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For the largest class of physical systems having a classical analog, a new rigorous,
but not probabilistic, Lagrangian version of nonrelativistic quantum mechanics is
given, in terms of a notion of regularized action function. As a consequence of the
study of the symmetries of this action, an associated Ncether theorem is obtained.
All the quantum symmetries resulting from the canonical quantization procedure
follow in this way, as well as a number of symmetries which are new even for the
case of the simplest systems. The method is based on the study of a corresponding
Lie algebra and an analytical continuation in the time parameter of the probabilistic
construction given in paper I of this work. Generically, the associated quantum first
integrals are time dependent and the probabilistic model provides a natural inter-
pretation of the new symmetries. Various examples illustrate the physical relevance
of our results. © 2006 American Institute of Physics. [DOI: 10.1063/1.2199087]

I. INTRODUCTION

This paper is the continuation of the one, referred hereafter simply as paper I, whose subtitle
was the “Theorem of Neether in Schrodinger’s Euclidean quantum mechanics.”' There, a proba-
bilistic (i.e., “Euclidean”) generalization of Neether’s theorem of classical mechanics was pre-
sented, for a class of Lagrangians quadratic in the velocities, and involving a special family of
time-symmetric R3-valued diffusion processes. At the end of paper I, our physical motivation was
indicated: after an appropriate analytic continuation in the time parameters, the main conclusion of
the construction was preserved as a theorem on quantum symmetries, in the Heisenberg picture. In
other words, although the probabilistic content of the theorem of Ncether was destroyed by this
continuation in time, its geometrical one survived.

The purpose of this second paper is to describe in a detailed way the reason of this apparently
surprising conclusion. This will provide us with a new Lagrangian version of the quantum theory
of such a class of systems. The symmetries of the associated new concept of regularized action
functional will be expressed as a quantum version of the theorem of Ncether. All the unusual
regularizations introduced on the quantum side will correspond to the ones given for free with the
underlying diffusion process, whose probability measures make sense only in the Euclidean set-
ting. In point of fact, it will be shown that the corresponding symbolic “quantum diffusions” in
real time have all the properties of the heuristic ones manipulated by Feynman in his famous path
integral method.” In this sense, our indirect method is very much along the line of Feynman’s
space—time approach. It will be shown that we obtain many more quantum symmetries in this way
than using the usual theorems on quantum symmetries, even for the simplest class of elementary
integrable systems. Those “new” quantum symmetries are the keys of basic relations with sto-
chastic analysis. A general argument of Lie group theory assures us, in fact, that all quantum
symmetries arise in this way.

The organization of this work is as follows.
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Section II introduces the notions (implicit in Feyman’s approach) of (complex-valued) space—
time observables associated with a family of regular quantum observables and of quantum deriva-
tives along a state. Although these quantum derivatives are not observables in the sense of Von
Neumann, they constitute a key tool of our construction. Under the quantum expectation, such
differential operators behave like derivations.

Then, we define the concept of quantum conditional expectation in a state, given a space—time
point. In spite of the fact that this concept shares a number of properties with its counterpart in
probability theory, we show why it is not a conditional expectation in the probabilistic sense. The
associated “quantum diffusions” are precisely the ones introduced by Feynman in time discretized
manner.

Section IIT is devoted to the definition of the regularized action function for this class of
systems and its relations with quantum dynamics.

The study of the symmetries of this quantum action is the subject of Sec. IV. In particular, the
definition of the invariance of the action corresponds to a natural regularization of the classical
notion. The symmetry group of the underlying Schrodinger equation is used in an essential way
here, and the regular concept of constant observable of the motion is adapted to our calculus on
space—time observable (or quantum calculus, for short).

In Sec. V the construction is specialized to the case of Hamiltonians which are polynomials of
degrees =2 in the position and momentum observables. This is the case where all the calculations
are explicit. Although this class is supposed to be completely known, our method provides, even
for the most elementary systems, more symmetries than the traditional approach. For general
Hamiltonians the main results hold true; but no explicit basis of the symmetry algebra can be
found, in general and, therefore, the method is more indirect.

Section VI is devoted to the analysis of the content of our Neether theorem in a Riemannian
manifold.

In Sec. VII we come back to the relation of what we did with the ideas of Feynman and show
in what sense the content of the present paper is a natural counterpart of paper I, where stochastic
analysis is involved in an essential way.

Finally, the last section is devoted to a short collection of explicit examples of quantum
symmetries with some emphasis on those not directly accessible to regular methods. Of course, as
soon as we know it, the theorem of Neether in quantum mechanics can be verified without any use
of our detour via probability theory and stochastic analysis. However, it is argued in favor of this
detour for the intuition it provides, in the same sense as Feynman’s path integral approach has
proved to be very useful for the discovery of many new aspects of quantum theory. A short Errata
for paper I will conclude the present work.

Il. THE CONCEPT OF QUANTUM MECHANICAL CONDITIONAL EXPECTATION

Let H be a self-adjoint, lower bounded Hamiltonian operator in the Hilbert space H
=L*(R",dx) of square integrable complex-valued function over R”. Consider the one-parameter,
strongly continuous groups of unitary operators U,: H—H,t e R,

U, = e—(i/h)tH
t— )

with the reduced Planck constant . Then for any ¢ in the definition domain Dy CH of H,

b= U, (2.1)
solves the Schrodinger equation with the initial condition ¢:
Y,
i h — =H,,
l ot 1A
(2.2)
ho= .
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Let consider a one-parameter family A(z),7 € R, of self-adjoint operators in . Assume that
Dy DHDy and A(1)Dy C Dy, so that the commutators [A(7),H]=A(1)H—HA(t) are well defined
on Dy. Let 0<T=o and define D}1) =D"(¢) by D(1)= N7=ar=0Da(+ar- In particular we have
DA(t)CDA(,). If A(r) is weakly differentiable on D4(¢) with respect to the time parameter ¢
€[0,7),then we can compute

1im<l//,A(t+ A - A(r)

_ A
Al (,D)—St(',//,(ﬁ).

At|0

It exists for any € H, ¢ € DA(t), where (-, -) denotes the scalar product in 7, and is linear in the

second vector. Provided that DA(7) is dense in H,sf:H X DA(t)—C is a densely defined sesqui-
linear form.

Now let us define, for , € H and @, € D). 1y, ()= (1, A() @,).

When ¢, € D*(1) and ¢, is the solution of (2.2) with ¢, € D,(),T>1=0 and Ar>0, we can
compute the relative time increment of ,W(t) as follows:

Iy (t+ A0 =1, (1)
At

Iy (t,A1) =

1
=A—t[(¢z+A,,A(t +AD@ar) = (At + A1) @rip,)

+ ('ﬁr’A(t +Ar) ()Dt+At) - (wt’A(t)qDl+At)
+ ('r/ft’A(t)(PHAt) - (l//,,A(l‘) QDt)]-

If, in addition, ¢,=U,¢ with ¢,= ¢ € D(H) then the strong derivative ¢, of ¢, with respect to
t exists and ¢t=(1 /it)He,. But, by assumption, He, € D,(,. This, inserted in the above relative
increment of 7, (1) gives, when Az|0, using the strong differentiability of ,,¢,, the strong

continuity of A(f)¢, on D*(1), the fact that ¢,,, € D*(¢) and that A(z) is weakly differentiable on
DA(n),

lim 10,0 = (W A(D¢) + A 0) + (YA ).

By (2.2), the corresponding equation for ¢, and the further assumption D(f) D HDy,, we see
that the latter relation can be rewritten as

: _(L i 1
iltlf}) 1y (A1) = (i w1 t!/t,A(t)tpt) +e&, (Y @) + ('/ft’ ; ﬁA(t)H%) :

Since A(t)Dy C Dy by assumption, and so A(?) ¢, € Dy, this reduces, by the self-adjointness of
H, to

.L(lﬂn [A(ILH]%) + e;i(’zbt’ ot) = i(lﬂ,,A(l)(p,), (2.3)
ih dr

where we used the definitions of 7, ,(¢,At), I, ,(7), and éf(zﬂt,go,).
We shall denote by &5(¢,, ¢,) the sesquilinear form on left-hand side (lhs) of (2.3). So

d
ep( @) = a(lﬁpA(f)‘Pt) . (2.4)
We recall that for T>t=0, ep(1, @,) is well defined if ¢, € DA(r) and A(f)Dy C Dy,

Definition Il.1: Let ¢ be in 'H and such that ¢, € Dyg,). The complex-valued space—time
observable ait(x, 1) associated with the family of quantum observable A(t) in the state ¢, is defined
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forall xe R",reR,s.t.¢,(x) #0, by

(40e)x)

A =
w0 o)

(2.5)

We shall consider, for any x,t, versions of ¢,(x) jointly measurable in 7€ R, x € R”, and
denote them again by ¢,(x). For x, such that ¢,(x)=0 we set aét(x,t) =0. Therefore, for any ¢, in
H and @, in Dy, we have

(A1) @) = YA @, dx + f pAD@ dx= | A1), dx,
NY

f)e H)

where N¥={x € R"| ¢,(x)=0},(N¥)*=R"-N¥.
Using (2.5), it is clear that, by construction,

(’pt»A(t)‘Pt)=f l)_bt(pta?pldx' (2.6)

Assumption on the zeroes of the wave function

We shall need that N¥ has zero Lebesgue measure. Sufficient conditions for this are known in
terms of assumption on H. See Sec. V.
Using (2.3) and (2.4) and our assumption that N has zero Lebesgue measure, we get

1 ; 1 -1 ; _
SD(dlt’ (Pt) = ._(11[/[7[A(t)’H](pl) + 8?('7[/;’ (Pt) = _f ‘//t(Pt_[A (t),H]<Pt dx + 8?/%(%@[’ (Pt)s
lﬁ lﬁ (N;P)c ((h
(2.7)
where we have defined sf/ ¢, for f/ @, € H and g € DA(1), by

I{A(HAL‘)—A(t)} )
LTl Auxan-4W1 )

t

At|0

Now suppose that, in the strong sense on D*(t), there exist a linear operator JA(z)/dt such that

i A(t+Ar) - A(r) ﬂA(t) O=t<T
m—————————— @, = — s = .
AtlO Ar br ot Py

Then, for ¢ € H, @, € DA(t), using the definition of &”(¢,, ¢,),

0A ;
<‘/’t,_(t)‘Pt) = 8?(‘/6’ ®).
Jat
Also, for any ¢, € DA(1),
JdA 1
—(t)+ —|A(1),H
(20+ Law.m)e
is well defined [recall that we have assumed HDyC D, and A(t)Dy C Dyl. According to the

definition (2.5), air. @, =A(1) @, is also well defined. Therefore in the sense of the identification of
the corresponding Bochner integrals,
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., 4 0A 1
- c@)=—() e, + FA({)Hg,,
at(atpt ®) &t( )¢, i (NHe,

for any ¢, € D*(f) and Lebesgue a.e. t €[0,7) [recalling our assumption that D4(¢t) D HD,,;]. From
this it follows that

0 1
(5—£H>(a2t~ @)

is well defined and coincides, for Lebesgue a.e. t, with

JA 1
(E + i_h[A(t)’H]) @

Now for any x e (N¥)¢ we defined D,a‘;t by

1 1
(Datt)(x) = ;(% - i_hH> (- e)). (2.8)

Using the relation above, we get first on (N¥)° but then in the L*(R")-sense

1{oA 1
DA=—<— —At,H) } 2.9
iy, o &t+ih[ (0.H] |, (2.9)

From this, for all = € Dy we obtain

A 1 d
(W (D)) = (w(j—t + E[A(t),H])sot) = L (AWDe).

where (2.7) and (2.9) have been used. All equalities hold first for Lebesgue a.e. 7 but can be
extended to all ¢ if both sides of the equalities are continuous in ¢.

In summary, we have proved the following:

Proposition 11.2:

Let H be a self-adjoint operator in H=L*(R",dx) and A(t) a one-parameter family of self-
adjoint operators in H with A(t)Dy C Dy and D*(t1) D HDy. For ¢ € Dy, consider ¢,=e~ """ g
and assume that NY has a zero Lebesgue measure. Suppose that dA(t)/ ot exists in the strong sense
on DA(1). Define D,ai[ by equations (2.8) and (2.9). Then, for any ¢ € Dy and ¢, € Dy, with i,
satisfying (2.2), we have

d
d_t({/ll’A(t) @) = (, (Dtaét) @), (2.10)
for Lebesgue a.e. t € R. If both sides of (2.10) are continuous in t, then (2.10) holds for all t
e R.
Corollary I1.3:

If A(¢) is a quantum constant of motion of the system with Hamiltonian H, defined on a dense
domain D CH, in the sense that

dA 1
(—(t) + .—[A(t),H]>X: 0 forany X e D,
at if
then the space—time observable associated with A(t) satisfies

A _
D,a(Pt—O,

for all @, € DA(1).
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Proof: By (2.9) we have D,a2t=(1/go,)A(t)qo,=0, for

AW =220+ — AW, H).

A(r) is a closable operator since A(r), (JA/dr)(r) and H are all symmetric, defined on a common
domain.
By approximation of ¢, € DA(t) through vectors in D, and since A(¢) is a quantum constant of

motion, we see that A(r) ¢,=0, where the overbar denotes the closure. Since ¢; is in the domain of
A(t), the conclusion follows. O

Remarks:

(1) If we call quantum space—time observable any operator-valued map (x,7) — g(x,f) measur-
able in the sense that (x,7) — (¢,g(x,1)¢) is measurable for ¢ € H,¢ € D a dense domain
and g(x,?) self-adjoint in H, we can define D,, r € R, on the set of such observables g by

1[0 1
Dg=—|—-—H s 2.11
8 cpt<(9t i )(é“Pt) ( )

whenever the right-hand side (rhs) makes sense [with (g¢,)(x) =(g(x,1)¢,)(x)]. Then, for g

:aét, D,aét coincides with (2.9). If g, € Dy, dg/dt exists in the strong sense on Dy and

D50 D Dy, then the ths of (2.11) is well defined (for ¢, € Dy). However, we are going to

show that there is a more natural definition of D, regarded as differential operator densely

defined in an associated Hilbert space.

(2) D, acting on space-time functions aéz, for example, should not be confused with the familiar
Heisenberg derivative D acting on the family of self-adjoint operators A(r) and defined

heuristically by

1
DA(1) = %(t) + i—h[A(t),H].

Indeed, according to (2.9), the relation between these two derivatives is Dtafpt
=(1/¢,)(DA(t)¢,). In particular, Heisenberg’s derivative D does not depend on the state ¢,
In order to avoid any confusion, from now on we shall call D, the quantum derivative along

@r-

(3) Consider two arbitrary observables A and H, time independent and with Dy=Dy=D, a
common dense domain in H, invariant under A and H. We say that A and H commute, and
write [A,H]=0 whenever for any f, g bounded and Borel measurable one has f(A)g(H)

—g(H)f(A)=0.

A necessary and sufficient condition for this property is, for example, that

[ei(a/ﬁ)A’ei(t/ﬁ)H] =0 v a te R.

(cf., for example, Ref. 3). If A is essentially self-adjoint on a domain D, invariant under ei(”ﬁ)H,

VteR, then A and H commute if

A([)X = ei(”ﬁ)HAg_i(ﬂh)szAX, v X € D and 1 € R

So it suffices indeed to show that
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d ) ) d
= l(t/ﬁ)HA —i(t/h)H - — A
dl‘(d)’e e X) dt(¢r7 X))

1
= ( &, %[A(t),H]XJ

=0

with

= MHG 3 = = WWHY " and Y x, ¢ in D=Dy N Dy,

in order to prove that A and H commute (in the sense of the above-mentioned sufficient condition)
and therefore that A(z) is a constant of motion. According to the Corollary I1.3, when this holds,
we have D,a$t=0.

Lemma 11.4:

Let @, be the solution of the Schridinger equation (2.2) with initial condition ¢ in L*(R") and
let N¥ be a zero Lebesgue measure set. Then the quantum derivative D, along the solution ¢, of
the Schridinger equation (2.2) with initial condition ¢ is a densely defined differential operator in
L*(R", (Pt(x)|2 dx).

Proof: Let ¢, be the solution of the Schrodinger equation (2.2) with the initial condition ¢
e L?>(R",dx)="H and consider the weighted Hilbert space L*(R",|¢,(x)|* dx). Since, by assump-
tion, V¥ has zero Lebesgue measure, the two Hilbert spaces are unitarily equivalent through the
transformation

U,: L*R",

s

@(0)* dx) — L*(R",dx),

8> 8¢

Let K be the space of R-indexed families of functions f=(f"),.p with each f* strongly
continuously differentiable from R into H, such that

t+Ar) _ A1)
i f(l) = ]imﬁ—f{ c

Hs
ot Ao At

where the limit is taken in the strong H sense. Let us define the partial differential operator

J 1 "
Cor ih

on the subset Ky of K consisting of those (f1”),. such that the mapping x € R~ £{(x) belongs
to Dy for all r e R. We can also define the Hilbert space W%(H,H), consisting of the functions
F=(f"), g, with f € K such that f(x), (3/3)f"(x) e LA(R,ds) for dx a.e., x € R”. The operator iQ
is well defined on IC?,EU(’) e Ky t—>f0e C(l)(R)}. This operator is symmetric in W%(R”,H), ona
dense domain K3,= Dy (S for “Schrodinger”), independent of time.

Let /C, be the “rth copy” of L*(R",dx) so that ) K, for any 7 € R. Let us consider the image
under U;tl of I, U;:IC, is made of all functions of the form f(x)/¢,(x), with f e I, and
(x,1) & NY.

UTPI can be extended to an operator [7;1 from K into L*(R",
t t

@,(x)|* dx), defined by

FANE))
@,(x) '

e,(x)? dx), (7;: is unitary from L?*(R",

(U f)x) = (1) & Nf. seR.

Restricted to L2(R”,

@,(x)|* dx) to L*(R",dx), since
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”U;}f(S)||L2(H”,|<pt(x)\2 dx) = |If<S)||L2(H",dx), Vs,teR,

and its inverse is 174, r/‘“)=(pfs).

We can look at the image of the operator Q, in X under l~/;: as an operator Q, whose action
@,(x)? dx) is given by 17;: Qtf]q,t: 0, on DCL*(R",|¢,(x)|* dx),D being
such that Uy,De Dy, Since iQ,=id/dt—(1/h)H is symmetric on the dense domain Dg of
W%(R ,H), this means that {Q, is symmetric on the dense domain ﬁTp:DS in L2(R* X R,dx dr). On

this domain, Q, is given by

on elements of L?>(R",

A~ 1[0 1
QU, f= Z,(&_t - EH)f’
with f=(f1),. € Ds.
Dy contains, for example, the subset Dg consisting of all families f= (f9),. such that
F9() as well as (9/dr)f\(-) are both in Cj(R") [if DyD Cy(R")].
Setting h= [fptlf for fe Dg we see that

om="(2 - L)
M= ot\ar ik )

Comparing with (2.11), this means that, on f/TPng we have indeed

0,=D,. (2.12)

O
Remarks:

(1)  Suppose that H is the Hamiltonian for a unit mass and charged particle in an electromagnetic
field, i.e., H=—(%%/2)[V-(i/ #)A]*+V on CJ(R") or

mo it -
H=—EA+zﬁA~V+EV -A+5||A|| +V, (2.13)

where A:R"—R" is the vector potential and V:R"— R the scalar potential, both continuous,
A being C', and such that H has a unique self-adjoint extension, also denoted by H (cf., for
example, Ref. 4 for sufficient conditions such that this holds). In this case, using (2.11), we
obtain explicitly a quantum derivative along ¢, (in the sense of Lemma I1.4) given by

J v i
D,=—+<—ihﬁ—A>~V—l—A (2.14)
at @ 2

on the domain of functions of the form ¢- D, which is dense in L>(R", |¢,(x)[?> dx). Accord-
ing to our Remark 1 after Corollary I1.3, D, is also defined on a larger set of functions in
L*(R™,|@,(x)|?> dx). For example, denoting by ¢ the function

\%
R"XR—R", Vi, wehaveDg:iﬁﬁ—A
b:
(x,0) = x

which is well defined, provided

f ¢ (x)x(He,)(x)dx < ..

This is the case under weak restrictions on the vector and scalar potentials A and V.
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(2) We shall also need the complex conjugate of the operator D,, denoted by D,. On complex
space—time observables of the form a‘ét, one has, by definition,

— 1(0 1
Bt =—(—+—H) ).
g, AV (@ (p’)

Proceeding as before in connection with (2.12), i.e., considering vectors & of the form l~]"¢1 f,
t
with f e DO, we have

1 1

—(i+ ,—H)(;o,h). (2.15)

Dh
g \ot ih

In particular, when the Hamiltonian H is of the form (2.13), 5, reduces on U (;Dg to the
t
differential operator

— 4 Vo if
D,=—+<iﬁ¥—A>-V+’—A (2.16)
ot &, 2
defined on the elements {ﬁ;ng},EH of W2(R",H). These elements form a dense domain of
t
W%(R”,H), as discussed in the proof of the Lemma II.4. Using the terminology introduced

there, D, will simply be called the quantum derivative along &,.
(3) It follows clearly from (2.11) and (2.15) that

Dg= Btg_ >
where the lhs denotes the complex conjugate of D,g.

Motivated by Born’s probabilistic interpretation of the wave function, let us introduce the
natural definition.

Definition I1.5: Let f=(f),cp, with f(-) in L'\(R",|¢,(x)|* dx) and f* measurable in t. The
quantum (absolute) expectation of f in the state ¢, solving (2.1), denoted by (f}%, is the integral

N, = f FO00 )| dx (2.17)

and we shall refer to |@,(x)|* as the density (with respect to dx) of the quantum probability in the
state ;.

The terminology chosen for D, and D, is due to the crucial observation that, under this
quantum expectation, these differential operators behave like derivations.
Proposition 11.6:

Let f=(f"),_p, g=(g"), 1 be in the domains of the quantum derivatives D, and D, and with
compact support in the space variables. Then (f -g>¢t is differentiable with respect to the time
variable and the following Leibniz rule holds:

d _
38 =D g+ f-Digg. (2.18)

In particular,

d _

{6, = (D= D) (2.19)
Corollary I1.7:
If f, g have supports with respect to the time variable strictly contained in the interior of an

interval [ty,t;] for some ty,t, € R, then D::—ﬁ, where * denotes the adjoint with respect to
l@(x)[* dx dr on R" X [19,1,].
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Proof: Integrating (2.18), we obtain
fn 1 B
f (Dif - 8, dt=—f (f+Dyg),, dt.
to ‘o

Proof of Proposition 11.6: By definition, (d/dr){(f"g),, denotes

. <f<t+At)g(,+At)><P,+A, _ <f(t>g(t)>qa,
lim .

At]0 At

The term under limy, |, means explicitly

1
A_z{ f Srrangltan g ()] dx - f ﬂ’)g(‘)lcpt(x)de]

1
L g oo b

+ f £ — g)|(x), 40 ]* dx

+ ff(l)g(t)(|¢t+m(x)|2 - |@z(x)|2)dx:| .

The first term on the rhs converges, when Ar]0, to [(fPg®)(x)|¢,(x)]> dx by the dominated
convergence theorem and the hypothesis that £ is strongly differentiable in L*(R",dx) [here we

denote (9/1)f® by f for simplicity]. Similarly we see that the second term of the rhs converges
to [0 dx.

For the third term we use again the dominated convergence theorem and the fact that, in the
strong L*(R",dx) sense,

d o2 d _ 1 e -1 u
— = — . =— . + - )

d P; dt@r b ih br Pr ‘Ptih b

where the Schrodinger equation has been used, together with the fact that ¢,-H¢, as well as
HG,- ¢, are in L'(R”,dx) and £, g® have compact support as functions of the space variable. In
other words the rhs above becomes

LHe 1Hg,

f{f'(t)g(l)+f<’)g'(t)+f(t)g(t)<iﬁ P i ¢ )}(x)|(pt(x)|2dx

=f (th(t)'g(t)+f<t)5tg(t))(x)|¢t(x)|2 dx,

where the definition of D,,D, have been used together with the self-adjointness of H, in order to
simplify the term involving H(f"¢,).

The second part of the calculation follows from the first one by approaching in the
LX(R",|@(x)|> dx)-norm fV=1, respectively, g"’=1 through Cj;(R") functions. O

Remarks:

(I) When the Hamiltonian H is of the explicit form (2.13), the relation (2.18) can be given a
more illuminating form if we use exclusively one of the quantum derivatives,
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d .
86, = (D) - g+ [(D )y, 1 (VF Vg, (2.20)

=((Df) - g+ (D)) +iTi (Vf-Vg)g. (2.21)

Proof: This follows directly from Proposition I1.6, using the explicit expressions (2.14) and
(2.16) of D, and D, available for the Hamiltonian (2.13). O

(2) Relations like (2.20) and (2.21) hold, in fact, also without integration with respect to
| (x)|* dx.

Proposition 11.8:
For f.,g in a dense domain of the form ,-DgC L*(R",
Hamiltonian of the form (2.13), one has

@,(x)|* dx) (cf. Lemma I1.4) and an

D(f-g)=(Df)-g+f(Dg)—-ihVf Vg, (2.20")

D(f-8)=(Dif)-g+f(Dg)+iti Vf- Vg, (2.21")
for any (t,x) such that ¢,(x) # 0.

Proof: Equations (2.20) and (2.21) can be written, for any ¢,=U,p, and any (f,x) S.t.
o(t,x) #0, fA(x,0) | @, (x)[> dx=0 with A(x,))=D(f-g)—-(Df)g—f(D,g)—-inVf-Vg, and so equa-
tions (2.20") and (2.21') hold a.e. with respect to dx. Alternatively, one can use directly the
definitions (2.14) and (2.16) to show that the conclusion holds. O

Equations (2.20") and (2.21") show that the quantum derivatives behave, in fact, like quantum
deformations of derivatives in the (commutative) algebra of families of functions f=(f"),_y with

9 e Cy(R"). To regard D, and D, as quantum deformations of derivations will prove, later on, to
be a very natural interpretation.

Now we are going to introduce the quantum counterpart of the probabilistic concept of
conditional expectation given a space point x € R” in the past time r=0.

Definition 11.9:

Let g=(g'"), . be complex valued, measurable functions defined on R" and such that g'”
X ()i (-) € L2(R",dx) where, as before, r,=U . For 0=t=r and (t,x) such that ;(x) #0 [or,

for short, (t,x) “i-admissible”] let us define the quantum conditional expectation M;{’x in the state
o, given (1,x) and evaluated at g'” by

MY (7] = () (U,(g ) (). (2.22)

Let us first assume that the Hamiltonian H is time-independent and that the evolution group
U,_, has an integral kernel, denoted by

k(x,7—1,q) = (TP o), x,q € R", 7> 1.
Then the definition (2.22) means
Mg = (h(x))! f k(x, 7= 1.9)8'"(q) ¥(q)dq. (2.22")

which is well defined for any ¢~admissible (z,x) € R* X R". We shall denote by

p(t.x,7,dg) = () 'k(x, 7= t.9)¥(q)dgq, t=1 x,q € R", (2.23)

the integral kernel associated with (2.22") and refer to it as the forward quantum transition kernel
[“forward” because the conditioning x is in the past 1= 7 and also because the initial quantum
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probability density |i,(x)|* is propagated towards the future by p]. More precisely since, for 7
>t the kernel k(x,7—t,q) coincides with the retarded (or “casual”) propagator

k(e 7= 1,9) = 6(7—1)(e” ") (x,q),

(where 6 is Heaviside’s distribution) i.e., the distribution solving

J
(—iﬁ 07— +H>k+(x,7'— tgq)=—ih 8g-x)8(t-1),
T

Eq. (2.23) means that

p(tx,7,dg) = ((x) 'k, (x, 7= 1,9),(q)dgq. (2.23")

Let us observe that sufficient conditions for the existence of k and therefore p as continuous
functions in all the variable are known; cf., e.g., Refs. 5, 6, and 60.

We remark that when H is time dependent, Eq. (2.23) still holds with k replaced by the
integral kernel of the two-parameter family of unitary operators U(z,7), f,7€ R defining the
corresponding time evolution.

The main properties of the quantum conditional expectation of Definition 2.9 are expressed by
the following:

Proposition 11.10:

For all y-admissible (t,x) e RXR" and g=(g'")._p as in (2.22"), with 7=1,

(1) the quantum mechanical conditional expectation is linear: if «; € C and g,:(gfr))TeH,
i=1,2 as above,

fo[alg(lﬂ + aZgET)] = alex[g(lf)] + azM;J,jx[g(ZT)];

2) Mg’x[a]=a, aeC

(3) M=), =1,

@) (Mg Dy =g, =1

(5) when Mgfx[g(ls)g(;)], s=t, is well defined, then

MY g8 ]= g m [¢¥].
Proof: This follows from direct computations using the definitions (2.17) and (2.22). O
Remarks:

(1) We shall also need, for the same class of g=(g!”),.y as in Proposition I1.10, and any

-admissible (z,x) € R X R”, the definition (2.22) with ¢ replaced by  and U__, replaced by
U, 0<7=t,1ie,

M5 = (4(x0) (U g 9)) (). (2.24)

The properties of Mf’; are, of course, similar to the ones of M ,Lf’x.

Let us stress that, for the latter quantum conditional expectation in the state ¢, the condi-
tioning x is lying in the future of the time interval under consideration [i.e., 1= 7; this justifies
our alteration of notation with respect to (2.22)]. For this reason, we shall occasionally call
backward (respectively, forward) the conditional expectation (2.24) [respectively (2.22)]
when a confusion is possible between these two concepts. When needed, we shall denote by
p(7,dq,t,x) the backward quantum transition kernel associated with (2.24), i.e.,

p(r,dq,t.x) = Y@k (q.t — .x)(p,(x) ' dg, T=1, (2.25)
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for any (¢,x) y-admissible. Here, we denote by k_ the advanced propagator defined in terms
of the causal one by

k_(XI,S - u7x2) = k+('x27u - S’xl) . (226)

(2) Comparing the definitions (2.23’) and (2.25), it is clear that the relation between the forward
and backward quantum transition kernels can be expressed as

pltx,s,y)=p(s,y.t,x), s=t x,yeR" (2.27)

Definition 11.11:
Let f=(f),cp, (g¥)sep as in the definitions (2.22") and (2.23). The quantum (absolute)
expectation of their product f*- g in the state i, for t=s, is defined by

(1089, = (ML7]- g, (2.28)

=MDy, (2.28")

when M![f"]-g% e L*(|,(x)|* dx) and fOM}[g9] e L*(|¢(q)]* dg).
The consistency of this definition is verified by observing that equation (2.28) reduces, after
simplification, to

f f (1) g (0k(x,t = 5,9)f(q) (q)dq dx,

when the integral kernel (2.23") exists (since =s). On the other hand, using the forward condi-
tional expectation of (2.28"), this absolute expectation in the state i, reduces to

J f (1) g (k_(x,1 = 5,9)f (@) ¥(q)dq dx,

i.e., to the same expression as before, by definition of the advanced propagator k_ when t=s.
This duality with respect to the time parameter suggests to introduce the following two-

parameters family of operators Pil,sst associated with quantum conditional expectations:

P L[4, (0> dx) — L2(|i(g) | dg)
(2.29)

g(s)(-) — f g(s)(x)p(s,dx,t,q) = Mf/’/q[g(S)],

where the backward transition kernel (2.25) has been introduced and its “time reversed” family
P, s=t,

P, L*(|¢n(q))* dg) — L*(|¢h(x)[* dx),
(2.29")

1900 [ F2apts.edg) = M),
so that the equality between (2.28) and (2.28") can be rewritten as

(P ) - )y = (A7 (P gy, (2.30)

The properties of the operators P:’t (or P,,) for s=t are as follows:

(a) P:J are linear operators; as a map from R, X R, into densely defined, bounded operators
from L?(|14,(x)|* dx) into L*(|¢s(q)|* dg), (s.1)— P, is continuous;
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) 1P 82002 aor =g N2 o av

(¢) P,,1=1() where 1, is the function identically 1 in L*(|y,(x)|* dx) [with 1, the same in
L2(|l//z(61 > dg)] and P, 1)=1;

(d) =Id, the identity operator from L*(|,(x)|?> dx) into L*(|¢,(x)|* dx);

(e) P P P sS=t=u;

tu

P, P,’X_l(,) and PP, =1

We may summarize the situation as follows:

Proposition 11.12:

The two-parameters family of bounded operators P . and P, are dual from L(|4p(x)]? dx)
into L*(|(q)* dq) in the sense that for any {1 e Dp, and gWe DP - the relation (2.30) holds.
Moreover, the properties (a) to (f) are satisfied [where (a) to (e) have their natural counterparts
for Pt,s]'

The proof follows directly from the definitions (2.23") and (2.25) of the forward and backward
quantum transition kernels.

Remarks:

(1) Let f¥(-) be non-negative in L*(|,(x)|> dx). Then, clearly P;, does not, in general, transform
f9(-) into a non-negative element of L*(|¢/,(q)|> dg) since the backward quantum transition
kernel p is not even real. In particular, p(s,-,7,q) is not a measure, although it shares
manifestly a number of properties with probability measures.

(2) The equality between (2.28) and (2.28’) can be rewritten infinitesimally using the quantum

derivatives D, and D,. To do this, we need another property of these derivatives, which will
be the first result of the next section.

Let P; and P, a pair of 2-parameters family of operators satisfying the properties of Propo-
sition II.12 and p, p, respectively, their associated quantum transition kernels.

Definition 11.13:

The two dual kernels define a quantum diffusion if Vs<t,x € R",e>0, we have

(1) pls,x,t,8,(x))=0(t—s), where S (x)¢ is the complement of the sphere S,(x) of radius & and
center x.

(2) There is a C"-valued function B(x,s) s.t.,
f (g —x)p(s,x,t,dq) =B(x,s)(t—5) +o(t—s).
S.(x)
There is an n X n complex-valued function C(x,s) s.t.

f (g=x)(g=x)p(s,x,t,dg) = é(x,s)(t —s)+o(t—ys).
S.(x)

C will be called the quantum diffusion matrix and B the (forward) drift of the quantum
diffusion.
(3) There is a C"-valued function B(x,t) s.1.

f ) (g =x)p(s,dx,t,q) = B(q,0)(t = s) + o(t = 5),
S.(x

and an n X n complex-valued function C(x,s) s.t.

f . (q—x)(q—-x)"p(s,dx,t,q) = C(q.0)(t = s) + o(t - 5).
S.(x
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These properties are satisfied, e.g., for the kernels associated with the Hamiltonians (2.13)
Compare also Refs. 5 and 6. Indeed we have the following.

Proposition 11.14:

Let H be of the form (2.13) and its associated kernel k be such that

1
lim— | (g —x)R(g,x,As)k(x,As,q)dg =0,
Asl0As

where R(q,x,As)=0((qg—x)?)+0(As)? is a term in the Taylor expansion of the integrand ofé(x,s)
in the proof below. Let (q,t) € R"XR be y-admissible, where , is a regular solution of the
Schrodinger equation for H, admitting a Taylor expansion in powers of the space and time

variables around (q). Then a quantum diffusion corresponds to this solution, whose drifts and
diffusion matrix are, respectively, given by

. Vi
Blan=ih L) -Alg),

t

vy,
Blg.)=—ih 7‘%) —A), (231)

t
Clg.0=Clg,n=ihl,
where 1 denotes the n X n identity matrix.

Proof: By (3) and (2.23),

A 1
B(x,s) = lim— (g —x)p(s,x,s + As,q)dg
As|0AS 5(x)

1 _ _
=lim (q = %) (,(x)) " k(x,As,q) hy40,(q)dgq
As|0AS 56(x)

Vi,

(X)(g—x)+ #(x)As +0((g—x)%) + O(As?) | k(x,As,q)dg.

s l//S

o1
=lim— (g=x)| 1+
As]0 As 55(0)

We can easily verify the following properties of the integral kernel k(x, 7,q) of the evolution
group U, for the Hamiltonian (2.13):

1 1 . .
lim_ [1 - f R r,q)dq} =V AW+ AW+ V),

1
lim— | (q-x)k(x,7,q)dg=A(x),
710 TJ pn

1
lim—f (g-x)(qg—x)"k(x,7,q)dg=ih1.
R?

7|0 T

Using these in the above rhs of the expression of é(x,s) we obtain the expected result. The other
results follow in a similar way. O
Proposition I1.15:
Let Vil s, and A(q) be given and continuous, for a Hamiltonian of the form (2.13). Assume
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that, in the representations (2.29) and (2.29'), the partial derivatives with respect to (t,q) [respec-
tively (s,x)] of the quantum conditional expectations are well defined and continuous, and can be
exchanged with the integrals. Then the quantum equation of Kolmogorov for the transition kernel
p for s=teR, x,yeR", is given by

(a)

ih

P
——sx,, _
( tq)= > o 9

Vi )
(sx,0,0) + (,- A ) —Af<q>) Litsxng  (232)

t

(with the usual summation convention over the indices j). Equivalently, regarded as a func-
tion of the past variable, p is the fundamental solution of

Du=0, for ue Dj., (2.33)
with D, defined in (2.16).

(b)  If all the involved partial derivatives exist and are continuous, p, regarded as a function of
the future variables, solves the quantum Fokker-Planck equation

) v/
a—(sx, )= 2P (o gy - [( Vi) - AJ@)p(s“q)}
g’ J,

29¢ dq’
t
(2.34)
Similarly, the transition kernel p(s,x,t,q) solves
(©)
lﬁ d
_—(sxtq) YT ](sxtq)+( )@p(s,x,t,q).
(2.35)
So that p is the fundamental solution of
Dy=0 for veDp, (2.36)
with D given by (2.14) and the following backward quantum Fokker-Planck equation holds:
(d)
lﬁ d i, .
—(sxty) 53 EP ](sxty) o7 [(—lﬁ m (q)—AKq))p(s,x,t,y)].

(2.37)

Proof: (a) Let us consider (2.29")

(P f")(x) = f FQ)p(s,x,1,dq) = uls,x), s<t,

for any £ of compact support in the class used to define (2.22). By hypothesis, we can differen-
tiate with respect to (s,x) under the integral sign. Using Proposition II.12 (c) and the properties of
the quantum transition kernels before Proposition II.14,
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u(s1,x) — uls.x) = [u(s2.q) = u(s2,)1p(s1.x,52.)dq + 0(s, = 51)

Se(x)

- {w )Vl )4 (g=0(g =05 Vs )+ R}ﬁ dq +ols> =51
Sg(x)

:qu(sz,x) (g —x)p(s1,x,85.9)dq
Se(x)

1
+ EVZM(Sz,x) (g—x)(g —x)Tﬁ(sl,x,sz,q) dg + R:| (s5—51) +0(sy—s7)

Sg(x)

= [é(x,sz) V u(s,,x) + %CA'(s%x)Vzu(sz,x) + R] (55 —57) +0(s,—5y),

where B and C have been computed in Proposition II.14 and R=R(s;,s,,q,x) is a remainder
O(|g-x[?). Dividing by (s,—s,) and taking limg, |, lim, ;, one verifies that u(s,x) solves the
quantum Fokker-Planck equation (2.34).

According to (2.29’), the boundary condition of this equation is provided by

u(s,x) = fO(x) = [F(q) - Y 001p(s.x.1,9)dg + o(1 = s).

5200
So
lim (s,x) = lim M¥ [f0] = (). (2.33")
st st

(b) Let £ be of compact support, twice continuously differentiable in the class used to define
(2.22). As before, one verifies that

. 1
lim
5118871882 — 81

{ | @it nsmang —Mx)] = Bes) V100 + 5 Ce) V100

(2.38)

Now let us write

d . ) 1 . .
py f F@)p(s,x.t,q)dg = lim f [5(s.x,52.q) = p(s.x,51.9) 1/ (q)dgq

siTtsyl1S2 = 8

1
= lim fﬁ(s,x,sl,q)[ f}dsz)(z)ﬁ(sl,q,sz,z)dz—stz)(Q):|d51~

sty |t Sy — 81

Using (2.38) this reduces to

. A I 4
f P(s,x,t,q){B(q,t) V%) + EC(q,t)sz(’)(q)]dq
After integration by parts, we get

f %ﬁ(s,x, t.q) - f(q)dg = J dg f(’)(q){— Vq<ﬁ(s,x,t,q)l§(q,t) - %Vq(@(q,t)ﬁ(s,x,t,q))ﬂ :

O

Introducing B, C of Proposition II.14, (2.34) holds since f is arbitrary in the chosen dense
class.
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Starting from (2.29), one proves (c) and (d) in the same way.

Proposition 11.16:

Under the same conditions as in Proposition II. 15, the density of the quantum probability in
the state s, p(x,t) dx=|i(x)|* dx, solves the continuity equation

@+V{ﬁ(¢vf@—&vhp)—Ai ]_0
ot | o\ t t t p|=Y,
or
|V vu_ ) |
ot +Vj|: 2( ‘2’: W, Aj)p:| =0 239

Proof: Tt follows from the definition (2.23’) of the forward quantum transition kernel
p(s,x,t,q) that, if p(dx) denotes the quantum probability density at time s <, then

plg.1) = f P N(dx)p(s,x,1,q). (2.40)

Applying the integration with respect to p)(dx) to the quantum Fokker-Planck equation (2.34)
one can see that p(q,) satisfies the same equation, namely

dp Wy, ih
E:—Vj|:<lh?—A)p:| +3Ap. (2.41)

But the quantum probability density p is also propagated backward in time by the transition kernel
p solving (2.37). This means that p solves as well

J Vi ih
(y—f:—V{(—zﬁ m —A)p]—l—Ap. (2.42)

It follows that p also solves the average of (2.41) and (2.42), i.e., the usual quantum continuity
equation (2.39), as claimed. O

lll. THE QUANTUM ACTION FUNCTION AND ITS DYNAMICAL CONTENT

Let us show first why, in relation with the quantum conditional expectation in a given state, it

is legitimate to call D, a quantum (time) derivative. The next proposition can be regarded as a
quantum version of the fundamental theorem of calculus.
Proposition II1.1: Let f=(f\"),_y be any function continuous in the time variable 7, and in the

domain of D,. Then, for any t=u we have

M;_?x[ f u D,.f7 dr} = MY - fO (), (3.1)

where D is defined by (2.15), for ¢ replaced by .
Proof: By the definition (2.22) of MY, the Ihs of (3.1), for (¢,x) -admissible, is

X

(<7f,(x))‘1< [(v.ap.s0. mdr) ®.

Introducing the definition (2.15) of D, this means
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(%(x»-l( v Hf e L) g, J,T}dT) o
t l// T 1
= [lZf('x)]_l(J;u UT—I|:<(%_+ thH)(IZTﬂT))>dT] (X)

By an integration by parts with respect to dr and using the self-adjointness of H in L>(R",dx) we
obtain

1%

<@mr{—j(%uﬂy@ﬂmm+u4%fm M+%f(HwJ@J%M}

Since U, solves, for 7>1, (9/d1)U,_,x=(1/ih)HU,_,x for all x in Dy, this reduces to

(o)™ Ui SO = 00) Ui ) () = i)V )}

By definition of the quantum conditional expectation, this is the rhs of Eq. (3.1). O
Remark:
When U, admits an integral kernel &, as in Sec. II, then the lhs of Eq. (3.1) becomes

T
((x)) ! f J k(x, 7= 1,9)D, f7(q)¥(q)dq dr.

The integration by parts with respect to d7 mentioned in Proposition III.1 is done using the fact
that k coincides with the retarded (or causal) distribution k, solving, for 7=1%, in the sense of
distributions

(—iﬁ 9 +H>k+(x,7'— tg)=—ih 8g—x)8(t—1).
aT

U
Corollary 111.2:
Let f=(f"),_p strongly continuously differentiable from R into L*(R",dx), with f(.) € Dy,
V1. Assume that (Hf"),_y is continuous in the time variable t. Then

_ - +AnD (Y _ A0
QWM=MM4£_Q;i@] 52)
Ao At
Proof: By Proposition III.1 for u=¢+At and property (3) of Proposition II.10,
MMEIDf = MELF40) - f00], (3.3)

for some ¢ =1. The lhs is

Af(‘r/ft(x))_lUt*—t|: (i* + ;H)(l//,*f(’ )):| .
at  ih
Now f(’*) € Dy and H((Z,*f(’*))= &,*Hﬂ’»)et*ﬁ,z,_bﬁf(’)=H(¢Z,j<’)). By Lemma I1.4 (ﬂ/&t*)ﬂ’») is con-
tinuous in time, thus lims_,, M ;{’x[ﬁt*ﬂ’*)] exists. After division by Az, the rhs limit of (3.3) is the
rhs of (3.2).

Corollary III.2 provides another proof of Proposition II.14 regarding the forward quantum
transition kernel p.

Corollary 111.3:

Let us assume that f=(f")._y is as before and, moreover, admits a Taylor expansion up to the
second order around a -admissible (t,x) € R X R". Then if the Hamiltonian H is of the form
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(2.13), equation (3.2) implies, for f(x)=x,

- HAD (Y _ v
Dyx = lim fo[f%} St i A, (3.4)
At|0 t U,
and
_ HAD Y _ )2
lim M,{;[W] =ifl, (3.5)

where (fi*20(.)=x)? refers to the tensor product (f***9(-)—x) ® (f*29(.)=x) and 1 is the nXn
identity matrix.

In equations (3.4) and (3.5) the dummy variable (-) is the one denoted by q in (2.23"). All such
“quantum moments” of order higher than 2 vanish.

Proof: Let us consider the Taylor expansion up to the second order,

ML (q) - fO)] = M }”{ %(x,t) Vi+(g—x)- Af(x.1)

1 P
52 =g —xj»W;;j(x,r) vo(An|.

Using the linearity of the quantum conditional expectation, as well as the properties (3) and (5) of

Proposition II.15, the conclusion follows from the comparison with the explicit form (2.16) of D,

(with ¢ replacing ¢) for the Hamiltonian (2.13). O
In a similar way one proves the following.

Proposition I11.4:
Let f=(£")._p be continuous in the time variable T and in the domain of D,. Then, Vt=s,

Mf/’,{ f DT]‘“)dT} =) - MY, (3.6)

s

where D is defined by (2.11), with ¢ replaced by .
Corollary 111.5:
Under the same conditions as in Corollary III.2 we have

FOx) = f29() ] '

A; (3.7)

D,f(x) = lim Mf;,{
At|0

If f admits a Taylor expansion up to the second order around a -admissible (t,x) € R X R", with
H as in (2.13) we have, for f(x)=x,

_ 1x x‘ﬂt_At)(‘):| . Vi,
Drx_lA]tIE)M¢[ A =—ih m (x) —A(x), (3.8)
and

. (x—f“‘“)(-))z} B

iltrlr(l) M,J/[ A =ifhl, (3.9

where (-) is the dummy space variable of the definition (2.24). As before, all such moments of
order higher than 2 vanish.

As mentioned in Remark 2 after Proposition II.12, in the conditions of Propositions III.1 and
I11.4, the definitions of the quantum (absolute) expectation of £ ¢ in the state i, =, given in

(2.28) and (2.28') can be reexpressed in terms of the quantum derivatives D, and D, as follows.
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Corollary 111.6:

— t
(fg9y, = < M;”{ f D dT} g9 4 f<s>g<s>>
s l//s

t
=<f<’)g(’)—meZlf DTg(T)dT}> , t=s.
s

2

This relation could define, actually, the proper concept of time-dependent Dirichlet form
relevant to quantum dynamics (or its Euclidean counterpart—cf. Ref. 7).

Let us apply the Proposition IIL1 to a f=(f"),_y in the domain of D which is, in fact, time
independent and of the form f\”(-)=F(-) for some regular F. Then the Ihs of (3.1) can be made
explicit using (2.16) for the Hamiltonian (2.13), as well as (3.4),

T T .
— _ — _ h —
M;%J D.Fdr= Mijf (D,q -VF+ %AF)dT: M [F()]-F(x). (3.10)
t t

This relation clearly displays a quantum deformation of the fundamental theorem of calculus
for line integrals along C' trajectories

y[t,TIC R — R"
7= q(7).

We shall henceforth denote the lhs of (3.10) by

_ T
M,{;J V Fodg (3.11)
t

in order to remind ourselves that it coincides simply with the rhs of (3.10) but involves the
mentioned deformation of the classical calculus.
Using (3.6) instead of (3.1), we shall write as well, when s=t,

t
Mf/’,xf VFOdq:F(x)—Mi’f[F(-)], (3.11")
understanding now the lhs as
1x ' lh ’
M D,q-VF—;AF dr. (3.10")
More generally, for any A:R"”— R” regular such that
7 T ih
My, D7q~A+?VA dr (3.12)
t
makes sense, we shall denote the expression (3.12) simply by
_ (T
M,{”J Acdg. (3.13)
t

We preserve, however, the boundary value in the time variable, in order to stress that (3.13) is only
a short notation for (3.12) and that, in particular, no assumption on the existence of some under-
lying continuous trajectories 7+>¢g(7) is made. The same remark applies to
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t t ih
Miflf Aodq:| =M€’pr (DﬂA—lEV 'A)dT, (313,)

so, with the conventions (3.13) and (3.13’), this “quantum calculus™ satisfies the rules of the
classical (Riemann-Stieltjes) calculus.

Let us come back to the special Lagrangian system whose quantum Hamiltonian is (2.13), i.e.,
a unit mass and charge particle in an electromagnetic field. Its associated classical action S; with
initial condition S is defined by

1
S,(x,1) = S9(g(s)) + f (5|q|2+q~A— V(q>>dr, (3.14)
Y

for s<<t. It is a real valued function of x € R”, r € R and a functional along a bundle of solutions
v in C*([s,f];R"): 7—>¢q(7) of the classical Lagrangian equations of motion, with the mixed
boundary conditions on [s,?],

9 S(S)
aq

and ¢(r)=x.
q(s)
It is well known (cf., e.g., Ref. 8) that for |¢—s| small enough [and A and V as in (2.13)], S, is a
well-defined function. Notice that the Lagrangian L of S; [i.e., the integrand of (3.14)] can be

rewritten as
1.,
Ldr= ~|gI*-V(g) |dr+ | Adg. (3.15)
¥ y 2 ¥

We are going to show that, using various regularizations provided by the quantum mechanical
conditional expectation, we can define a quantization of the above classical action functional S}
which will prove to be natural later on.

For any (7,q)#-admissible, let us define

q(s) =

S(g,m)=—1ih Inlq), (3.16)

where ¢, is a regular solution of the Schrodinger equation (2.2) with Hamiltonian (2.1), such that
§=(8"),_y is continuous in the domain of D . [We may choose the principal determination of the
logarithm in the definition (3.16).]

According to (3.8), we observe that

D,q=VS(q,7) - A(g) (3.17)

is an element of L2(R",|(¢)|> dg) when [|Vi]> dg < as well as [A%(q)|¥,(q)|* dg <. Using
the definition (2.14) for our situation, we compute

N \Y% i 1 it
D7S(q,7)=—+<—ih—¢T—A) -VS—’—AS:—(DTq)Z—’—V “A+A-D,g-V(g),
ar " 2 2 2

T

(3.18)

where the relation (3.16) and the fact i; solves the Schrddinger equation with H as in (2.13) have
been used. The rhs of (3.18) is interpreted as the Lagrangian L(D,q,q) of our quantum system.
Then, by Proposition I11.4,

MQLXUS <%(D7q)2— V(q)>d7'+£ <A D= % v A)“} = S(x,1) = MTSYO)].

With the convention (3.13), this means that we have defined a regularized action function by
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S(x,r)=M’;[s<f>(-)]+ng“t(%(p7q)2— V(q))dr} +M’;UIAodq}, (3.19)

to be compared with the corresponding classical action (3.14) and (3.15). The relation (3.19)
provides us with an exact representation of the solution ; of the Schrodinger equation.
Theorem II1.7:
Let i, be the solution of the Cauchy problem in L*(R",dx),t=s,

I,
h—=H
Y Y

y(x) = ISP Dy, with S such that S =—i# In ¢,(x) exists,

for H=—(h212)[V-(ih)AT*+V, with A,V continuous as in Remark 1 after Lemma II.4. We also
assume that [|Vi(q)|* dg <o and [A*|(q)|* dg< =,V 7=5. Then the following exact integral
representation of the solution , holds:

Y(x) = exp(éM@x[f (%(qu)2 - V(q))dr+ f Acdg+ S(S)(-)D = MSE0 1 (3.20)

Y (t,x)y-admissible, where S is the (complex-valued) solution of the quantum Hamilton Jacobi
equation on R"X[s, o[

as 1 ih ih
O L (VS—A +V+ =V A= ZAS=0,
a2 2 2
(3.21)

SOx)=—i% Iny(x).

Remark: The kinetic energy term in (3.20) (i.e., the term with V=0,A=0) involves the scalar
product of real vectors and not an Hermitian product. So, since D,g is a complex function, the
kinetic energy term is, in general, a complex function, denoted here by (D,q)%.

Proof: When t=s the representation (3.20) holds trivially, according to the property (3) of
Proposition II.10 of the quantum mechanical conditional expectation. When 7> s, using the rela-
tion (3.17), Eq. (3.18) means

JS 1 i
L L (VS—A)-VS— ZAS=—(VS—AP =2V . A+A-(VS—A) = V.
at 2T 2

After simplification, this reduces to (3.21). The integral representation (3.20) follows from the
definition (3.16) and the relation (3.19).

Remarks: We shall interpret (3.20) as a rigorous substitute for Feynman’s path integral rep-
resentation of the wave function (1/,.2 Like this one, (3.20) is built in term of the Lagrangian of the
underlying classical system. We are going to need this for our study of quantum symmetries.
However, the mathematical status of (3.20) is quite distinct from Feynman’s heuristic (and, in
some cases, rigorousg’10 sum over a path space, as it involves in an essential way the regulariza-
tions provided by the quantum conditional expectation and no underlying path space whatsoever
(cf. Sec. VII).

Corollary II1.8:

Let i, be the solution of the boundary problem in L*(R",dx) which is complex conjugate to the
one of Theorem IIlI.7,
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Wy _
ot
Dr(x) = i)

—ih Hy,, O0=t=T,H as in Theorem IIl.7,

Then the following representation holds under the same assumptions as Theorem I11.7:

. T T )
lz_bt(x):exp(iME/:,x)lf (%(@q)z—V(q)>dT+f A°dq+S(T>(-)])=e(”h)s("”),

f '
) (3.22)
where S solves the equation adjoint to (3.21) on R" X [—,T],
oS 1, _a i ih .
L (CVS-AP+V-ZV . A- A =0,
a2 2 2
(3.23)

S, T)=8D(x)=—i# In (x).

Proof: Starting from the logarithmic transformation of (3.22), Eq. (2.16) shows that
D,g=-VS—-A. Also D;S(q,7)=—(1/2)(D,q)*+V(q)-D.qg-A—(i%/2)V. A reduces to (3.23). The
conclusion follows from the definition (3.10) and Proposition III.1. O

Notice the change of signs in the two Hamilton-Jacobi equation (3.21) and (3.23). In the
heuristic classical limit #=0, this is a well-known observation when the action is computed as a
function of the future or past configurations (Ref. 11). This limit could be computed rigorously
using, e.g., the methods of Ref. 12.

Also notice that, up to the convention (3.10) and (3.11) and the fact that the classical norm |¢|?
of (3.14) is replaced by the square of a complex-valued quantum derivative, the Lagrangian of
(3.22) is indeed the classical one, but evaluated on regularized variables.

The regularized action (3.19) used in our integral representation (3.20) satisfies the following
additivity property along an admissible family of states ., s=7=u.

Corollary I11.9:

For any t € [s,u] and under the conditions of Theorem I11.7,

t u t
M‘;ZULdHAoquMgZU LdT+A°d‘Z}=M§Z{fLdT"‘A"dCI}-
s t S

Proof: According to the property (c) of the operator P* defined by (2.29), using (3.19), and for
S like in the definition (3.21),

Pr,- PLISY = MM LSOT]

t
:M':,;Z|:S(’)(-) —Mi’b'|:f LdT+A OdQ]]

t
:M;J[S“)(-)]—M‘;ZlMgU LdT+Aoqu

u t
=S(")(z)—M$Z f Ldr+A°dgq —M'f/;{f Ld7'+A°dq:|
t | s

— Pj,u[ S(s)]

=5"(z) - MYy deT+A°dq .
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Let us see what the fundamental gauge invariance of quantum mechanics means in the context
of our integral representation (3.20).

Proposition 111.10:

Let s, be the solution of the Cauchy problem of Theorem IIL7. Let x=(xX\"),cr be real
continuous and differentiable in the domain of D,. Then the gauge transformation

A—A'=A+Vy,
(3.24)

Vs Vi=yV- =

leaves the form of the Schrodinger equation invariant provided that the integral representation

(3.20) becomes
U (%(Dﬂ)z—V(q)>dr+fA°dq+f DTX(T)dT‘F(S(S)"'X(S))(')])-

(3.25)

mw»wm=m{ﬁw

Proof: According to (2.14), for ¢, replaced by ¢,, and (3.11),

t t 1 0',
M’JU D7 dT] =M§LXU VXodq+J Zar| =X -MELOO) (326)
s s ) aT
Using the representation of ,(x) in Theorem III.7 and (3.26), the representation (3.25) reduces to

YL (x) = g (x) T, (3.27)

When the starting wave function ¢, is subject to the phase transformation (3.27), it is well know
that the Schrodinger equation is form invariant under the gauge transformation (3.24). And indeed,
(3.25) coincides with the representation (3.20) of ¢/ (x) in term of V' and A’ defined by (3.24).
O

We shall need, later on, a dynamical characterization of what plays, for our regularized action
(3.19), the role of the critical points of the classical action (3.15), regarded as a functional of the
C? path y: 7—¢q(7).

Proposition II1.11:

For the action (3.19), the regularized equations of motion and conservation of energy in the
admissible state W, solving the Schridinger equation (2.2) with Hamiltonian H (2.13) in
L*(R*,dq) are, respectively, when D .q is in the domain of D,,

fi
DD.g=-rotAAD.Z- lzrot(rotA) -Vv, (3.28)

when A denotes the exterior product in R" and

. Jh)
Dy (g, 7)==, (3.29)

where h;’ is the space—time observable associated by (2.5) with the Hamiltonian (2.13), i.e.,
1 ih 1
Wo==p?>—p A+ —V -(A=p)+-A>+V
0= 5P P > (A-p) 5

for p the vector p/=—ih (Vi /p)=B/=A’,j=1,2,3 and B(q,7)=D,q. In (3.29), &hI,Z /d1 denotes
the space—time observable associated with dH/d7, i.e., here, dV/dt. In particular, for V time
independent, hfz is a quantum martingale along ¥, i.e., D,hg =0.
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Proof: According to (2.14), we have D g=—ih (Vi /,)—A. If D g is in the domain of D, we
can compute DD q. Using the fact that ¢, solves the Schrodinger equation of Theorem III.7 one
gets, after some simplification, the rhs of (3.28). Alternatively, taking the gradient V of the
quantum Hamilton-Jacobi equation (3.21) and, by (3.17),

4=VS(g,7)-A(q) =B(g,7,

where we introduced the notation B=—i%(Vi,/,)—A for the space-time observable aw asso-
ciated by (2.5) with the quantum velocity observable P—A(Q) (P being the momentum and Q the
position observable). We verify that the resulting equation coincides with (3.28). The additional
“quantum” deformation on the rhs of (3.28) comes from the vector identity in R3:V(V-A)
=rot(rot A) + AA for the potential vector A. Besides this extra term, the rhs of (3.28) is the quantum
regularization of the classical Lorentz force acting, at the singular limit =0, on the system with
Hamiltonian (2.13) (cf. remark below). Concerning (3.29), the space-time energy function &
associated with the Hamiltonian (2.13) is, by (2.5), (Hi./ ) for . Dy. After substitution in
(2.11) and using the fact that i% (9 / d1)=H4r,, we obtain the conclusion. O

Remark: Using D, as defined in (3.2), instead of D, we would find that

_ _ i
D.D.g=D.gATotA + %rot(rotA) -Vv, (3.30)

instead of (3.28). In particular, only the average of D,D.q and D,D.q can provide a regularization
of the classical Lorentz force free of quantum corrections but involving, instead, the symmetric

velocity (1/2)(D,q+D,g), namely

%(D,.D7q+L_)T57q)=%(D7q+57q)/\rotA—VV. (3.31)

Let us stress that our quantum calculus over space—time observables is perfectly commutative.
For example, —-rot AAD_g=D g ArotA in contrast with its operator counterpart,

—10tAA(P-A)=(P—-A) AtotA +if rot(rotA), (3.32)

but the quantum correction associated with the noncommutativity of the operators reappears now

in (3.28) as a consequence of the definition (2.14) of D,. Also we remark that the use of both D,
and D, is really necessary for our quantum calculus. For example, as expressed by (3.32),
—-rot AAg and gAarot A differ after canonical quantization and, in fact, they do not even define,
individually, symmetric operators. So our symmetrization leading to (3.31) is the space-time
counterpart of the canonical (symmetrized) Lorentz equations of motion"?

&0 1
— =—[(P-A)AtotA—T10tAA(P-A)]-VV, (3.33)
d” 2

for Q and P, respectively, the position and momentum quantum observables in the sense of

Heisenberg.

IV. SYMMETRIES OF THE QUANTUM ACTION FUNCTION AND THE THEOREM
OF NCETHER

Let R” be the configuration manifold of the classical system associated with the quantum
Hamiltonian H of (2.2). The corresponding Lagrangian is

L:R" X R"XR—=R
(4.1)
(g.4.1) — L(q.q.1).
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Let us consider a one-parameter local Lie group of transformations of the extended configu-
ration space R" X R, of the form

UsR"XR—=R"XR

(¢.0)—(Q,7),

where

0=qg+aX(g,n)+o(a); 7=t+aT(t)+o0(a); (4.2)

the generators X: R”" X R—R" and T: R — R are real analytical functions and « is a real parameter.

Let us write the action function (3.19) associated with the special Hamiltonian H of Theorem
I1.7. With an appropriate choice of the gauge x"(x) (Proposition IIL.10), we can get rid of the
initial condition in the representation (3.19) for, say, s=t, and t=t,,

S(e.n) =M'¢r{ f ) (%(D,qﬁ— v<q>)dr+ j A odq} 43)

0 I

where ¢ denotes the underlying solution of the associated Cauchy problem of Theorem III.7.

In analogy with the concept of invariance of the action involved in the classical Theorem of
Neether'* we want to use the change of space—time variables, defined by (4.2), for defining the
invariance of our regularized action (4.3).

Let us assume the existence of a further, complex analytic, generator ¢” in the domain of D,
called the “divergence.”

Definition IV.1: The action (4.3) is divergence invariant under the one-parameter group of
transformations (4.2) if, any interval [ty,t,], we have

M’J}’”[f ] (%(Dﬂ)z—V(q)>dt+f1Aodq] +aMi/}’x1lleT<P(t)dt]
To To To
:MS,Qllf 1(%(DTQ)2—V(Q)>dT+f ledQ} +o(a), (4.4)
70 70

where 12 denotes the associated solution of the same Cauchy problem as in Theorem II1.7 but for
the new space—time variables (Q, 7) resulting from the transformation U,
We remark that the definition (4.2) implies, up to the first order in a,

q+aX(g,1) =0, (4.5)

where Q refers to the new configuration at the new time 7 (we do not denote Q by Q. only to avoid
the suggestion that paths 7— Q are involved).
Clearly, the invariance condition (4.4) can only hold under severe restrictions on the genera-

tions X, T, and ¢. These conditions are easier to find in terms of the two solutions ¢ and IZ of the
underlying Cauchy problem.

First, Proposition III.10 suggests that the addition in (4.4) of the divergence term D,¢"” to the
given Lagrangian should correspond to a relation similar to (3.27) between ¢ and (Z So, to the first
order in the parameter ¢, it should hold that

J=i- aé@- v (4.6)

Now let us consider (4.2) and (4.6) together with the linear generator of the associated local
group of transformations of the Schriodinger equation (2.2) (as before, Einstein’s sum convention
is used)
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L= ji i L i=1
_Xéxj+To7t+h(p’ j=1,...,n.

For further purposes, it will be more natural to consider, instead, the formal symmetry
generator

Nt =—ih L =Xf(x,t)<—ih %) - T(t)(iﬁ %) + o(x,1), (4.7)

as well as the Schrodinger partial differential operator [cf. (2.2)], already used in Lemma I11.4 (up
to a factor i),

0=t 1n (4.8)
BT '

Definition 1V.2: N(1) is a symmetry operator for the Schridinger equation (2.2) provided

[N(),0]=Ns(x,0)0, (4.9)

where the complex analytic function \j(x,t) will depend, in general, on 1<7(t) and is s.t.
AQD CLA(R" X R, dx dr).

The domain Dy, of () has been defined in Lemma IL.4. For the time being, we assume that
D, DD, and N(I)DQC Dj, so that the Ths commutator of (4.9) is well defined on D,,. We shall
be more specific about Dy in Sec. V.

In Refs. 15 and 67 it was shown that, in the algebraic sense, we have the following:

A symmetry operator N(t) generates a group, mapping solutions of the Schrodinger equation
(2.2) into other solutions. The collection g of such symmetry operators N(7) is a complex Lie
algebra, i.e., if N,N, e g, then (1) BN, + BN, € g,V By, B C, (2) [N,.N,] e g.

The formal symmetry group G=exp g of Eq. (2.2) results from products of formal exponen-
tials of symmetry operators; it is a local Lie group.

Let us stress that, in order to make this claim analytical rigorous, we have first to define the
symmetrization N(z) of such a formal generator N(t) then a self-adjoint extension N(z) and finally
the unitary group generated by N(7). This will be done in Sec. V.

For a given Hamiltonian H, the property (4.9) implies the explicit conditions on the coeffi-
cients X, 7, and ¢ that we are looking for.

Proposition IV.3:

N(1) is a symmetry operator for the Schrédinger equation in L*(R"), with Hamiltonian (2.13)
(where V may depend on time), if and only if

(1)
ar , ox* ox’ L =
- =_'+_9 - 9 — b
dr axl ok / "
()
i j
£=_L@_1£Aj_xk%’
at ax' 2 dt ax*
(3)
3 e if 9 [if 1 dr( it 1 av
—‘p—AJ—“’.—’—A(p:Xf—.(’—V -A+—|A|2+V>+—(l—V ~A+—|A|2+V) T,
ot ax 2 ox/\ 2 2 dr\ 2 2 ot

where Einstein’s sum convention has been used, V. A denotes the divergence of the vector field A
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and n is the dimension of the configuration space of the underlying classical system.

Remark: If we allow space—dependent time transformation 7=t+aT(q,)+o(«) in (4.2) then,
for the associated N(t) to be a symmetry operator it is necessary, in addition to (1), (2), (3), that

aT .
=0, j=1,....n.
ox’

In other words, our initial choice of T=T7(f) was not a restriction.
Proof: Using the definitions (4.7) and (4.8), the conclusion follows from (4.9), after a labo-
rious computation. One verifies that the coefficient \j(x,?) in (4.9) is

d
No(x,r) = — d—f(t). (4.10)

In particular Ay is not space dependent. O

Notice that the “determining equations” (1)—(4) (Ref. 16) for the coefficients X/, T, and ¢ of
the symmetry operator (4.7) are linear. We shall come back later to discuss their integrability
conditions.

According to Theorem III.7, when Nisa symmetry operator for (2.2) with Hamiltonian H of

the form (2.13), (7/ solves the same Schrddinger equation but in the new variables (Q, 7). Therefore
it follows from (3.16) and (3.19) that

—if In g{(Q,7) =M§QUT (%(DSQ)Z— v(Q))dSJr jTA on].

0 0

On the other hand, taken together, the relations (4.2) and (4.6) defining the Lie groups of trans-
formation around the identity &«=0 mean that ¢/ and i are related, up to the first order in «, by

w(q,t)eXp(— %dq,t)) =Yg+ aX(q,1),t + aT(2)).

By considering (—i# In) of this equality for the principal determination of In, taking into account
the relation (4.5), valid for a small enough, as well as the representations (3.20) and (3.26), we
verify that the invariance condition (4.4) of the action (4.3) is satisfied. In other words, the
following proposition holds.

Proposition IV.4:

When the determining equations (1)—(3) are satisfied for the Schrodinger equation with
Hamiltonian (2.13) i.e., when the operator N of (4.7) is a symmetry operator for this equation, the
associated action (4.3) is divergence invariant under the Lie groups of transformations defined by
(4.2) and (4.6).

We shall need:

Proposition IV.5:

Let us denote by L=L(D,q,q,t) the Lagrangian involved in (3.18)—(3.20). Then, a necessary
condition for the divergence invariance (4.4) of the action is that

JL JL . JL
—T+—=X+ A
at  d¢  IDgY

4 dr dT
DZX’—(D,q)’E +LE=—D,<p. (4.11)

Proof: For the Hamiltonian of Theorem III.7 we have, according to the definition (2.14) of D,,
densely defined in L*(R",|y,(x)|* dx),

Downloaded 29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



062107-30  Albeverio, Rezende, and Zambrini J. Math. Phys. 47, 062107 (2006)

- —AX, (4.12)

DX =—+B'—

ot dq 2
where

Vk

Bk——zﬁ—lp’—Ak, k=1,....n
A
By (1) and (2) of Proposition IV.3,
de 1dT . A aXf
px=-28 =4 x +B

&qf 2dr ﬁqk

In particular,

. dT v/ ldT J
DX =-(D zQ)j_= h wt Ras

LA 1 k( ax’ axk)
- — 4+ B —-—
o 2dr ag  agt 20 \agt o
After substitution of L(D,q.q,1)=(1/2)(D,q)*+A-D,q—(ih/2)V-A-V in (4.11) we verify
that this relation reduces to the condition (3) of Proposition IV.3 and therefore to one of the

conditions ensuring that the generator N of (4.7) is a symmetry operator for the Schrédinger
equation of Theorem III.7. U
Proposition IV.6:

When the generator N(t) is a symmetry operator for the Schridinger equation (2.2) s.t.
(cpr,ﬁ(t)(p,) is well defined and the assumption for (4.9) is satisfied, then we have ¥ ¢, € Dyy,

d N
a(‘Pt’N(t)(Pt) =0.

Proof: The equation (2.3) for A(t)=N(z) holds even when the members of the one-parameter
family of operators N(t) are not self-adjoint as long as H is, and if the N (¢) are densely defined and

such that (@,,N(Z)got) makes sense.
Then, for any ¢, € Dy, using (2.3) for ¢,=¢,,

(svnN(t)qot) f <P,( + [H N(l)])svf

=—i J FAON(D @) - N(1)Qg,}dx,

where the operator —i()=[(d/dt)—(1/ih)H] of Lemma I1.4 has been introduced.
On the other hand, it follows from the definition (4.9) that when Nisa symmetry operator for

(2.2) then ng;O:)Q(](/(t) ¢,)=0. So the conclusion follows. O
Let us prove a stronger version of Proposition IV.6 (without expectation) in terms of space—
time observables.
Theorem IV.7 (Theorem of Ncether):

When N(1) is a symmetry operator for the Schrodinger equation (2.2) with Hamiltonian
(2.13), and when the action (4.3) is divergence invariant under the Lie group of transformations

generated by N(t), the associated space—time observable nz in the state iy, satisfies Dlnz =0, for
t A~ t

all -admissible elements in Dyy,). In this case we shall say that nﬁ,’t is a quantum martingale for
this Schrodinger equation.

Proof: According to the definition (4.7), writing n instead of n’d\ft for simplicity, we have

Downloaded 29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



062107-31  Theorem of Ncether in quantum mechanics J. Math. Phys. 47, 062107 (2006)

Dpn(x,t)=D(X’p;— Th+ ¢)(x,1), (4.13)

where the space—time functions associated with N, the momentum observable P; and the Hamil-
tonian observable H of (2.13) have been introduced.

Using the relation (4.12) and Proposition I1.8, the derivative of the scalar product in (4.13) can
be written as

, : : . X' dp;
D(X'p;)) = (DX )p;+ X (D;p;) —it E;ﬁ’ (4.14)

where we notice the quantum deformation of Leibniz rule. Since p;=—if(V;,/4,), dp;/ ok is
symmetric in j and k, so

. . : 1{ox* ax7\ap’
D(X'pj) = (DX)p;+ X (Dyp)) —it ( o E)@

P . ﬁsz A . V : 2
=<D,x1>pj+xj(,),,,j)_;5( n ( n ) )

since, by (1) of Proposition IV.3,

oxt ox! AT
—+ o =—0" (4.15)
ax/  oxk T de

On the other hand, coming back to (4.13), we have

R A \Y ifi 1
he B Y G A APy, (4.16)
2 Y, v 2 2
Using (2.11) it is easy to verify (cf. also Proposition III.11) that
(A4
D,h = 4.17
h="". (4.17)

We have already found, in Proposition IV.5, that

AT Vig, 1dT de

dA
=(D,q)’ d_ +ih—— k

o, 2dr ov ok
Also, by (3) of Proposition IV.3,
dg do ih

D=2 a8 _Dao) it
@ (at 2 ‘P) !

Vi, d¢
l//, Ix/

Vi 3¢

ih ) T(ih ) av
XJ— V A+ |A| +V V A+ = |A| +V +T—— h -
dt P, ox/

By (3.28), we also have, since p;=(D,q);+A;,

ih
Dyp;=(DgnrotA);— —rot(rot A);=V;V+DA,,

where

Y v
DtAj—<—lﬁ m

1

J

it

After substitution of all this in
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. , R Ay, (Vi
Dmn= (Dth)pj +XJ(Dtpj) - _|:71 - (7{

2
5 ) } —hDT-D-T+D,ep,
we obtain, indeed, zero. O

Let us come back to the explicit definition (4.7) of a symmetry operator N(z) for the
Schrédinger equation (2.2). Introducing the definitions of the momentum and energy quantum
observables P and H (in Heisenberg’s picture) we observe that

N()=X'P;~TH + ¢, (4.18)

where the coefficients X/, T, and ¢ solve the partial differential equations of Proposition IV.3.
Let us denote by Q(¢) the time (Heisenberg) evolution of the position observable under an

Hamiltonian H of the form (2.13). Then we define the following symmetrization of N(?):

N(1) = X(Q(1),1)  P(r) = TWH(1) + $(Q(1),1), (4.19)

where ° denotes Jordan’s multiplication of operators, i.e., CoB=(1/2)(CB+BC). Then the phase ¢
should be redefined by

. ifh
(p:(p+EV'X. (4.20)

Proceeding heuristically, without worrying about domains (cf. Sec. V for precise definitions),
we see that by the Corollary II.3 and Theorem IV.7, "Z, satisfies

o 1[oN 1 .
D N=—<—+—N,H> =0, 4.21
tn(pt (Pf (9[ lﬁ[ ] <pt ( )

or, equivalently, for "Z,’ So we can also verify, using the definition (4.19) of N(¢), the following
Heisenberg equations of motion for the Hamiltonian (2.13):

Y

—==P-A(Q),
m (0)
dP 1 1
< =[PHI=J{(P=A) ArotA—rot A A (P~ A)} =TV + —[A.H], (4.22)
dH _ JH
e ar’
and the equations (1), (2), and (3) of Proposition IV.3, that N() is indeed a constant of motion, i.e.,
satisfies
ON(t) 1
—+ —|N(1),H|=0. 4.23
PR ﬁ[ (1),H] (4.23)

So we have heuristically checked that the family of operators N(z) defined by (4.19) in terms of
any solution {X/, T, ¢} of the system of determining equations of Proposition IV.3 are constants of
motion of the system with Hamiltonian H (2.13), associated with the Lie groups of space-time
transformations generated by N(7).

From now on, we shall refer to N(¢) as above as a Neetherian operator. We must now prove
that any Ncetherian operator is indeed a respectable quantum observable, in the sense of Von
Neumann.
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V. STUDY OF THE NCETHERIAN OPERATORS

A. Quadratic Hamiltonians

We shall start from the special class of Hamiltonian observables used in Theorem IIL.7, i.e., of
the form

H(Q,P,1) =3[P~ A(Q)P+ V(Q,1) on Cj(R") (5.1)

but where, in addition, A is a real-valued polynomial of degree =2 in Q and P, which may be time
dependent.

Let us denote by H, the classical observable (or symbol) on the phase space R>" X R to which
H=H" is associated by the Weyl calculus'” of pseudodifferential operators. The set of quadratic
inhomogeneous polynomials in ¢,p on R?", denoted by IQ(2n), constitutes a Lie algebra under the
classical Poisson bracket of observables

n
F.dG., JF.0G
{Fch}=E_; - — C
j=1 dq’ dp;  dp; aq’

Since the algebra generated under (5.2) by IQ(2n) and any additional polynomial of order >2
is the set of all polynomials, IQ(2n) will be maximal for our purpose.

Let us consider a smooth family of initial conditions ¢* € Dy C L>(R",dx),a € R, for the
Schrodinger equation of a quadratic Hamiltonian (5.1), such that /°=4. The infinitesimal genera-
tor A of the associated one-parameter group in Dy, is defined formally by

(5.2)

d
Nip= | (5.3)

a=0

Using the notation (4.7) for the symmetry operator N(z) of this Schrodinger equation, we
consider the family of transformations N\ of the initial conditions ¢ such that, under the quantum
evolution generated by the quadratic Hamiltonian H,

(NY),(x) = N(D) (), (5.4)

where, as before, i, denotes the solution of the above-mentioned Cauchy problem of Schrodinger
with initial condition ¢ € Dy.

On the other hand, the (“Weyl”) quantization (=i/#%)F"(Q,P) of any observable F(q,p)
e IQ(2n) provides a linear map between Lie algebras, preserving the Lie bracket operation, i.e., a
representation of such quadratic polynomials by skew-symmetric operators, such that Dirac’s
correspondence holds,

[FY(0,P),G"(0,P)]= %{FC,GC}W(Q,P) (5.5)

for O and P the quantum position and momentum observables, respectively. We consider first the
simplest quadratic Hamiltonian (5.1), i.e., the free case A=V=0. This will prove to be sufficient
for any quadratic case (cf. Proposition V.4).

Proposition V.1:

The above (faithful) representation of 1Q(2n) can be exponentiated to a representation of a
Lie group, called the inhomogeneous (or extended) metaplectic group and denoted iMp(n), which
is the semidirect product of Mp(n), the ( “metaplectic”) group generated by the quadratic observ-
ables and W,, the Heisenberg group generated by the linear and constant observables. In par-
ticular, any generator N satisfying (5.4) belongs to the inhomogeneous metaplectic algebra,
denoted by imp(n).

Proof: Let us denote by ky(g,,x) the propagator of the free Schrodinger equation (2.2) [i.e.,
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with H=H,, in (5.1), where A=V=0]. Using the definition (4.7) of N(t), the rhs of Eq. (5.4) can be
written as

. ok . Ok
J| ., ¢(q){x1(x,t)(- it 07;) ~T(ih (9_,0 + (p(x,t)ko}(q,t,x)dq
=f {lﬁX/(x 1) lp; 9) + T/ )— (wE;IZ)+<P(x t)}ko(q,tx)dq,
R"

where the space translation invariance of k, has been used. Taking lim,), this provides the
following explicit form of A defined on Cj(R") by (5.4):

N'==X/(Q,0)P; - 5T(0)P} + ¢(Q,0). (5.6)

O

Clearly, the maximal Lie algebra generated by such infinitesimal operators is a subalgebra,
denoted by G,(n), of the above-mentioned Weyl quantization of 1Q(2n).

Equivalently, each X’(x,0) can be an inhomogeneous polynomial of degree 1, 7(0) is a
constant and ¢(x,0) an inhomogeneous polynomial of degree 2. Taking into account the restric-
tions imposed by (5.4) and the special form of our free Schrodinger equation, one computes that
the dimension of this (“symmetry”) Lie algebra G,(n) of skew-symmetric operators is (n/2)(n
+3)+4=I.

Here is a basis of G,(n), for j,k=1,2,...,n

h? & J h - d d
B‘v(n):{l lq h_Jz (qk)2 l_z (9( k)2 s h%qkﬁ_qk‘l'gn,ﬁ(qja_qk—qk&_qj)}

(5.7)

We shall denote by NV;,j=1,2,...,(n/2)(n+3)+4=I, the skew-Hermitian operators of B(n)
on L*(R"). A necessary condition for exponentiating this representation of the Lie algebra G (n) is
that all the generators N should be essentially skew-adjoint on a common domain in the Hilbert
spaces. We shall use the followmg general result of Nelson'® (cf. also Ref. 19):

Let G be a simply connected Lie group with an €-dimensional Lie algebra G, and a given
representation of G by unbounded skew-Hermitian operators J\/}, j=1,...,€, on a Hilbert space H.
Then this representation of G arises by differentiation of a unique unitary representation of G if
there is dense set vectors ¢ in the domain of any product ./\/j1 yen ’A/},,l and such that

WG, N, il

m!

= CK™, (5.8)

VmeNand Vj;e{l,..., £}, for C,K two positive constants. Such a ¢ € H is called “analytic for
WL,

In our case we have the following.

Lemma V.2:

The finite linear combinations of the Hermite functions on R" (i.e., the products of one-
dimensional Hermite functions) are analytic vectors for any products /\/jl .. .J\/jm of the generators
listed in the basis (5.7) of G,(n).

Proof: Since the set of finite linear combinations of Hermite functions is dense in L2(R"), one
needs only to show that each Hermite function is an analytic vector for any ;- N, Instead of
the standard basic {i,ig*, 7 d/dq"}, k=1, ...,n, used in (5.7) for the Heisenberg algebra (of con-
stant and linear observables in ¢ and p), consider the linear combinations called creation and
annihilation operators:
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1 J 1 d
A= — "+ﬁ—), A+E—( "—ﬁ—) . 5.9
{l k \’E (l] &qk k \E q z?qk (5.9

Expressing the Hermite function in terms of A}, one shows that those functions are analytical
vectors for ¢f and —i# (9/dg¥) (see, e.g., Ref. 4, p. 204). On the other hand, the operators of B,(n)
quadratic in ¢ and p are generated by all possible double products of creation and annihilation
operators and it is known that the Hermite functions are analytic vectors as well for such quadratic
observables (Ref. 19, p. 190). O

So there is indeed a unique representation of a Lie group G,(n) whose infinitesimal version (or
differential) is the symmetry algebra G,(n). The representation is included in the so-called ex-
tended metaplectic representation19 which is the semidirect product of the n(2n+ 1)-dimensional
metaplectic group Mp(n), generated by all quadratic observables, and the (2n+ 1)-dimensional
Heisenberg group W, generated by the constant and liner observable.

In particular, let us consider matrices D in the symplectic Lie algebra Sp(2n), i.e., of the form

wh z
D= " (5.10)

where Y and Z are n X n real matrices of the form Y=vyl1,Z=gl, with vy, 8 two real constants, 1 the
n X n identity matrix, and W is a n X n real matrix of the form

5 _W2] _W3] oo e - n]
Wz] 5 _W32 “ee .o - f’l2
Wy W S i . =W,
W= .32 32 . . 3 (511)
: - Whan-1
W, Wy, oo oo W, O

for & a constant. Then we use the faithful representation of Sp(2n) by skew-Hermitian quadratic
operators associated with the names of Segal, Shale, and Weil, ?

D iPY(0,P) > 7 thqWw o _h 5 L2 (5.12)
— — P)=pB——- G —— — —noé+ Yy_q:, .
iPp B Py UV 5= 510+ ¥, di

which is the infinitesimal version of the representation of some elements M, of the symplectic
groups Sp(2n) by unitary groups U,,a € R, on L*(R"),

M, =eP— Ua=eapg(Q’P).

On the classical side, each M, is a one-parameter group of linear difeomorphisms of the
classical phase space R?", whose associated quadratic Hamiltonian vector field v, is defined by

d X .
UD(Fc) = d_aFc(Ma(q,p))la:O = (WTq + ﬁP)Vch + (Yq - WP)Vch = VpP(D : Vch - VqP;) : VpFC
={F.Pp} (5.13)

on any F* in the Schwartz space of smooth and rapidly decreasing functions, which are C* vectors
for the metaplectic representation. Equation (5.13) holds since the classical observable Pj, in
1Q(2n) associated with D € Sp(2n) is
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. B Y
Pp(q.p) = EP2+CIWP— 5612- (5.14)

Notice that the only additional constant term in the representation (5.12) with respect to (5.14) is
due to the Weyl (Jordan) symmetrization of the classical gWp term in (5.14).

The relation D € Sp(2n)— v, preserves the respective Lie parentheses, i.e., is a Lie algebra
homomorphism. As mentioned before, the Heisenberg algebra W,, adds to the previous picture the
representation of the linear observable on R2",

J
ap-bg+c——itha— —bg“+c, (5.15)
dqk

where a,b e R” and ¢ € R, so that, finally, the classical quadratic observable

. B Y
PD(q,p)=5p2+qu—5q2+ap—bq+c (5.16)

of Hamiltonian vector field v, associated with the (affine) equation of Hamilton,

)= =05 23+
= = + s
p -V, P vI —W/\p b
is quantized, according to Weyl, by

B, .
Pg/(Q’P) == _ﬁ2_2 =1 ﬁqu]k
gy

d 14 if
5 ——Zqi—iﬁak——bqu+(c—l?nb‘) (5.17)

(with the usual convention of summing over repeated indices). We can now be more specific about
the comments at the beginning of this section: The Lie algebra IQ(2n) associated with the semi-
direct product of the metaplectic group Mp(n) and the Heisenberg group W, is isomorphic to the
algebra of all polynomial observables of degree =2 on R*" equipped with the Poisson bracket
(5.2) and the representation of the classical observables is Weyl quantization procedure.

Let us observe that some subgroups of S,(2n) have, under this representation, explicit integral
formulations. We will not need them here. See Ref. 19 for some particular cases.

In particular, let us consider D= e Sp(2n), i.e., the case B=1,y=0,W=0 in (5.14). So

00
the associated classical observable reduces to our free Hamiltonian

Pi(g.p) = 3p* = Hy(p),

and its Weyl quantization is, of course,

PYQ.P) == L Hy(P)

or iN(y,,3) in term of the (2n+3)th element of the basis By(n) (5.7). Denoting the associated
parameter « by t, let us consider

W .
Ur= ezPA — e—(z/h)tHo’ te R,

i.e., the strongly continuous unitary group evolution in L*(R"), solving the free Schrodinger
equation, and defined on DHo' This groups acts on the symmetry algebra G,(n) generated by the
symmetry operators N;,j=1,-(n/2)(n+3)+4 via the adjoint representation
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N— UNU, = N(). (5.18)

Since this representation sends analytic vectors into analytic vectors, the domains are preserved,
Dy=Dyy. In other words, although H, and the operators —i\ are unbounded symmetric opera-
tors, they are essentially self-adjoint and defined on a common dense invariant domain of analytic
vectors in L>(R"). By a variant of the commutator theorem,”* the Baker-Campbell-Hausdorff for-
mula still holds. The image of the basis B,(n) under (5.18) is, therefore, computed as follows:

Jd h Jd d
igk —th —, , K2 _ 2y h— -2 h —, h—,
{llq pw &kZE(q) Eq 22" Pt

1% 1%
7 k2
h E,q k+2n+2tﬁ ﬁ( aqk_q&qj>}’ (5.19)

where j,k=1,---,n. We shall denote by ﬁj(t) ,j=1,-++,¢, any of those £=(n/2)(n+3)~+4 result-
ing skew-symmetric operators.

Theorem V.3:

For fixed t € R, let us define by U,Vi(a) U_,=V;(Of), a e R, a one-parameter family of opera-
tors in L*(R"), with Vé(a):emmw.f and V{(a):e(“/hwi(’), N (1) being any of the skew-symmetric
operators of (5.19), image under the adjoint representation (5.18) of the one-parameter group of
operators Vi(a), j=1,... £, generated by the basis (5.7) of the symmetry algebra G(n). Then, the
Vi(a) are symmetry operators of the free, Schridinger equation it (3 9t)i,=Hy, in LX(R"), i.e.,
they map any regular solution ¢, of this equation in another solution of the same equation IZ,
=Vi(@),, and the iN; (1) are constant observables of the free quantum system.

Proof: Let us consider h=Uu, e Dy for U=e MM tcR. Then Vi(a),= e "MHoys,
a € R, is, by construction, solution of the same free Schrodmger equation, for the one-parameter
family of initial conditions in Dy C LA(R") defined by = e(@"Njy,

It follows from the definition of V/(e) and the computation of (d/da)|,, in the relation above
that

R ) n
N, () =N;(Dy(x), j=1, ... ,E(n+3)+4, (5.20)
is the infinitesimal version of this relation, as required by the definition (5.4) of a symmetry

operator.

Now by (5.18), U, N;U; =N (1) Proceeding like in Sec. II (or observing, as before, that the
Baker-Campbell-Hausdorff formula holds here), we see that

d ) <
d_t(%’Nj(t)(Pt): (‘ﬂn( [ HO])%)-

But, by definition (4.9) of a symmetry operator ](/(t) for the free Schrodinger operator

Qep, = (i lH ) 5.21

Qe = iy Ho e (5.21)
we had

[N(),0)e, = M0, = (5.22)

for any ¢, e D& (1) (in the notations of Proposition I1.2). In particular, for any 1(/ i(t) as before we
find, by Proposition 1V.6,
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d .
la(‘Pth(t)(p[) =07 (523)
i.e., that iN (2) is a constant observable of the free Schrédinger equation. O

Any quadratic Hamiltonian H of the form (5.1) can, in fact, be handled in the same way since
the infinitesimal generators of B,(n) [cf. (5.7)] form a vector space. Let us see how, in the special
case n=2 for the simplicity of the illustration (and notations).

Proposition V.4:

All Schrodinger equations in L*(R?), of the form

J h? J J J J
iﬁa_tlpF[ A+c1((x1)2+(x2)2)+02<—1ﬁ P >+c3( ho’fx >+c4<—lﬁ<x E_ng))
J J
+esx! + cex +c7<—lﬁ (x —+x —)) +c8] 1/ (5.24)
ax! ax*

with ¢, € R such that the Hamiltonian is essentially self-adjoint on Cj(R?), have isomorphic
symmetry algebras and are equivalent to the free equation

ih— tﬂ, Hy,, (5.25)

where Hy is the two-dimensional free Hamiltonian

oo ﬁj(i i)
=72\ T aed?)

Proof: Given in Ref. 15. O
In order to illustrate this isomorphism, let us consider the following linear combination of
elements of G,(2) [using the notations of (5.7)]:

2
N:—N6+%N7=< ﬁ—A+ ((x +(x2)2)>EiHOS. (5.26)

H,, is the Hamiltonian observable of the isotropic two-dimensional harmonic oscillator. So,
for any ¢ e DHo ,

Yi(x) = (€7 Hosyp) (x) (5.27)
solves in L*(R?)
lh (9_(//’ HOslﬂt’ (5 28)
lﬁo(x) = lﬁ(x)-

Now pick any N}, j=1,...,9 in B((2), the basis (5.7) of the free symmetry algebra G (2). Then,
according to (5.18), but now for U0 =exp(=(i/ h)tH,,),

NP () = UPN(U) ™! (5.29)

is a symmetry generator of the harmonic oscillator, for the same reason as in Theorem V.3.
Therefore iNOS(t) is a constant observable of the quantum harmonic oscillator (5.28). All such

harmonic symmetry operators Nos(t) j=1,....9, are linear combinations of the \V; in B(2), with
time-dependent coefficients denoted by Xk(x 1), k=1,2,T(t) and ¢(x,?) in (4.7).
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By Proposition 1V.3, we already know the system of partial differential equations solved by
these coefficients X¥, T, and ¢ regarded as functions. In our case, since V(q)=%((x1)2+(x2)2) and
the vector field A in (5.26) vanishes, they reduce to

axt  ox? ax' ox? ar
ot 3=0 g+t 5=,
ox ox ox ox dr
X de
—=—— j=1,2, 5.30
ot ox’/ J ( )
do ih dr 1
_—_A :X11+X22+___ 12+ 22.
o~ g Ae=Xx L2 2((x) (x9)7)

In particular, instead of solving (5.30), we could use the Baker-Campbell-Hausdorff formula
in (5.29), for NV; any explicit element of the free basis B(2) of (5.7). Let us take, for example,

N,=1d/x". According to (5.19) this generator is invariant under (5.18), i.e., Ny(f)=#3d/dx'. On
the other hand, under (5.29) we obtain, on Cp(RR?),

3/(0) = exp| =% tHo, |[Naexp| giHo | ={ 1=+ - PR e U TR TR &

Comparing with the general form (4.7), this means that the coefficients of Ngs(t) are, respectively,

X'(x,f)=cost, X*(x,t)=0, T()=0, ¢(x,t)=x"sinz. (5.31)

One verifies easily that (5.31) makes up a solution of the system (5.30). In other words,

cost-Py(t)+sint- Q'(r) (5.32)

is a constant of motion of the quantum harmonic oscillator. This can also be easily verified
otherwise: Consider the solution of the equation of motion of this system, in the Heisenberg
picture. Those (linear) equations are, for j=1,2,

(Qf(t)) :Q(t)(%), with Q(t):( cos t sint) < S0(2). (5.33)

P(1) —sint cost
In particular, the (constant) operators which are initial conditions of this solution are given by
' cost —sint (t
(Q])=< , )(Q()>, i=12. (5.34)
P; sint  cost /\P1)

So the constant of motion (5.32) provided by Neether’s theorem coincides, in this elementary case,
with the initial momentum P; of the solution (5.33). Another trivial example of symmetry gen-
erator is

cos tQ%(t) — sin tP,(t) = Q?, (5.35)

associated with the following solution of the system (5.30)

X'(x,/)=0, X’(x,t)=-sintz, T()=0, ¢(x,t)=x’cost.

Fortunately, many nontrivial examples follow as well from this constructions (cf. Sec. VIII). In
this way, the free basis B,(2) allows us to compute the basis of the symmetry Lie algebra of any
quadratic Hamiltonian of the form (5.24) and then their associated symmetry operators N(z). We
summarize this result (in two dimensions, for simplicity) as follows.

Proposition V.5:

Let us consider any essentially self-adjoint quadratic Hamiltonian H in L*(R?), as in the rhs
of equation (5.24), ie., resulting from a linear combination of elements of G2). For any i
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e Dy ) Y= (e" Moy (x) solves the Cauchy problem for the associated Schridinger equation. If
N, j=1,....,9, denotes any element of the basis B(2) of the free symmetry algebra G(2) then, on
the dense invariant domain of analytic vectors of Lemma V.2,

Nifo(r) = UPN(U2)™ (5.36)

is a symmetry generator of the Hy-system, where U,Q, t € R, denotes the one-parameter strongly
continuous group of unitary operators

U1Q= e‘<i/h)’HQ:L2(R2) _ L2(R2).

In particular, i](l?Q(t) is a constant of the motion of the Hy-system. By construction, the time-
dependent coefficients X/(x,t),T(t) and @(x,t) of this constant observable solve the system of
equations of Proposition IV.3, for the quadratic Hamiltonian H .

Moreover, if W, denotes the one-parameter, strongly continuous, group of unitary operators in
L*(R?) defined by

W, = U? . plif)itHy (5.37)

on the invariant domain of Lemma V.2, and for Hy as in (5.25), then W, provides the time-
dependent canonical transformation from the free system (5.25) to the one of Hamiltonian Hy. In
particular, we have

aw,
HQ=W,H0W,1+ihd—t’W,‘1. (5.38)

Proof: The Hamiltonian defined by the rhs of (5.24) is of the general quadratic form (5.18)
with

=1, Wy =—cy, ==2¢y, ay=Cy, dr=Cs,
B 21 4 Y 1 1 .2 2=C3 (5.39)
bi=-c¢s5, by=—cg, 0=y, c—ihci=cy
and results indeed from a linear combination of elements of G(2). Let H, denote a self-adjoint
extension of this (lower-bounded) operator in L2(R?). By Stone’s theorem, U2=¢~"""o ig a
strongly continuous unitary group of evolution in L?>(R") solving the associated Schrodinger equa-

tion. Using (5.36), any N; e B((2),j=1,...,9, evolves into a symmetry generator NfQ(t) of the
H y-system, as in the above-mentioned example.

Let us define a time-dependent unitary operator W, on the invariant domain of Lemma V.2 by
W[ — U?e(i/ﬁ)lHo .

Clearly, if ¢, is a solution of the free Schrodinger equation (5.25) with initial condition =
€ DHo then ¢,=W,y, solves the Schrodinger equation with quadratic potential Hy, and the same
initial condition. Equivalently, an H y-solution ¢, is given by a quadrature from a solution ¢, of the
free equation. (One could also introduce an extra unitary generator M acting as well on the initial
condition #, so that

Wr’ — UtQMe(i/ﬁ)IHO

is unitary.)

Then, it is well known that such a time-dependent unitary transformation W, the Hamiltonian
H, is transformed into H, given by (5.38). Precisely, this goes as follows.

Let us write Hy=Hy+(Hyp—H,) and denoted by D, the above-mentioned common dense
domain of analytic vectors of Hy and Hy. Then Hy=UCH(U2)™" +U%(Hy—Hy)(U?)™" on D,,. By
the definition (5.37) of W, this is also Hy= WtHOW;1+ UZQ(HQ—HO)(U,Q)‘1 on Dy. Now on Dy, [in
the strong L*(R") sense]
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aw,
dt

d . .
i . Wt_l _ iha(Uth(z/ﬁ,)rHO)e—(llﬁ)zHO(UtQ)—l

=Hy—- U2Hy(U?)™!
=U%(Hy - Hy)(U9)™,

so Hy=W,H,W," +ifi(dW,/dt)W;" on D,,.
Since Dy, is a domain of essential self-adjointness, this implies (5.38). O

Let us make a remark on the problem of the zeroes set ./\/’f ={x e R"| ,(x)=0}.

As mentioned in Sec. II, our construction [see the definitions (2.5) and (2.14), for example]
requires to consider (¢,x)-admissible states i, i.e., such that ¢,(x) # 0.

The study of the zeroes of ,(x) amounts to investigate the wave front set WF of the integral
kernel of Schrodinger,

k(x,1,y) = kernel(e ") (x, y)

for fixed initial configuration x and time ¢. This problem has been considered by Zelditch®' and
Weinstein® for H slight perturbations of a quadratic Hamiltonian H,.

For example, in the case of the classical harmonic oscillator Hamiltonian PS(q,p)=(1/2)p?
+(w?/2)g* [i.e., the case B=1, y=—w’ and W=0 in (5.14)] the initial zero (cf. Mehler formula) of
the associated ¢, reappears at times k7r/ w and positions (—1)*x=y,k € Z.

For more about this, see also Fujiwara (Ref. 23).

Under bounded perturbations with bounded derivative, the singularities of ¢, behave as if H
was the harmonic Hamiltonian, i.e., the wave front sets are stable under these weak perturbations.

The study of these singularities is made using the geometry of the underlying Hamiltonian
flow on the classical phase space.

B. General Hamiltonians

When the Hamiltonian H of our given quantum system is not of the quadratic form H,
considered in Sec. V A (cf., for example, Proposition V.5), the symmetry operators N(r) defined
formally in (4.19) with coefficients X, T, ¢ solving the PDE of Proposition IV.3 are still quantum
constants of motion.

However, Dirac’s correspondence (5.5) does not hold anymore and the metaplectic represen-
tation used in Sec. V B is of no help. In general, no explicit basis of the associated symmetry
algebra can be found. But since, by hypothesis, the coefficients X,7, and ¢ of the symmetry
operator N(z) are analytic functions, it is easy to show that N(z) is well defined for a large class of
Hamiltonians H.

Proposition V.6: Let us consider H=—(h*/2)A+V, with V:R"—R as in the Kato-Rellich
theorem, so that H is self-adjoint in L*(R?). Let X:R"XR—R",¢:R"XR—C and T:R—R be
analytic functions, respectively, of the form X(q,t)=2,_a,(t)q", with , real-valued smooth func-
tions, ¢(q,t)==,_¥,()q" with vy, complex-valued and smooth. If =, _,|a,(1)||Q"Pe| <% and
2 ol Q|| < o,V ¢ € A(H), the set of analytic vectors for H, then the Noetherian symme-
try operator

N(1) =X(Q(1),1) ° P,(1) — T()H(t) + $(Q(1),1) (5.40)
is a densely defined operator in L*(R").

VI. THE QUANTUM THEOREM OF NCETHER IN A RIEMANNIAN MANIFOLD

Let us consider now a classical system like the one of Sec. IV but with a configuration space
which is, instead of R”, any n-dimensional smooth Riemannian manifold M, with positive-definite
metric tensor g; ;.
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The state i of the associated quantum system evolves in L?>(M,dM), with volume element
dM(q)=\g dg, where g=det(g,;), according to

Y,
ih—=H 6.1
o i (6.1)
for the Hamiltonian of the form (2.13)
P | R
H=—EV1Vj+zﬁAJVj+EVkA +5||A|| +V, (6.2)
where |-|| denotes the Riemannian norm and V; is the covariant derivative with respect to the

Levi-Civita connection. Let us recall that for this connection, the Christoffel symbols are sym-

metric: F}k=F}(j, i.e., we are in the torsion-free case.

Conditions on the vector and scalar potentials V and A ensuring the self-adjointness of H on
a dense domain of L2(M, \e"gdq) are known; see, e.g., Refs. 24-27.

The relevant one-parameter group U,, « € R, of transformations of the extended configuration
space will be denoted, like in the flat case, by

UyM X R,(¢',1) — (Q'a =q¢'+ aX'(¢q.,t) + o(a), 7, =t + aT(t) + o(a)), (6.3)

where ¢’ are local configuration coordinates and

XMXR—M, TR-—R,

are real analytic. For g any scalar field on M X R such that g¢, € Dy and such that g exists, let us
define, like in (2.11), the quantum derivative along i, by

1{o 1
Dg= %(5 - £H> (8. (6.4)

Introducing (6.1) and (6.2), this means that

J SV e it
Dtg: 54— —lh lp —-A VJ—EVVJ 8. (65)

t

Since this can be interpreted as a quantum deformation of the classical “absolute” (or “intrinsic”)
derivative of the scalar g along a smooth continuous curve ¢/=¢/(t), we shall define D,’ by the
vector

Vj'ﬁt(q )
(q)

in analogy with what we have done in the proof of Theorem III.7 of Sec. III. Choosing, like in Eq.
(3.16), g(g,7=S(g,7), with

Dg =-ih - Al(q) = Bi(q.1), (6.6)

S(g,7)==if In i (q) (6.7)
for any 7,¢q i-admissible solution of the Schrédinger equation (6.1), we can compute
1 J if J J
D.S(q,7) = >D4'Dg;— VA +AD.q’ - Vig). (6.8)

The rhs of (6.8) defines the Lagrangian L(D,q,q) associated with the quantum system (6.1).
Defining, for any g=(g"“),.z complex-valued, measurable and such that g®(-)¢()
e L*(M ,d M), the (forward) quantum conditional expectation in the state i by
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Ejg¥]= f gV(@p(s.&1.x)dM(&), (6.9)

where, for any (7,x) ¢~admissible, s =,

p(s,&1,)dM (&) = Y (Ok_(p,1 = 5,2)(¢h(x) ™" AM () (6.10)

with k_ the advanced propagator of the Schrodinger equation (6.1), one verifies that Theorem II1.7
still holds. So, canceling the boundary term without loss of generality, the regularized action
functional (6.3) becomes

S (x,17) =Mf;’x|:f l (%(D,q)z— V(q))dt+ f 1 (Aquj— %VjAj>dt:|

=Mﬁﬂ1”‘{fl(%(D,q)z—V(q))dHfledq], (6.11)

where we have used on M the same notations as in the Euclidean case of equations (3.10) and
(3.11).

Given an additional analytic generator ¢: M X R —C, called the divergence, the invariance of
the action (6.11) (up to this divergence term) is defined as in (4.4).

The formal symmetry operator on M becomes, instead of (4.7),

N =X (x,0) (=i % V) - T(t)(i i %) + o(x,1), (6.12)

and it is defined by the same commutation property (4.9) with the Schrédinger equation as in the
Euclidean case. This property implies the following conditions on X, 7, and ¢.

Proposition VI I:

N(t) is a symmetry operator for the Schrodinger equation (6.1) in L*(M ,dM), with Hamil-
tonian (6.2) (where V may depend smoothly on time) if and only if the following determining
equations hold:

(1
ar ¢*=Vixk+ VX7,
dr
2
ox’ 1 ,
—=-Vip-——A/ - XV, A/,
ot ¢ K
)
%8 _ 4y, e-Ty g —va(ﬁvak+1||A||2+v>
gr T PT g TeEAN G 2
arfih_ . 1, v
+—| =VA + AP+ V) + T—.
dr\ 2 2 ot

Proof: This is based on a simple computation of [N(t),Q]:)\,Q,(x,t)Q, where )=(d/4t)
—(i/ h)H with the Hamiltonian (6.2). Like in the flat Euclidean case, one finds that
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d
Aol 1) = - d—j(t). (6.13)

O
Remark: As in the flat Euclidean case, if we allow space-dependent time transformations in

(6.3), a further condition is needed for N(t) to be a symmetry operator for (6.1). This is

V,T=0. (6.14)

In other words (6.3) is indeed the most general space-time transformation for our purpose.

The integrability conditions of the determining equations (1)—(3) are not as obvious as in the
flat Euclidean case, but they have already been investigated.

When the determining equations (1)—(3) hold, the divergence invariance of the action (6.11)
[in the sense of the relation (4.4)] is guaranteed by construction.

In order to obtain the general form of the invariance of the Lagrangian under our groups of
transformations (Proposition TV.5) we need first to define the quantum derivative along , of a
vector field ¥/ on M X R.

In classical mechanics on a Riemannian manifold M, it is well known that the time derivative
of the velocity field is, in general, not a tensor. In consequence, the acceleration is defined as the
“absolute” (or “intrinsic”) derivative of the Velocity.29 The result is indeed a contravariant tensor
of rank one.

Definition VI.2: Let R{; be the Ricci tensor of the Riemannian manifold M. Then the quantum
(“absolute”) derivative of the complex-valued vector field Y, on M X R is defined by

) (T | R
DY = E + BV, Y/ - E(V V.Y + R/Y"), (6.15)

where B* is given by (6.6).
To be short, we shall denote simply by A the operator VAV, +R, so that

-9y ik .
D,Y/=;+BkaYJ—%AYJ. (6.15")

On scalars and covariant vectors, the Laplacian A coincides with the Laplace-Kodaira-de
Rham 0perat0r.30 One easily shows that this Laplacian commutes with the gradient and the diver-
gence, i.e., for g a scalar field as before,

and for Y a vector field,

Notice, in contrast, that [V/V ;» V] is not zero, in general.

Proposition VI.3:

Let L(D,q,q,t) be the Lagrangian, defined by the rhs of (6.8), of the quantum system, when the
potential V is allowed to be a smooth function of the time. A necessary condition for the diver-
gence invariance of the action functional (6.11) is

oL dL . aL
—T+ =X+ .
gt dq¢’ d(D,qy

. dT dr
DX - (th)ja + LE =-D, 0. (6.16)
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Proof:
i

) ¢ ik o
DX = — BV, X7 - %(VkaX/ +RXY). (6.17)

From the determining equation (1) (Proposition VI.1) and (d7/df)=(2/ n)Vij (where n=dim M)
we have

VleXj + VIV]X]( = 0

Using this in the Ricci identity we get

VleXj =RZ}ZXm7 (618)
where kaﬂ denotes the Riemannian-Christoffel curvature tensor. The rhs of (6.18) coincides with
Rkn‘ﬂXn, SO

VndXj = gn’len’len
and

VAV X = — RIXK. (6.19)
After introduction of the determining equation (2) (Proposition VI.1) and of (6.19) in the definition
(6.17) we obtain
) ) rdr . . . . )
DX =-Vig— —— . Al - X'V, Al + BV, X/
2 dt
In particular,

DX — (D q)f'd—T= -Vig- LA iy Lttty lB"(V X - ViX,) (6.20)
! A dr 2 dr T T2 o '

Now consider the invariance condition (6.16). Using the rhs of (6.8) as a definition of the La-
grangian (for V smoothly time dependent) this condition means explicitly, after simplification,

ify
2

de . ih . | in 1 dr
— -AVp- EVjVJ(P=XJVj EVkAk"' 5||A||2+ V] + —<

1 A%
V. A+ —|A|* + V) +T—.
ot dt 2 ot

This is the determining equation (3) of Proposition VI.1 and, therefore, the invariance condition
(6.16) constitutes indeed a necessary condition for the divergence invariance of the action (6.11)
under the Lie group of transformations (6.13). O

The main results of the flat case are, now, easily generalized. Using the definition of the
quantum derivative along #, of the scalar field S defined by (6.7), one verifies that S solves the
quantum Hamilton-Jacobi equation on M X R,

as 1 ih . ih_.
2 L (VS-AP+V+ VA - VIV S =0, (6.21)
a2 2 2

where the same remark as after (3.21) applies, as far as our notations are concerned. The quantum
Hamilton-Jacobi equation (6.21) provides us with a direct derivation of the regularized equation of
motion generalizing (3.28) and the Riemannian version of conservation of energy (3.29).

Let us compute

We first notice that
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V;5(VS—A)?= 3V (B'B))=B'V,B; + (V,B, - V,B,)B".
Since, for the Levi-Civita connection, there is no torsion, V;B,—V,B; is the exterior derivative of
By, generalizing the curl operator of Proposition IIL.11. By (6.22) this coincides with —(V A,
-ViA)) so
V;5(VS —A)?=B"V,B; - (V,A, - V,A,)B". (6.23)
On the other hand, as observed after (6.15"), [A,V;]S=0 implies that

V ViV S = ViV, VS + RV,S.

Finally, using (6.15) and (6.22), the covariant derivative of the quantum Hamilton-Jacobi equation
(6.21) reduces to

it
Now let us consider the space—time observable of energy hfZ/ associated with (6.2), namely
H ﬁ2 \¢ h? Vi, V. ih 1
L R A w( ‘/’)+iﬁAJ—ﬂ+’—vak+—||A||2+v. (6.25)
o ERRE b b 2 2
According to (6.6), it is consistent to denote the space—-time momentum by
pl=B+ A (6.26)
so that the energy becomes
1 4 ifh_. ih_. 1
W =—p*—Alp;+ —ViA;— —Vip. + ~A>+ V. 6.25'
[ zp p./ 2 J 2 p.l 2 ( )
Associated with the quantum Hamilton-Jacobi equation (6.21) we notice the following integrabil-

ity condition:

oB;
H_ _~“7J
V_,«h%— Pt (6.27)
Indeed, from the definition (2.5) and Schrddinger equation (6.1), hH ——((9/ or)S, where the relation
(6.7) has been used. In other words, according to (6.6), the relatlon (6 27) holds. Since the energy
space—time observable is a scalar, its quantum derivative along i, is given by (6.5),

oh 0B, ifi_ 0B
Dt =2 gl i (6.28)
W g gt T2 o

where the integrability condition (6.27) was used. On the other hand, by the definition (6.25") of
hH
Uy

H
Iy, _ By ih 7B, 0V

ot ot 2 ot at’

After substitution in (6.28) we obtain the conservation of the energy

== (6.29)

Let us collect this information in the
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Proposition VI.4:

For the action functional S; defined by (6.11), the regularized equation of motion and con-
servation of energy in an admissible state s, solution of the Schridinger equation (6.1) in
L*(M, \'Edq), are given respectively by

it
DD,g;=- (VA - V,A)B - ?(V]-VkA" - AA)-VV (6.30)
and
v
iy = P (6.31)

In particular, when the scalar potential V is time independent, the energy space—time observable
is a quantum martingale.

More generally, one shows, like in the flat case (cf. Ref. 31 and 32 for the probabilistic case),
the following.

Theorem VI.5 (Theorem of Ncether):

Let us consider the Jordan symmetrization of the formal symmetry operator 1§7(t) in
L*(M ,dM) defined in (6.12), i.e., the Neetherian operator

N(1) = X/(Q(1),1) o Pj(t) = T(1)H(t) + $(Q(1),1), (6.32)

where © denotes Jordan’s multiplication of operators,

X ih_
b=9p+ 3V,-XJ (6.33)

and X, T, and ¢ are solutions of the determining equations (1), (2), and (3) of Proposition VI.1, for
the symmetry groups of the Schrodinger equation (6.1). In (6.32) P; and H are, respectively, the
momentum and Hamiltonian observable in Heisenberg’s picture [cf. (6.26) and (6.2)].

Then N(1) is a quantum constant observable, densely defined on Dy, C L*(M ,dM) and the
associated space—time (scalar) observable ant is a quantum martingale, i.e., D,nztzO, Y &, admis-
sible.

Vil. QUANTUM PHYSICS, FEYNMAN PATH INTEGRAL AND STOCHASTIC ANALYSIS

Von Neumann axiomatization of quantum mechanics in Hilbert space is the mathematical
form of the original version of this theory.33 It can be regarded as a generalization of classical
Hamiltonian mechanics, where the commutative algebra of the (real) observables in phase space is
replaced by a noncommutative one.

It is well known that there is no mathematically rigorous Lagrangian version of quantum
theory. To construct such a framework was precisely one of Feynman’s original motivations.” But,
in spite of its success (founded on its extraordinary heuristic power), Feynman’s path integral
theory still cannot be regarded as such a satisfactory framework, from the mathematical point of
view. Let us recall that Feynman represents the solution of the initial value problem (2.2) by the
symbolic expression

th(x) = P w(0)e ™MD, (7.1)
Qt,x

where '* denotes the path space {w € C([0,7],R")|w(f)=x}. S[w;1] is the action functional of the
underlying classical Lagrangian system. For example, when H is as in (2.13), with A=0,
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t 1 t
S[w;r] = f <§|a'>(r)|2 - V(w(T)))dTE Solw;1] —f V(o(7)dr, (7.2)
0 0
Duw is the heuristic “flat measure” on the path space ()" (used as a Lebesgue measure)
Dw= [] do(?),
o=r=t

and

e(i/ﬁ)S[w;r] = e—(i/ﬁ)f6V(U)(T))dTe(i/ﬁ)SO[a);t]

is a complex weight.

Note that to make sense of the kinetic energy term in S, one should a priori assume that the
paths 7— w(7) are absolutely continuous and in the Cameron-Martin Hilbert space Hcy with
(finite) norm

(w,w)H:f lo(7)|*d7. (7.3)
0

Using Lie-Trotter’s formula, Nelson has shown that the rhs of (7.1) can be reinterpreted as the
strong limit j—c0 in L2(R") of a discretization of the time interval 0<t, <t,<--- <t;=r along
polygonal paths interpolating linearly between the corresponding configurations w(f;)=x;, k
=1,...,j,o(t)=x. But the heuristic expression for the limit of

eimSlod  TT  de(7) 74

TE{[I,...J]:t}

is not g-additive (cf. Ref. 18) and therefore cannot be used for the construction of a basic complex
measure on )*. However, it is possible, but very hard, to construct a rigorous (nonprobabilistic)
functional calculus on path space, using the time discretization approximation (cf. Ref. 34). For
various other approaches, cf. also Ref. 35. Let us see (in the free case, for simplicity) how the lack
of complex measure is reinterpreted in our distinct construction.

We consider a finite product of complex-valued functions like the ones used in our definition
(2.28),

F=f0 iV iV meN, 1>1,>1,> - >1. (7.5)

By iteration of the argument used there for only two such functions, the quantum (absolute)
expectation of F in the state ¢ becomes

(fj-’)~--f§")>¢,=f ¢z1(x1)f<1[')(xl)ko(x1,lz—t1,x2)f<2t2)(xz)ko(xz,t3—l‘z,x3)"'ko(xj_pl‘—lj_l,xj)

f;t)(xj)lzt(xj)dxl e dyy, (7.6)

where ky(x,7—s,y) denotes the integral kernel of the evolution group U,_, when V=0.

The rhs of (7.6) is a multilinear functional of f{",..../" which is well defined. But the
corresponding finite additive measure is not o-additive (the proof goes back to Cameron.”® See
also Ref. 37) and, therefore, there is no way to look at such an additive measure as the path space
measure of some diffusion process, i.e., a Markovian stochastic process with continuous sample
paths 7— (7).

What we have called the forward quantum transition kernel p in (2.23), for example, is not
positive in contrast with a crucial requirement of the existence proof of such a probability
measure.”® However, regarded only as defining a continuous complex-valued functional on a
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reasonable domain of integrable functions and satisfying some basic properties needed otherwise
for quantum theory, the limit of (7.4) makes sense and allows to obtain a number of results (see
Refs. 39, 40, 37, 41, 42, and 61).

If we are insistent about interpreting Feynman’s type of formula (7.1) as an integral over a
space of continuous paths, the traditional way, in mathematical physics, is to appeal to Kac’s
approach (but cf. also Refs. 62—-66). First one replaces Schrodinger’s initial value problem (2.2) by
its “Euclidean” (or “imaginary time”) counterpart, say

%

an .
- h—=Hpy 7.7
ot 77

with a bounded continuous initial condition y in L*(R"). Then the counterpart of (7.4), i.e.,

e mSdel ] dw(7), 78

el .. .,tj:t}

converges to the Wiener measure with diffusion coefficient 7, denoted by d/\/l{},, on the path space
QO (cf., e.g., Ref. 38). The measure M’;‘V has support on continuous but not differentiable paths
[in particular M%(HCM)=O] so neither the first factor in (7.8) nor the second one are well defined
but their product is. After a discrete absorption of the a.s. singular kinetic energy term in the
measure, the probabilistic counterpart of (7.1) is Feynman-Kac formula,*

77:‘()6) — f X(w(o))e—(I/ﬁ)ff)V(w(r))drdM W(w)=Ez,x|:X(W(O))e—(l/h)ng(W(T))dT] , (7.9)
Qt,x

where the last expression adopts the probabilities notation for the conditional expectation given
that the Wiener process satisfies W(z)=x (our superscript ¢,x indicates that the condition lies in the
future of the time interval of integration), as well as another notation 7]; for the solution of (7.7)
stressing its dependence on the initial condition Y.

The process W(7) is used exclusively as a technical tool in (7.9). We shall not insist here on
the fact, underlined time and time again‘m’45 that its (irreversible) dynamical properties have little
to do with the (reversible) ones of free quantum dynamics. There is no surprise here: the way
probability theory enters in (7.7)—(7.9) has nothing to do with the way it enters in quantum
dynamics, where, in particular, no direct probabilistic concept of conditional expectation is defined
but Born interpretation of ¢, is fundamental to the absolute expectation.

The above-mentioned support of Mﬁ, makes rather tricky the construction of any “stochastic
(Euclidean) Lagrangian calculus” along the line suggested by Feynman in Ref. 2, since the irregu-
larities of the “quantum paths” turn any classical action functional into a divergent one.

Any quantum observable should be defined as a function of the basic underlying “stochastic
process.” It is easy to check (see Chap. 7 of Ref. 2) that Feynman’s implicit relation between
self-adjoint operators in Hilbert space and associated “random variables” is precisely of our form
(2.5) (although formulated by the authors in the time discretized context, i.e., before taking lim; .,
in the above-mentioned construction, in order to avoid flagrant singularities). But the specific rules
for handling these “random variables™ are not established at all in Ref. 2. Their calculus seems to
be plagued by the same kind of singularities as in naive computations along the paths of diffusion
processes before the advent of Itd’s calculus.

The first problem is, of course, that the precise nature of the underlying formal stochastic
process itself (for a given H) is never specified. This may be due to the fact that, after the
above-mentioned nonexistence proof of the “Feynman’s process,” the specific properties it should
have were not, understandably, investigated. Is it clear, for example, that this process should be the
one associated with the real time version of the Wiener measure or, instead, of the counterpart of
some measure absolutely continuous with respect to the Wiener measure?

Also even if, given a quantum observable A, one admits (2.5) as a rule for the associated
space—time observable, there are, of course, many other candidates providing the same quantum
mechanical expectation (,,A(t) ). For example, Feynman gives two distinct space—time observ-
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ables for the Hamiltonian H of the form (2.13) with zero vector potential (Ref. 2, p. 194). He does
not indicate any way to choose which of those is more natural, for instance as defining the proper
space—time counterpart of the quantum constant of motion. It is also worthwhile to observe here
that Feynman’s path integral approach does not provide, curiously, any Neether Theorem although
its whole point is to be a Lagrangian approach.

Nevertheless, Feynman’s formal computations suggest that the abelian nature of the classical
algebra of observables should be preserved under quantization but that other basic rules of New-
tonian calculus should be “deformed in A” so as to preserve the compatibility with regular (non-
commutative) quantum mechanics in Hilbert space.

The point of our present work has been to investigate systematically the properties of the
above-mentioned “process,” beyond what Feynman did, without ever using what it certainly
cannot provide, a well-defined probability measure on the path space, compatible with Born
interpretation of the wave function ¢, and all quantum mechanical predictions.

Our main improvement with respect to Feynman’s original framework is the introduction of
the quantum version(s) of conditional expectation(s) for his heuristic process. Indeed, this supplies
us with a natural regularization of the many divergent terms in his formal computation, for
example the kinetic energy term [cf. (3.20)] of the classical action function.

Introducing the quantum derivatives along an L’-state associated with this quantum condi-
tional expectation, our calculus of space—time observables follows directly, as well as the defini-
tion of quantum martingale, underlying Neether theorem.

The key deformations of the rules of the classical calculus are, therefore, the ones of the
derivations, given by Proposition II.8.

With this procedure, we have embedded regular quantum mechanics (more precisely, the class
of elementary systems considered here) into a framework which, we claim, is much closer to
probability theory and stochastic analysis than Feynman’s path integral approach and, a fortiori,
than quantum theory in Hilbert space.

Let us now recall why this claim is justified.

A solution of the Cauchy problems for Schrodinger’s equation can be regarded as the value on
the imaginary axis of a solution of the heat equation (7.7). This is the famous “Euclidean” relation
(or “Wick rotation™)

Y, it) = 7, (x,1) (7.10)

for any y € Dy C L*(R").
Let us restrict ourselves, for a fixed 7>0, to x in the dense set of vectors in L*(R™), denoted
by D(e"?H), such that

)

1 TT
S bl < =, Viel- [——,—]
o 1! 22

Then, together with the solution of (7.7), we can consider the solution, in the strong L2-sense of
the adjoint equation with respect to the time parameter

In-
hﬂ:Hﬂi, tel
ot (7.11)
7])?(30):)?()3

where the overbar denotes, now, the complex conjugate.
Clearly we have
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J;nnydﬁmﬁdx:ﬂxi, (7.12)
in a striking analogy with Born’s “probabilistic” interpretation of the associated wave function i,
[cf. definition (2.17)]. This observation is due to Schrodinger (cf. Refs. 44 and 45) and lies at the
foundations of Euclidean quantum mechanics.

The identity (7.12) suggests the introduction of various Hilbert spaces associated with the pair
of heat equations (7.7)—(7.11) and allowing to mimic what happens in regular quantum mechanics.
For each € I, consider the solution space of (7.7), namely

3, = 9,(R") ={n,(0,x € D"},

and define

Ut_liﬁj _ D(e(T/2)H),

. (7.13)
7,(0) = x.
Equation (7.12) suggests as well the definition of the following scalar product in 5;:
(7, (D7, (1), = (U, 7, (DI 7, (002 = (i o (7.14)

and to complete 5: with respect to (:|-),. The resulting space, denoted by 1‘)‘;, is called forward
Hilbert space. As a matter of fact, (9, (-|-),) is unitarily equivalent to (L?,(:|-),) since U;" can be
extended unitarily from ﬁf onto L. Using U,, the Euclidean version of Heisenberg time evolution
of observables will be, for any densely defined A,

Af =v, AU, rel, (7.15)

where F stands for forward (space).

_So the familiar (Heisenberg’s) quantum formulas will be valid, but without the factor i
=V-1. For the same reason, the observables, in this framework, are densely defined normal
operators (not necessarily self-adjoint). For example, the momentum observable in 0;(]1%”)
=L*(R") is defined as —#V on its usual domain. A symmetric construction for equation (7.11)
would introduce another one-parameter family of (“backward”) Hilbert space, 9,.

Before continuing, it is worth stressing that the “reciprocal” analytical continuation in time of
the above construction adds nothing to regular quantum theory. Since the analytical vectors are
dense in L*(R") and e~ “M™H(L2(R")=L*(R") V', the real time version of the key restriction y
e D(e' M) disappears since

D(TPH) = [2(RY), VT eR.

Let us see that the probabilistic interpretation suggested by (7.12) and (7.14) is indeed fully
justified on positive vectors in ﬁf , if e"™H is positively preserving. For H as in Theorem II1.7,
with A=0, this is the case when V belongs to a subset of a class of potentials introduced by Kato
(cf. Ref. 45). The integral kernel of e~/ in 12(R"), denoted by

h(X,t_S,‘Z)a (716)

is, then, known to be jointly continuous and strictly positive.
For x>0 fixed as before, and n:(-)z 77;(- ,s), the Euclidean counterpart of the quantum tran-
sition kernel (2.25) becomes

q'(r,dg,t,x) = ni(q)h(q,t— 7',)6)(77;<(x))_1 dg, 7=rinl. (7.17)

In contrast with (2.25), ¢” satisfies all the properties of the backward transition probability of a
real-valued Markov process in I, for a given final probability distribution p,(y)dy.
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For another fixed ' >0, and #,(-)=7,/(-,t) in 9,(R") one gets the Euclidean version of the
quantum transition kernel (2.23), i.e.,

q(t.x,7,dg) = 7, (Dh(x,7- .q) n(q)dg, t=7inl, (7.18)

namely the (forward) transition probability of a Markov process for a given initial probability
distribution p_g),(x)dx. The existence of this Markov process Z,,t € I, introduced in 1984-1985
under the name of Bernstein diffusion® has been proved since then in more general settings (see
Ref. 46 for a recent review, using the tools of statistical physics).

Notice that the quantum problem of the zeroes of the wave function disappears here since, by
hypothesis on the potential V, exp(—(1/#)(t—s)H) is positivity preserving. Using (7.17) and
(7.18), one verifies easily that Z, t €I, is a real valued inhomogeneous diffusion process whose
drifts and diffusion matrix are given by the Euclidean version of Proposition II.14, i.e.,

. Vo,
B'(¢,)=— h —-(q),
7,
\Y
Blg.0)= % fw, (7.19)
t

Clg.t)=C"(g.0)=h 1,

with 1 the n X n identity matrix.

The particularity of such diffusions is that, in contrast with the traditional one-sided notion of
Markov processes, they take seriously the fact that the Markov property itself is invariant under
time reversal. If P, denotes the o-algebra generated by the past of Z,, i.e., P,=0{Z,,s € [,s <t} and
F, the future, F,={Z,,uel,u=1}, then, for any events A € P, and B ]—',,38

P(AB|N)) = P(A|N)) - P(B|N) (7.20)

almost surely, where N, denotes the present o{Z,} and P(-|V) is the conditional probability given
N..

The time symmetry of Z,,t €I, shows up in the multiplicative aspect of the integrand of
(7.12), for a pair of positive analytic vectors x, x’, since Egs. (7.7) and (7.11) are formally time
reversed of each other.

The Euclidean version of the relation (2.5) between operators in Hilbert space and space—time
observables provides us with well-defined random variables, functions of Z,. For example, the
above-mentioned momentum observable at time ¢ corresponds to —# (V 7]:/ 77?)(2,), i.e., the drift
B:(zx,1) already known by (7.19).

It follows that the Euclidean counterparts of the quantum derivatives (2.14) and (2.16) along

the quantum state ¢, and i, are given, respectively, by

D, =—+L", (7.21)

D=24r, (7.22)

where £ and £ are backward and forward generators of Z,,¢ € I, namely the elliptic operators

. Vo, #
P A/ L (7.21)
U 2

and
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v 7
AL/S IRN (7.22))
7 2

L=1

The derivatives (7.21) and (7.22) are better defined as limits (whenever they exist) of conditional
expectations, for f smooth real valued with compact support on R"*!, namely

D!f(Z.1) = lim E,{f (Z01) = {Z1-ant =AY } (7.23)
At]0 At
and
Df(Z,1) =1lim E,[f Zuapt+ AD = 2, 1) } i (7.24)
Ar]0 At

where E, denotes the conditional expectation given Z, in the future or in the past of the time
interval, computed in terms of the kernels (7.17) or (7.18), respectively. These conditional expec-
tations make sense from the probabilistic viewpoint, since the process Z, does, in contrast with our
quantum definitions (2.24) and (2.22).

Let us stress that, although the definitions (7.23) and (7.24) coincide with Nelson’s ones in
Ref. 47, the processes Z, have little in common with the ones introduced by him in order to
interpret probabilistically (2.2) (cf. Ref. 44 for more about that).

By definition of D; and D,, notice that f(Z,,?) is an , (respectively, 7,) martingale if and only
if D;f(Z,,1)=0 [respectively, D,f(Z,,1)=0].

The probabilistic counterpart of Proposition III.1, involving the derivative (7.24), is generally
known in stochastic analysis, as Dynkin’s formula (cf., e.g., Ref. 48). The fact that the counterpart
of (3.4), using (7.23), holds as well is due to the time symmetry of Bernstein measures.

The infinitesimal operators D, and D;k are keystones of Itd’s stochastic calculus.*% Although
it is not as widely known in mathematical physics as it should, this calculus can indeed be
formulated in a time-symmetric way as well as with respect to the usual increasing filtration P,.
This requires the introduction of the time-reversed filtration F,, (Refs. 45, 47, and 50), used here.
The quantum deformations (2.20") and (2.21") of Leibniz rule (for our class of Hamiltonians)
become, respectively, in stochastic analysis, for f,g smooth and real valued,

D(f-g)=(DJf)-g+f(Dg)+ hVf- Vg, (7.25)

D,(f-g)=(D,f)-g+f(D,g) - i Vf-Vg, (7.26)

The relations (3.13) and (3.13") are the quantum counterparts of the relations between Itd and
Stratonovich stochastic integrals [also denoted by © (Ref. 50)] with respect to P, and F,. It is well
known that the latter relation had already been discovered by Feynman in his path integral ap-
proach to quantum theory.z’44

Using this, one shows that positive solutions of the two adjoint heat equations (7.7) and (7.11)
admit two path integral representations in terms of Z,,¢ € I. These are the probabilistic counter-
parts of the integral representations (3.20) and (3.22).

The study of the symmetries of the action functionals involved in these path integrals results
in the probabilistic version of the quantum theorem of Neether, proved in paper I, which is in fact
the origin of the present Lagrangian formulation of quantum theory for elementary systems.

One can further develop Feynman’s ideas using the rigorous tools of stochastic analysis.69 For
example, his functional calculus® is well defined for the class of Bernstein diffusions and allows to
prove the Euclidean version of his heuristic results.”’ The aim of Euclidean quantum mechanics,
in the sense of Refs. 44 and 45 and for the present paper, is to transfer along this line, as much as
possible of mathematical structures from stochastic analysis to regular quantum theory. The point
of this indirect approach is to make the best of the irreducible probabilistic content of this theory

Downloaded 29 Jul 2008 to 194.117.6.7. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



062107-54  Albeverio, Rezende, and Zambrini J. Math. Phys. 47, 062107 (2006)

and discover more easily new conceptual and technical aspects of quantum dynamics which have
been muddled along the years by the superficial role of probability in the traditional Hilbert space
framework.

Viil. SOME CONCRETE EXAMPLES

A. One-dimensional free fall

Let the configuration manifold M of Sec. VI be simply R and consider the free fall Hamil-
tonian,

h? &

H=- 26q2+gq’ (8.1)
where g is a real constant. This is the (one dimensional) case A=0,V(q,f)=gq of (6.2). In
particular, H belongs to the quadratic class (5.1) and it follows from Sec. V that it is sufficient to
compute the free case V=0. The basis B,(1) of the symmetry Lie algebra g (1) is six dimensional
and, according to (5.7), given by

h P d h

J
l = .3' 9ﬁ_9'27 __,ﬁ - - = ‘,.=1,...,6. 82
By(1) {Hq pRUEE qaq+2} Wi } (8.2)

We observe that the free fall Hamiltonian (8.1) results from a linear combination of elements
of B(1).
By (5.19) we know that the constant observables of the one-dimensional free system are

d d a\ h d
i,i(q+ih t—), h—,iq* - z{iq(—ih —) + —} + 2it2<iﬁ —),
dq dq dq 2 at

J g h [ 9
h—,gh—+—=2itflih — (8.3)
at dg 2 ot

Equivalently the coefficients of the symmetry generator defined in (4.18) for the one-dimensional
free case are

r ¢
0 0 1
-t 0 q
1 0 0
—qt -7 (iht+qd)
0 1 0
2t l—h—
1 2 (8.4)

According to the method of Proposition V,5 each of these generators is unitarily equivalent to one
generator of the free fall Hamiltonian H via the strongly continuous one parameter groups of
unitary operators in L?>(R) defined by

Wt: e—(i/ﬁ)tH . e(i/ﬁ)tHO' (85)

Using this, one computes the corresponding coefficients for the free fall symmetry generators. The
results are
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X T @
0 0 1
g2
—t 0 -2
1=
1 0 gt
2
83 » 1. o 38, &4
—gt+=t° —t© —(ifit+ ——tq+ =t
qr+ 3 2(! q°) S rat g
0 1 0
3g , ih g’
-=F 2 - — +3gtg-="¢.
) o T8, (8.6)

As they should, the constant observables of the free fall system reduce clearly to the ones of the
pure free case (8.4) when the constant g vanishes.

We also observe that the second and third of those constants are “trivial” (although consis-
tently forgotten) since they correspond to the initial position and momentum observables ex-
pressed, in the Heisenberg picture, in terms of Q(¢) and P(z). On the other hand, the fourth and last
observables are nontrivial constants for this elementary system with purely continuous spectrum
oy

B. The free particle on the sphere S2CR?®

Now take for the configuration manifold M of Sec. VI the sphere S? of radius R in R>.
It is natural to introduce the spherical coordinates (¢/)=(6, ¢) in ]0, 7 X[0,27]. Then, since
A=V=0 here, the Lagrangian of the classical system reduces to the kinetic part

2
L(6,¢,6,¢) = %(92 +sin 6¢?), (8.7)

since the metric of S? is of the form

ds? = R*(d ¢ +sin® 0 d¢?), (8.8)
or, equivalently,
R? 0
8= ( 0 R?sin? 0)' (8.9)

The associated Christoffel symbols and covariant derivatives are easily computed,

F{1=Fi2=F%1=Ff1=F§2=O,
I2,=T3, =cotg 6, (8.10)

1 .
I';,=—sinf cos ¢,

and
v g 0
o0 0T a¢
(8.11)
o_ 19 o1 9
R? 96’ R*sin® 8¢

The quantum momentum observables in L>(S?,R? sin #d 0 d¢) are
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P@z—iﬁVQ—iﬁ COtgG,

8.12
Py=—ihV, 8.12)

and the Hamiltonian observable is

H i ( i tg 6 J ) (G (8.13)
=——||—5+cotg 60— | + — |- .
22|\ a2 T 50) T sin2 00
It is known that for this case with constant curvature K=R™>>0 and potentials A=V=0 the
dimension of the symmetry algebra is maximal; here this is five. The table of the coefficients of

the symmetry generator N() for the Schrodinger equation with Hamiltonian (8.13) is the follow-

ing:
X=(xXx% T ¢
(0,0) 1 0
(0,0) 0 1
(sin b, CZ: Z)) 0
<— cos ¢, S;; j) 0
0,-1) 0 0. (8.14)

Given the definition (6.12) of the symmetry generator N(7), it is clear that the first symmetry
corresponds to the conservation of the energy observable. The three last ones are interesting, but
also of a purely classical origin.

(X Q,Xf) ,j=1,2,3 form a basis of the Killing vector field Lie algebra for S2, an homogeneous
manifold. Those vectors X; are proportionals to the quantum angular momenta, known to be a
basis of SO(3), the group of isometries (rotations) of S%:

i . d cos¢ 9 . . cos ¢ )
L.=if|singp— + — |=ihlsing,— | =ih X, (8.15)
a0  tg 6 dd tg 0

and correspondingly for Ly,L,. The three vectors X; solve the determining equation (1) of Propo-
sition VI.1 which reduces here to Killing’s equation

VX +Vex7=0, j=123. (8.16)

The last symmetry of the table (8.14) corresponds to the conservation of the angular momentum
P.
@

The integrability of the underlying classical system is built on the existence of the two

constants of motion H and P allowing to foliate the data space by a two parameter family of
two-dimensional tori.

C. An example of Goldstein

In Goldstein’s Classical Mechanics (1980), (p. 430), the problem 2a) consists in showing that,
for a one-dimensional classical system with Hamiltonian

2

P 1 0
H(g,p)="—-—q2, 8.17
(g.p) 5 =54 (8.17)

there is a time-dependent constant of motion of the form
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n=§]p—tH. (8.18)

This is the case where M=R,A(g)=0, V(q):—%q‘zand (8.18) shows that

x<q,r>=§, T() =1, @(q.1)=0.

The determining equations (1) and (2) of Proposition IV.3 are trivially satisfied and the “classical
limit 2=0" of (3) holds as well, so n is indeed a (classical) constant of motion. Let us recall that
there is nothing exotic about time-dependent classical first integrals, as shown by the ones asso-
ciated with Galilean boosts.

D. Lewis and Riesenfeld invariant

This is a quantum invariant, discovered in 1969 (Ref. 52) for the harmonic oscillator with
time-dependent frequency, i.e., with classical Hamiltonian (M =R)

1 (1)
H(q,p,t)=5p2+7q2. (8.19)

It can be shown that this invariant is of the form (6.32), with

XN =74, @0 ==7q" TWO)=p*0),
where p(#) solves the nonlinear equation
.9 1
p+w (t)p—;=0.

Details can be found in Ref. 53.

IX. CONCLUSIONS

Our framework is founded on a dynamic reinterpretation of the symmetry group of the
Schrodinger equation, itself very close to the one of the associated heat equation.

Given the fact that this group was computed by Lie around 1890, a number of the tools we
used here are, indeed, quite old. The free Lie algebra can be found in most of the textbooks on Lie
groups analysis of PDE published since 1970 (for example Refs. 15, 16, and 54), often with
commentaries about the obscure physical interpretation of most explicitly time-dependent trans-
formations, notably those presented as trivial in our Section V. Kuwabara’s result™ (1984) (dis-
covered by us after the redaction of the present work was almost finished) is especially relevant,
as it shows that the Lie algebraic structure for quantum (and classical) symmetries is time-
dependent. He found, in particular, the form (6.12) of the symmetry operator, without regarding it
as a consequence of a Neether theorem or trying to relate it with a Lagrangian framework.
Although we could not find a clear statement that the associated quantum first integrals should be
understood in the sense of the Heisenberg picture of quantum dynamics, such a statement may
well already exist in the vast literature on the subject, but is certainly not common knowledge in
mathematical or theoretical physics.

The specific contribution of our indirect Euclidean approach lies, curiously, in the physical
interpretation it provides of many time-dependent symmetries, through their elementary meaning
in stochastic analysis.69
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The simplest illustration is provided by the one-dimensional (n=1) free case (A=V=0) and

the symmetry associated with the coefficients X=—¢,7=0, ¢=x of the symmetric generator N (¢) in
(4.7), corresponding to a simple solution of the system of equations of Proposition IV.3. This
symmetry corresponds to the one-parameter family of solutions

G (x,1) = @20y arp) a e R (9.1)

of the free equation if (dy/ t)=—(h>/2) A, quite familiar in the context of the Galilean invari-
ance of this equation.
Let us rewrite (9.1) as

Palet) = (O ) (x,1). 9.2)

and expand in « this expression when  is the trivial (unnormalizable) free solution if ¢,=1. On
this “state,” the space—time observables of momentum and energy vanish and the one associated

with N(¢) reduces to the phase ¢ [cf. (4.18)]. We find

2 3
bo(nr) =1 +ax+%(x2+iﬁt)—%(x3+3iﬁtx)+ (9.3)

By successive taking of (9! dar) at =0 we obtain a collection of constant space—time observ-
ables n’lvn(x,t) = @,(x,1),n € N, each, indeed, solution of D,p,=0.

Now ]Cl(t)=(—tP(t)+Q(t)) itself is certainly a trivial quantum first integral, namely the initial
position observable [since Q(¢) and P(¢) are solutions of the free Heisenberg equation of motion]

and the N"(t),n e N, reduce to the successive powers of this trivial dynamical information on the
free quantum system.
On the Euclidean side, we are dealing instead of (9.1) with the one parameter family

74(q.1) = e/ ag=(e/2)0) 7(g—oat,t), acR (9.4)

of (positive) solutions of the free heat equation (7.11). It corresponds to the Euclidean counterpart
(cf. paper 1)

Ng(t) = tai -q (9.5)
q

of the real time symmetry generator N(t). The above unphysical state i, turns into the trivial
solution 7,=1 of the free equation (7.11) whose probabilistic role becomes fundamental. Indeed,
according to (7.19) and (7.22') the associated well-defined diffusion Z, reduces to the one-
dimensional Wiener process with diffusion coefficient 7. Notice that the corresponding solution of
the free adjoint heat equation (7.7) is, then, the integral kernel 7, =ho(x,z,q) of this equation.
Since the relation between 7, and 7]: is manifestly not the Euclidean counterpart of a complex
conjugacy, this means that for the Wiener process itself, the time invariance of the lhs of (7.12)
(with an appropriate pair of positive boundary conditions) is the basis of our probabilistic inter-
pretation of a complex quantum probability amplitude.
Now let us consider

ho(q.t) = i”(qr,t). (9.6)
7

If Z, is the diffusion, of law P, built from 7 using (7.19), it is easy to show that A, is a strictly
positive P,-martingale of Z, i.e., satisfies D, h,(Z,;,t)=0. Denoting by Z the new diffusion, of law
P, built from 7,, one shows easily that P, is absolutely continuous with respect to P, with
Radon-Nikodym derivative dP,/dP=h,. In the case of the Wiener process, /, is the exponential
martingale of this process, a basic tool dating44‘49 back to the foundations of stochastic analysis.
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The family of P,martingales resulting from the successive taking of derivatives d/da at a=0,
namely {1,q,q*-%t,q°-3%tq, ...}, coincides with the familiar Wick product of the Brownian
motion™ which is, therefore, reinterpreted as the probabilistic counterpart of the above-mentioned
trivial dynamical information on the free quantum system provided by Necether’s theorem.

Thus stochastic analysis may help, indeed, to understand some conventional aspects of quan-
tum dynamics.

The version of Euclidean quantum mechanics advocated in paper I is known to be valid for a
class of Hamiltonians much larger than the one considered here (cf. Ref. 57) and it is expected that
many ideas expressed here will survive in more general contexts (cf. Refs. 70 and 71).

Although, as shown here, the Riemannian formulation of our results is quite natural, the
proper geometrical framework of this method is distinct. It should be regarded, in fact, as defor-
mation of classical contact geometry.58 This viewpoint also has serious computational advantages
when adopted in the Euclidean context where the probability measures make sense, and quantum
symmetries are reinterpreted as symmetries of families of diffusion processes.

X. ERRATA FOR PAPER |

(1) In Proposition 3.6 of Ref. 1 (cf. also Ref. 59), the term V¢—X-B, i.e., the variation of the
drift, is ambiguous. It should be understood as

k
a_gé _ ﬁBk
dqg'  dq

(where the summation convention is used).

(2) The “illustration of the central role of time symmetry,” mentioned in p. 331 of Ref. 1 is
wrong: the function n(q,r) [respectively n.(g,t)] solves our heat equation (7.11) [respec-
tively, (7.7)] and so are P, (respectively, F,) martingales of the starting process Z,, 7 € I. But
they are not strictly positive and so cannot be used as h-functions, in the sense of Doob’s

i

h-transform. However, when the Neetherian symmetry operator N is positivity preserving,

1.(q.0)=e"N5(q,t), where 7 is the positive solution of (7.11) associated with Z, is a
one-parameter family of solutions of the same equation. Then h,(q,t)=(75,/7)(q,?) is, in-
deed, the positive martingale needed for the A-transform producing the family of Bernstein
diffusions Z;" associated with this symmetry (cf. Conclusion here, Sec. 6, Part 2 of Ref. 44,
and Refs. 31, 32, and 58 for much more).
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