���
2d� . �7.3�

Using Lie-Trotter’s formula, Nelson has shown that the rhs of �7.1� can be reinterpreted as the
trong limit j→� in L2�Rn� of a discretization of the time interval 0� t1� t2� ¯ � tj = t along
olygonal paths interpolating linearly between the corresponding configurations ��tk�=xk, k
1, . . . , j ,��t�=x. But the heuristic expression for the limit of

e�i/��S0��,t� �
��	t1,. . .,tj=t�

d���� �7.4�

s not �-additive �cf. Ref. 18� and therefore cannot be used for the construction of a basic complex
easure on �t,x. However, it is possible, but very hard, to construct a rigorous �nonprobabilistic�

unctional calculus on path space, using the time discretization approximation �cf. Ref. 34�. For
arious other approaches, cf. also Ref. 35. Let us see �in the free case, for simplicity� how the lack
f complex measure is reinterpreted in our distinct construction.

We consider a finite product of complex-valued functions like the ones used in our definition
2.28�,

F = fn
�t� · fn−1

�tj−1�
¯ f1

�t1�, n � N, t � tj−1 � tj−2 � ¯ � t1. �7.5�

y iteration of the argument used there for only two such functions, the quantum �absolute�
xpectation of F in the state � becomes

�f j
�t�
¯ f1

�t1��� =� �t1
�x1�f1

�t1��x1�k0�x1,t2 − t1,x2�f2
�t2��x2�k0�x2,t3 − t2,x3� ¯ k0�xj−1,t − tj−1,xj�

f j
�t��xj��̄t�xj�dx1 ¯ dxj , �7.6�

here k0�x , t−s ,y� denotes the integral kernel of the evolution group Ut−s when V=0.
The rhs of �7.6� is a multilinear functional of f1

�t1� , . . . , f j
�t� which is well defined. But the

orresponding finite additive measure is not �-additive �the proof goes back to Cameron.36 See
lso Ref. 37� and, therefore, there is no way to look at such an additive measure as the path space
easure of some diffusion process, i.e., a Markovian stochastic process with continuous sample

aths �→����.
What we have called the forward quantum transition kernel p̂ in �2.23�, for example, is not

ositive in contrast with a crucial requirement of the existence proof of such a probability
38
easure. However, regarded only as defining a continuous complex-valued functional on a
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easonable domain of integrable functions and satisfying some basic properties needed otherwise
or quantum theory, the limit of �7.4� makes sense and allows to obtain a number of results �see
efs. 39, 40, 37, 41, 42, and 61�.

If we are insistent about interpreting Feynman’s type of formula �7.1� as an integral over a
pace of continuous paths, the traditional way, in mathematical physics, is to appeal to Kac’s
pproach �but cf. also Refs. 62–66�. First one replaces Schrödinger’s initial value problem �2.2� by
ts “Euclidean” �or “imaginary time”� counterpart, say

− �
��*

�t
= H�* �7.7�

ith a bounded continuous initial condition � in L2�Rn�. Then the counterpart of �7.4�, i.e.,

e−�1/��S0��;t� �
��	t1,¯. . .,tj=t�

d���� , �7.8�

onverges to the Wiener measure with diffusion coefficient �, denoted by dMW
� , on the path space

t,x �cf., e.g., Ref. 38�. The measure MW
� has support on continuous but not differentiable paths

in particular MW
� �HCM�=0� so neither the first factor in �7.8� nor the second one are well defined

ut their product is. After a discrete absorption of the a.s. singular kinetic energy term in the
easure, the probabilistic counterpart of �7.1� is Feynman-Kac formula,43

�t
*�x� = �

�t,x
����0��e−�1/���0

t V������d�dMW���=Et,x���W�0��e−�1/���0
t V�W����d�� , �7.9�

here the last expression adopts the probabilities notation for the conditional expectation given
hat the Wiener process satisfies W�t�=x �our superscript t ,x indicates that the condition lies in the
uture of the time interval of integration�, as well as another notation ��

* for the solution of �7.7�
tressing its dependence on the initial condition �.

The process W��� is used exclusively as a technical tool in �7.9�. We shall not insist here on
he fact, underlined time and time again44,45 that its �irreversible� dynamical properties have little
o do with the �reversible� ones of free quantum dynamics. There is no surprise here: the way
robability theory enters in �7.7�–�7.9� has nothing to do with the way it enters in quantum
ynamics, where, in particular, no direct probabilistic concept of conditional expectation is defined
ut Born interpretation of �t is fundamental to the absolute expectation.

The above-mentioned support of MW
� makes rather tricky the construction of any “stochastic

Euclidean� Lagrangian calculus” along the line suggested by Feynman in Ref. 2, since the irregu-
arities of the “quantum paths” turn any classical action functional into a divergent one.

Any quantum observable should be defined as a function of the basic underlying “stochastic
rocess.” It is easy to check �see Chap. 7 of Ref. 2� that Feynman’s implicit relation between
elf-adjoint operators in Hilbert space and associated “random variables” is precisely of our form
2.5� �although formulated by the authors in the time discretized context, i.e., before taking limj→�

n the above-mentioned construction, in order to avoid flagrant singularities�. But the specific rules
or handling these “random variables” are not established at all in Ref. 2. Their calculus seems to
e plagued by the same kind of singularities as in naive computations along the paths of diffusion
rocesses before the advent of Itô’s calculus.

The first problem is, of course, that the precise nature of the underlying formal stochastic
rocess itself �for a given H� is never specified. This may be due to the fact that, after the
bove-mentioned nonexistence proof of the “Feynman’s process,” the specific properties it should
ave were not, understandably, investigated. Is it clear, for example, that this process should be the
ne associated with the real time version of the Wiener measure or, instead, of the counterpart of
ome measure absolutely continuous with respect to the Wiener measure?

Also even if, given a quantum observable A, one admits �2.5� as a rule for the associated
pace–time observable, there are, of course, many other candidates providing the same quantum

echanical expectation ��t ,A�t��t�. For example, Feynman gives two distinct space–time observ-
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bles for the Hamiltonian H of the form �2.13� with zero vector potential �Ref. 2, p. 194�. He does
ot indicate any way to choose which of those is more natural, for instance as defining the proper
pace–time counterpart of the quantum constant of motion. It is also worthwhile to observe here
hat Feynman’s path integral approach does not provide, curiously, any Nœther Theorem although
ts whole point is to be a Lagrangian approach.

Nevertheless, Feynman’s formal computations suggest that the abelian nature of the classical
lgebra of observables should be preserved under quantization but that other basic rules of New-
onian calculus should be “deformed in �” so as to preserve the compatibility with regular �non-
ommutative� quantum mechanics in Hilbert space.

The point of our present work has been to investigate systematically the properties of the
bove-mentioned “process,” beyond what Feynman did, without ever using what it certainly
annot provide, a well-defined probability measure on the path space, compatible with Born
nterpretation of the wave function �t and all quantum mechanical predictions.

Our main improvement with respect to Feynman’s original framework is the introduction of
he quantum version�s� of conditional expectation�s� for his heuristic process. Indeed, this supplies
s with a natural regularization of the many divergent terms in his formal computation, for
xample the kinetic energy term �cf. �3.20�� of the classical action function.

Introducing the quantum derivatives along an L2-state associated with this quantum condi-
ional expectation, our calculus of space–time observables follows directly, as well as the defini-
ion of quantum martingale, underlying Nœther theorem.

The key deformations of the rules of the classical calculus are, therefore, the ones of the
erivations, given by Proposition II.8.

With this procedure, we have embedded regular quantum mechanics �more precisely, the class
f elementary systems considered here� into a framework which, we claim, is much closer to
robability theory and stochastic analysis than Feynman’s path integral approach and, a fortiori,
han quantum theory in Hilbert space.

Let us now recall why this claim is justified.
A solution of the Cauchy problems for Schrödinger’s equation can be regarded as the value on

he imaginary axis of a solution of the heat equation �7.7�. This is the famous “Euclidean” relation
or “Wick rotation”�

���x,− it� = ��
*�x,t� �7.10�

or any ��DH�L2�Rn�.
Let us restrict ourselves, for a fixed T�0, to � in the dense set of vectors in L2�Rn�, denoted

y D�e�T/2�H�, such that

�
n=0

�
1

n!
�Hn��2
t
n � � , " t � I = �−

T

2
,
T

2

 .

hen, together with the solution of �7.7�, we can consider the solution, in the strong L2-sense of
he adjoint equation with respect to the time parameter

�
���̄

�t
= H��̄, t � I

��̄�· ,0� = �̄�·� ,

�7.11�

here the overbar denotes, now, the complex conjugate.

Clearly we have
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�
Rn

��̄��
*�x,t�dx = ���2

2, �7.12�

n a striking analogy with Born’s “probabilistic” interpretation of the associated wave function �t

cf. definition �2.17��. This observation is due to Schrödinger �cf. Refs. 44 and 45� and lies at the
oundations of Euclidean quantum mechanics.

The identity �7.12� suggests the introduction of various Hilbert spaces associated with the pair
f heat equations �7.7�–�7.11� and allowing to mimic what happens in regular quantum mechanics.
or each t� I, consider the solution space of �7.7�, namely

 ̃t
* �  ̃t

*�Rn� = 	��
*�t�,� � D�e�T/2�H�� ,

nd define

Ut
−1: ̃t

* → D�e�T/2�H� ,

��
*�t� � � .

�7.13�

quation �7.12� suggests as well the definition of the following scalar product in  ̃t
*:

���1

* �t�
��2

* �t��t = �Ut
−1��1

* �t�
Ut
−1��2

* �t��2 = ��1
�2�2, �7.14�

nd to complete  ̃t
* with respect to �·
 · �t. The resulting space, denoted by  t

*, is called forward
ilbert space. As a matter of fact, � t

* , �·
 · �t� is unitarily equivalent to �L2 , �·
 · �2� since Ut
−1 can be

xtended unitarily from  t
* onto L2. Using Ut, the Euclidean version of Heisenberg time evolution

f observables will be, for any densely defined A,

A−t
F = Ut AUt

−1, t � I , �7.15�

here F stands for forward �space�.
So the familiar �Heisenberg’s� quantum formulas will be valid, but without the factor i

�−1. For the same reason, the observables, in this framework, are densely defined normal
perators �not necessarily self-adjoint�. For example, the momentum observable in  0

*�Rn�
L2�Rn� is defined as −�� on its usual domain. A symmetric construction for equation �7.11�
ould introduce another one-parameter family of �“backward”� Hilbert space,  t.

Before continuing, it is worth stressing that the “reciprocal” analytical continuation in time of
he above construction adds nothing to regular quantum theory. Since the analytical vectors are
ense in L2�Rn� and e−�i/��tH�L2�Rn��=L2�Rn� " t, the real time version of the key restriction �
D�e�T/2�H� disappears since

D�ei�T/2�H� = L2�Rn�, " T � R .

et us see that the probabilistic interpretation suggested by �7.12� and �7.14� is indeed fully
ustified on positive vectors in  t

*, if e−�t/��H is positively preserving. For H as in Theorem III.7,
ith A=0, this is the case when V belongs to a subset of a class of potentials introduced by Kato

cf. Ref. 45�. The integral kernel of e−�1/���t−s�H in L2�Rn�, denoted by

h�x,t − s,q� , �7.16�

s, then, known to be jointly continuous and strictly positive.
For ��0 fixed as before, and �s

*�·�=��
*�· ,s�, the Euclidean counterpart of the quantum tran-

ition kernel �2.25� becomes

q*��,dq,t,x� = ��
*�q�h�q,t − �,x���t

*�x��−1 dq, � � t in I . �7.17�

n contrast with �2.25�, q* satisfies all the properties of the backward transition probability of a

eal-valued Markov process in I, for a given final probability distribution pT/2�y�dy.
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For another fixed ���0, and �t�·�=����· , t� in  t�Rn� one gets the Euclidean version of the
uantum transition kernel �2.23�, i.e.,

q�t,x,�,dq� = �t
−1�x�h�x,� − t,q����q�dq, t � � in I, �7.18�

amely the �forward� transition probability of a Markov process for a given initial probability
istribution p−T/2�x�dx. The existence of this Markov process Zt , t� I, introduced in 1984–1985
nder the name of Bernstein diffusion45 has been proved since then in more general settings �see
ef. 46 for a recent review, using the tools of statistical physics�.

Notice that the quantum problem of the zeroes of the wave function disappears here since, by
ypothesis on the potential V, exp�−�1/ � ��t−s�H� is positivity preserving. Using �7.17� and
7.18�, one verifies easily that Zt, t� I, is a real valued inhomogeneous diffusion process whose
rifts and diffusion matrix are given by the Euclidean version of Proposition II.14, i.e.,

B*�q,t� = − �
��t

*

�t
* �q� ,

B�q,t� = �
��t

�t
�q� , �7.19�

C�q,t� = C*�q,t� = � 1 ,

ith 1 the n
n identity matrix.
The particularity of such diffusions is that, in contrast with the traditional one-sided notion of

arkov processes, they take seriously the fact that the Markov property itself is invariant under
ime reversal. If Pt denotes the �-algebra generated by the past of Zt, i.e., Pt=�	Zs ,s� I ,s� t� and

t the future, Ft= 	Zu ,u� I ,u� t�, then, for any events A�Pt and B�Ft,
38

P�AB
Nt� = P�A
Nt� · P�B
Nt� �7.20�

lmost surely, where Nt denotes the present �	Zt� and P�·
Nt� is the conditional probability given

t.
The time symmetry of Zt , t� I, shows up in the multiplicative aspect of the integrand of

7.12�, for a pair of positive analytic vectors � ,��, since Eqs. �7.7� and �7.11� are formally time
eversed of each other.

The Euclidean version of the relation �2.5� between operators in Hilbert space and space–time
bservables provides us with well-defined random variables, functions of Zt. For example, the
bove-mentioned momentum observable at time t corresponds to −� ���t

* /�t
*��Zt�, i.e., the drift

*�zk , t� already known by �7.19�.
It follows that the Euclidean counterparts of the quantum derivatives �2.14� and �2.16� along

he quantum state �t and �̄t are given, respectively, by

Dt
* =

�

�t
+ L*, �7.21�

Dt =
�

�t
+ L , �7.22�

here L* and L are backward and forward generators of Zt , t� I, namely the elliptic operators

L* = − �
��t

*

�t
* · �−

�

2
� , �7.21��
nd
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L = �
��t

�t
· � +

�

2
� . �7.22��

he derivatives �7.21� and �7.22� are better defined as limits �whenever they exist� of conditional
xpectations, for f smooth real valued with compact support on Rn+1, namely

Dt
*f�Zt,t� = lim

�t↓0
Et� f�Zt,t� − f�Zt−�t,t − �t�

�t

 �7.23�

nd

Dtf�Zt,t� = lim
�t↓0

Et� f�Zt+�t,t + �t� − f�Zt,t�
�t


 , �7.24�

here Et denotes the conditional expectation given Zt in the future or in the past of the time
nterval, computed in terms of the kernels �7.17� or �7.18�, respectively. These conditional expec-
ations make sense from the probabilistic viewpoint, since the process Zt does, in contrast with our
uantum definitions �2.24� and �2.22�.

Let us stress that, although the definitions �7.23� and �7.24� coincide with Nelson’s ones in
ef. 47, the processes Zt have little in common with the ones introduced by him in order to

nterpret probabilistically �2.2� �cf. Ref. 44 for more about that�.
By definition of Dt

* and Dt, notice that f�Zt , t� is an Ft �respectively, Pt� martingale if and only
f Dt

*f�Zt , t�=0 �respectively, Dtf�Zt , t�=0�.
The probabilistic counterpart of Proposition III.1, involving the derivative �7.24�, is generally

nown in stochastic analysis, as Dynkin’s formula �cf., e.g., Ref. 48�. The fact that the counterpart
f �3.4�, using �7.23�, holds as well is due to the time symmetry of Bernstein measures.

The infinitesimal operators Dt and Dt
* are keystones of Itô’s stochastic calculus.49,68 Although

t is not as widely known in mathematical physics as it should, this calculus can indeed be
ormulated in a time-symmetric way as well as with respect to the usual increasing filtration Pt.
his requires the introduction of the time-reversed filtration Ft, �Refs. 45, 47, and 50�, used here.
he quantum deformations �2.20�� and �2.21�� of Leibniz rule �for our class of Hamiltonians�
ecome, respectively, in stochastic analysis, for f ,g smooth and real valued,

Dt�f · g� = �Dtf� · g + f�Dtg� + � �f · �g , �7.25�

Dt
*�f · g� = �Dt

*f� · g + f�Dt
*g� − � �f · �g , �7.26�

he relations �3.13� and �3.13�� are the quantum counterparts of the relations between Itô and
tratonovich stochastic integrals �also denoted by � �Ref. 50�� with respect to Pt and Ft. It is well
nown that the latter relation had already been discovered by Feynman in his path integral ap-
roach to quantum theory.2,44

Using this, one shows that positive solutions of the two adjoint heat equations �7.7� and �7.11�
dmit two path integral representations in terms of Zt , t� I. These are the probabilistic counter-
arts of the integral representations �3.20� and �3.22�.

The study of the symmetries of the action functionals involved in these path integrals results
n the probabilistic version of the quantum theorem of Nœther, proved in paper I, which is in fact
he origin of the present Lagrangian formulation of quantum theory for elementary systems.

One can further develop Feynman’s ideas using the rigorous tools of stochastic analysis.69 For
xample, his functional calculus2 is well defined for the class of Bernstein diffusions and allows to
rove the Euclidean version of his heuristic results.51 The aim of Euclidean quantum mechanics,
n the sense of Refs. 44 and 45 and for the present paper, is to transfer along this line, as much as
ossible of mathematical structures from stochastic analysis to regular quantum theory. The point

f this indirect approach is to make the best of the irreducible probabilistic content of this theory
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nd discover more easily new conceptual and technical aspects of quantum dynamics which have
een muddled along the years by the superficial role of probability in the traditional Hilbert space
ramework.

III. SOME CONCRETE EXAMPLES

. One-dimensional free fall

Let the configuration manifold M of Sec. VI be simply R and consider the free fall Hamil-
onian,

H = −
�2

2

�2

�q2 + gq , �8.1�

here g is a real constant. This is the �one dimensional� case A=0,V�q , t�=gq of �6.2�. In
articular, H belongs to the quadratic class �5.1� and it follows from Sec. V that it is sufficient to
ompute the free case V=0. The basis Bs�1� of the symmetry Lie algebra gs�1� is six dimensional
nd, according to �5.7�, given by

Bs�1� = �i,iq, �
�

�q
,iq2,i

�2

2

�2

�q2 , � q
�

�q
+

�

2
� � 	N j, j = 1, . . . ,6� . �8.2�

We observe that the free fall Hamiltonian �8.1� results from a linear combination of elements
f Bs�1�.

By �5.19� we know that the constant observables of the one-dimensional free system are

�i,i�q + i � t
�

�q
�, �

�

�q
,iq2 − 2t�iq�− i �

�

�q
� +

�

2

 + 2it2�i �

�

�t
�,

�
�

�t
,q �

�

�q
+

�

2
− 2it�i �

�

�t
�� �8.3�

quivalently the coefficients of the symmetry generator defined in �4.18� for the one-dimensional
ree case are

�8.4�

ccording to the method of Proposition V,5 each of these generators is unitarily equivalent to one
enerator of the free fall Hamiltonian H via the strongly continuous one parameter groups of
nitary operators in L2�R� defined by

Wt = e−�i/��tH · e�i/��tH0. �8.5�

sing this, one computes the corresponding coefficients for the free fall symmetry generators. The

esults are
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�8.6�

s they should, the constant observables of the free fall system reduce clearly to the ones of the
ure free case �8.4� when the constant g vanishes.

We also observe that the second and third of those constants are “trivial” �although consis-
ently forgotten� since they correspond to the initial position and momentum observables ex-
ressed, in the Heisenberg picture, in terms of Q�t� and P�t�. On the other hand, the fourth and last
bservables are nontrivial constants for this elementary system with purely continuous spectrum

H.

. The free particle on the sphere S2£R3

Now take for the configuration manifold M of Sec. VI the sphere S2 of radius R in R3.
It is natural to introduce the spherical coordinates �qj�= �� ,
� in �0,��
�0,2��. Then, since

=V=0 here, the Lagrangian of the classical system reduces to the kinetic part

L��̇,
̇,�,
� =
R2

2
��̇2 + sin2 �
̇2� , �8.7�

ince the metric of S2 is of the form

ds2 = R2�d�2 + sin2 � d
2� , �8.8�

r, equivalently,

gij = �R2 0

0 R2 sin2 �
� . �8.9�

The associated Christoffel symbols and covariant derivatives are easily computed,

�11
1 = �12

1 = �21
1 = �11

2 = �22
2 = 0,

�12
2 = �21

2 = cotg � , �8.10�

�22
1 = − sin� cos 
 ,

nd

�� =
�

��
, �
 =

�

�

,

�� =
1

R2

�

��
, �
 =

1

R2 sin2 �

�

�

.

�8.11�

2 2 2
he quantum momentum observables in L �S ,R sin � d� d
� are
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P� = − i � �� − i � cot g� ,

P
 = − i � �
,
�8.12�

nd the Hamiltonian observable is

H = −
�2

2R2�� �2

��2 + cotg �
�

��
� +

1

sin2 �

�2

�
2
 . �8.13�

It is known that for this case with constant curvature K=R−2�0 and potentials A=V=0 the
imension of the symmetry algebra is maximal; here this is five. The table of the coefficients of

he symmetry generator N̂�t� for the Schrödinger equation with Hamiltonian �8.13� is the follow-
ng:

�8.14�

Given the definition �6.12� of the symmetry generator N̂�t�, it is clear that the first symmetry
orresponds to the conservation of the energy observable. The three last ones are interesting, but
lso of a purely classical origin.

�Xj
� ,Xj


� , j=1,2 ,3 form a basis of the Killing vector field Lie algebra for S2, an homogeneous
anifold. Those vectors Xj are proportionals to the quantum angular momenta, known to be a

asis of SO�3�, the group of isometries �rotations� of S2:

Lx = i � �sin 

�

��
+

cos 


tg �

�

�

� � i � �sin 
,

cos 


tg �
� � i � X1, �8.15�

nd correspondingly for Ly ,Lz. The three vectors Xj solve the determining equation �1� of Propo-
ition VI.1 which reduces here to Killing’s equation

��Xj

 + �
Xj

� = 0, j = 1,2,3. �8.16�

he last symmetry of the table �8.14� corresponds to the conservation of the angular momentum
P
.

The integrability of the underlying classical system is built on the existence of the two
onstants of motion H and P
 allowing to foliate the data space by a two parameter family of
wo-dimensional tori.

. An example of Goldstein

In Goldstein’s Classical Mechanics �1980�, �p. 430�, the problem 2a� consists in showing that,
or a one-dimensional classical system with Hamiltonian

H�q,p� =
p2

2
−

1

2
q−2, �8.17�
here is a time-dependent constant of motion of the form
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n =
q

2
p − tH . �8.18�

his is the case where M =R ,A�q�=0, V�q�=− 1
2q−2and �8.18� shows that

X�q,t� =
q

2
, T�t� = t, ��q,t� = 0.

he determining equations �1� and �2� of Proposition IV.3 are trivially satisfied and the “classical
imit �=0” of �3� holds as well, so n is indeed a �classical� constant of motion. Let us recall that
here is nothing exotic about time-dependent classical first integrals, as shown by the ones asso-
iated with Galilean boosts.

. Lewis and Riesenfeld invariant

This is a quantum invariant, discovered in 1969 �Ref. 52� for the harmonic oscillator with
ime-dependent frequency, i.e., with classical Hamiltonian �M =R�

H�q,p,t� =
1

2
p2 +

�2�t�
2

q2. �8.19�

t can be shown that this invariant is of the form �6.32�, with

X�q,t� =
Ṫ

2
q, �̂�q,t� = −

T̈

4
q2, T�t� = �2�t� ,

here ��t� solves the nonlinear equation

�̈ + �2�t�� −
1

�3 = 0.

etails can be found in Ref. 53.

X. CONCLUSIONS

Our framework is founded on a dynamic reinterpretation of the symmetry group of the
chrödinger equation, itself very close to the one of the associated heat equation.

Given the fact that this group was computed by Lie around 1890, a number of the tools we
sed here are, indeed, quite old. The free Lie algebra can be found in most of the textbooks on Lie
roups analysis of PDE published since 1970 �for example Refs. 15, 16, and 54�, often with
ommentaries about the obscure physical interpretation of most explicitly time-dependent trans-
ormations, notably those presented as trivial in our Section V. Kuwabara’s result28 �1984� �dis-
overed by us after the redaction of the present work was almost finished� is especially relevant,
s it shows that the Lie algebraic structure for quantum �and classical� symmetries is time-
ependent. He found, in particular, the form �6.12� of the symmetry operator, without regarding it
s a consequence of a Nœther theorem or trying to relate it with a Lagrangian framework.
lthough we could not find a clear statement that the associated quantum first integrals should be
nderstood in the sense of the Heisenberg picture of quantum dynamics, such a statement may
ell already exist in the vast literature on the subject, but is certainly not common knowledge in
athematical or theoretical physics.

The specific contribution of our indirect Euclidean approach lies, curiously, in the physical
nterpretation it provides of many time-dependent symmetries, through their elementary meaning

69
n stochastic analysis.
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The simplest illustration is provided by the one-dimensional �n=1� free case �A=V=0� and

he symmetry associated with the coefficients X=−t ,T=0,�=x of the symmetric generator N̂�t� in
4.7�, corresponding to a simple solution of the system of equations of Proposition IV.3. This
ymmetry corresponds to the one-parameter family of solutions

���x,t� = e�i/����x−��2/2�t���x − �t,t�, � � R �9.1�

f the free equation i� ��� /�t�=−��2 /2���, quite familiar in the context of the Galilean invari-
nce of this equation.55

Let us rewrite �9.1� as

���x,t� = �e�N̂�t����x,t� , �9.2�

nd expand in � this expression when � is the trivial �unnormalizable� free solution if �t=1. On
his “state,” the space–time observables of momentum and energy vanish and the one associated

ith N̂�t� reduces to the phase � �cf. �4.18��. We find

���x,t� = 1 + �x +
�2

2!
�x2 + i � t� −

�3

3!
�x3 + 3i � tx� + ¯ . �9.3�

By successive taking of �� /��� at �=0 we obtain a collection of constant space–time observ-

bles n1
N̂n

�x , t���n�x , t� ,n�N, each, indeed, solution of Dt�n=0.

Now N̂�t�= �−tP�t�+Q�t�� itself is certainly a trivial quantum first integral, namely the initial
osition observable �since Q�t� and P�t� are solutions of the free Heisenberg equation of motion�
nd the N̂n�t� ,n�N, reduce to the successive powers of this trivial dynamical information on the
ree quantum system.

On the Euclidean side, we are dealing instead of �9.1� with the one parameter family

���q,t� = e�1/����q−��2/2�t���q − �t,t�, � � R �9.4�

f �positive� solutions of the free heat equation �7.11�. It corresponds to the Euclidean counterpart
cf. paper I�

NE�t� = t
�

�q
− q �9.5�

f the real time symmetry generator N̂�t�. The above unphysical state �t turns into the trivial
olution �t=1 of the free equation �7.11� whose probabilistic role becomes fundamental. Indeed,
ccording to �7.19� and �7.22�� the associated well-defined diffusion Zt reduces to the one-
imensional Wiener process with diffusion coefficient �. Notice that the corresponding solution of
he free adjoint heat equation �7.7� is, then, the integral kernel �t

*=h0�x , t ,q� of this equation.
ince the relation between �t and �t

* is manifestly not the Euclidean counterpart of a complex
onjugacy, this means that for the Wiener process itself, the time invariance of the lhs of �7.12�
with an appropriate pair of positive boundary conditions� is the basis of our probabilistic inter-
retation of a complex quantum probability amplitude.

Now let us consider

h��q,t� =
��

�
�q,t� . �9.6�

If Zt is the diffusion, of law P, built from � using �7.19�, it is easy to show that h� is a strictly
ositive Pt-martingale of Zt, i.e., satisfies Dt h��Zt , t�=0. Denoting by Zt

� the new diffusion, of law
P�, built from ��, one shows easily that P� is absolutely continuous with respect to P, with

adon-Nikodym derivative dP� /dP=h�. In the case of the Wiener process, h� is the exponential
44,49
artingale of this process, a basic tool dating back to the foundations of stochastic analysis.
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he family of Pt-martingales resulting from the successive taking of derivatives � /�� at �=0,
amely 	1,q ,q2− � t ,q3−3� tq , . . . �, coincides with the familiar Wick product of the Brownian
otion56 which is, therefore, reinterpreted as the probabilistic counterpart of the above-mentioned

rivial dynamical information on the free quantum system provided by Nœther’s theorem.
Thus stochastic analysis may help, indeed, to understand some conventional aspects of quan-

um dynamics.
The version of Euclidean quantum mechanics advocated in paper I is known to be valid for a

lass of Hamiltonians much larger than the one considered here �cf. Ref. 57� and it is expected that
any ideas expressed here will survive in more general contexts �cf. Refs. 70 and 71�.

Although, as shown here, the Riemannian formulation of our results is quite natural, the
roper geometrical framework of this method is distinct. It should be regarded, in fact, as defor-
ation of classical contact geometry.58 This viewpoint also has serious computational advantages
hen adopted in the Euclidean context where the probability measures make sense, and quantum

ymmetries are reinterpreted as symmetries of families of diffusion processes.

. ERRATA FOR PAPER I

1� In Proposition 3.6 of Ref. 1 �cf. also Ref. 59�, the term �
−Xq ·B, i.e., the variation of the
drift, is ambiguous. It should be understood as

�


�qi −
�Xk

�qi Bk

�where the summation convention is used�.
2� The “illustration of the central role of time symmetry,” mentioned in p. 331 of Ref. 1 is

wrong: the function n�q , t� �respectively n*�q , t�� solves our heat equation �7.11� �respec-
tively, �7.7�� and so are Pt �respectively, Ft� martingales of the starting process Zt, t� I. But
they are not strictly positive and so cannot be used as h-functions, in the sense of Doob’s

h-transform. However, when the Nœtherian symmetry operator N̂ is positivity preserving,

���q , t�=e−�N̂��q , t�, where � is the positive solution of �7.11� associated with Zt, is a
one-parameter family of solutions of the same equation. Then h��q , t�= ��� /���q , t� is, in-
deed, the positive martingale needed for the h-transform producing the family of Bernstein
diffusions Zt

� associated with this symmetry �cf. Conclusion here, Sec. 6, Part 2 of Ref. 44,
and Refs. 31, 32, and 58 for much more�.
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