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Abstract. A general description of Bernstein processes, a class of diffusion
processes, relevant to the probabilistic counterpart of quantum theory known
as Euclidean Quantum Mechanics, is given. It is compatible with finite or
infinite dimensional state spaces and singular interactions. Although the rela-
tions with statistical physics concepts (Gibbs measure, entropy,. . . ) is stressed
here, recent developments requiring Feynman’s quantum mechanical tools (ac-
tion functional, path integrals, Noether’s Theorem,. . . ) are also mentioned
and suggest new research directions, especially in the geometrical structure of
our approach.

0. Introduction

This is a review of various recent developments regarding the construction and
properties of Bernstein processes, a class of diffusions originally introduced for
the purpose of Euclidean Quantum Mechanics (EQM), a probabilistic analogue of
Quantum Theory [1, 2].

The first section describes their construction, in a rather general setting, com-
patible with singular interactions. Most of Bernstein processes are not Markovian.
The original characterization of the Markovian ones in terms of a maximal entropy
principle goes back to E. Schrödinger [3], the originator of EQM, and has been
mathematically substantiated by H. Föllmer [4]. An adaptation in the present
setting is given in section 2.

For the relations with quantum dynamics, however, the above characterization is
not directly relevant. It is more natural to introduce a concept of action functional
on a class of processes, along the line of Feynman’s path integral, and to look for
the minimal point of this action. This is done in section 3.

The next section considers the relations between a crucial factorization, which is
the probabilistic counterpart of Born’s interpretation of the (complex) wave func-
tion ψt solving Schrödinger’s equation (ψ̄t(x)ψt(x) dx should be a probability), and
a martingale problem associated with the probability measure of the Bernstein
processes.

Section 5 describes the regularity of the (positive) solutions of the pair of adjoint
PDEs which are the basis of the construction.

Section 6 is devoted to the dynamical characterization of the Bernstein processes,
with some applications to the case where the state space E is finite dimensional,
Euclidean or Riemannian, then to the case where E is the Wiener space C([0, 1];Rd).

Finally, section 7 formulates in the simplest situation (E finite dimensional and
Euclidean) the Noether Theorem associated with the action functional of section
3, together with some interesting open problems suggested by it. This Theorem
relates the presence of symmetries of the action functional under some space-time
transformations to the existence of some martingales of the Bernstein processes.

The whole framework has been designed to be the closest possible analogue
of quantum theory using (Kolmogorovian) probabilistic concepts. It has recently
partially justified this claim in showing that, after the proper analytic continuation

1



2 A. B. CRUZEIRO, LIMING WU, AND J. C. ZAMBRINI

in the time parameter, the abovementioned stochastic Noether Theorem turns into
a new Theorem of regular quantum theory, providing more symmetries than the
usual results of this framework.

It is therefore the aim of EQM to build up progressively a complete stochastic
counterpart of quantum theory, allowing to transfer as many concepts and struc-
tures as possible from stochastic analysis to quantum theory. And, doing so, to
convince theoretical physicists that probability theory may provide new concep-
tual insights in this area. Reciprocally, one may hope to alleviate the traditional
frustration of probabilists in relation with the regular presentations of quantum
physics.

The authors, especially A. B. Cruzeiro, are grateful to the organizers of Anes-
toc’98, in Santiago de Chile, in particular R. Rebolledo. The present work has been
made in the framework of a cooperation project (ICCTI/CONICYT-98) between
the Group of Mathematical Physics of Lisbon and the group of R. Rebolledo at the
Catholic University of Chile (Santiago).

This paper is dedicated to the memory of Prof. A. Badrikian, to whom A. B. C.
and J. C. Z. owe the pleasure to have met both the second author and the organizer
of the Anestoc’98 meeting.

1. Bernstein processes: the definition

1.1. Notations regarding the free Markov process. Let

(Ω,F , (Ft)t≥0, (Xt)t≥0, (θt)t≥0, (Px)x∈E)

be the canonical realization of a continuous homogeneous Hunt-Markov process
with values in a Polish space E, where Ω = C(R+, E), (Xt)t≥0 is the family of
coordinates on Ω, (Ft)t≥0 is the natural increasing filtration, Px is the law of our
Markov process starting from x ∈ E, (θt)t≥0 is the semigroup of shifts on Ω defined
by (θtω)(s) = ω(t + s). We denote by (Pt(x, dy))t≥0 its semigroup of transition
kernels on (E,B), where B is the Borel σ-field. Throughout this paper we assume
that α is a σ-finite measure on E such that

(1) α is (Pt)-invariant, i.e.,
∫

E
Ptf dα =

∫
E
f dα, ∀t ≥ 0 and f ≥ 0;

(2) the dual Markov semigroup (P ∗t ), acting on L∞(α), of (Pt) on L1(α) can be
realized as the semigroup of transition kernels (P̂t(x, dy)) of a continuous
Hunt-Markov process (P̂x)x∈E on Ω = C(R+, E) (the dual process).

This process is used to modelize the evolution of a special realization of the
free quantum system (i.e., without interaction potential). In the simplest quantum
mechanical case of a system of particles in a potential, it will be the Brownian
Motion on E = Rd (in the flat case) or a Riemannian manifold. And it will be an
Ornstein-Uhlenbeck process (ground state of an harmonic oscillator) in the quantum
field case.

For every initial measure ν ∈M1(E) (M1(·) denotes the space of probability mea-
sures on a measurable space ·), we write Pν =

∫
E
Pxν(dx) and P̂ν =

∫
E
P̂xν(dx).

We denote by Eν(·) (respectively, Êν(·)) the expectation with respect to Pν (re-
spectively, P̂ν).

1.2. Definition of Bernstein processes. Let V : E → R be a Borel measurable
potential of interaction, which is singular in general. We assume always that, for
all t > 0,

Ex exp
∫ t

0

V −(Xs) ds < +∞ and Px

(∫ t

0

V +(Xs) ds < +∞
)

= 1, α− a.e.,

(1.1)
where V − = max(−V, 0) and V + = max(V, 0).
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According to Ruelle [6], the Gibbs measure (or specification) associated with V
knowing (X0, X1) = (x, y) is a probability measure on F0

1 = σ(Xt; 0 ≤ t ≤ 1), given
by

PV (dω | 0, x; 1, y) :=
exp(− ∫ t

0
V (Xs) ds)

Z(0, x; 1, y)
P(dω | 0, x; 1, y), (1.2a)

where P(dω | 0, x; 1, y) is the regular conditional distribution on F0
1 of Px knowing

X1 = y, and

Z(0, x; 1, y) :=
∫

Ω

P(dω | 0, x; 1, y) exp
(
−

∫ t

0

V (Xs) ds
)

(1.2b)

denotes the normalization constant for PV . (1.2a), (1.2b) are well defined α ⊗
P1(x, dy)− a.e.

Given two marginal laws µ0, µ1 ∈M1(E) such that

µ0 ¿ α, µ1(·) ¿ αP1(·) :=
∫

E

α(dx)P1(x, ·), (1.3)

consider the space of measures

M(µ0, µ1) := {µ ∈M1(E × E) | µ(Xt ∈ ·) = µt(·) for t = 0, 1 and µ¿ µ0 ⊗ P1}.
(1.4)

According to Zambrini [1] (see also Jamison [7] and Cruzeiro-Zambrini [8]), let us
introduce the

Definition 1.1. For µ ∈M(µ0, µ1), the probability measure on F0
1 given by

PV
µ (dω) :=

∫

E×E

µ(dx, dy)PV (dω | 0, x; 1, y) (1.5)

is called the measure of a Bernstein process associated with V and the boundary
condition µ.

Most of Bernstein processes are not Markovian [7]. Let us consider one of the
possible characterizations of the Markovian ones, inspired by Schrödinger [3] and
substantiated mathematically by Föllmer [4].

2. The maximal entropy principle

2.1. Recalls on relative entropy. Let (E,B) be a countably generated measur-
able space and µ, ν ∈ M1(E). The relative entropy or Kullback information of ν
with respect to µ is defined as

hB(ν;µ) :=
∫

E

dν

dµ
log

dν

dµ
dµ, if ν ¿ µ, and = +∞, otherwise. (2.1)

For a fixed pair µ, ν → hB(ν;µ) is nonnegative, convex and

h(ν;µ) = 0 ⇔ ν = µ.

Let G ⊂ B be a sub-σ-algebra. By desintegration, we have

hB(ν;µ) = hG(ν;µ) +
∫

E

ν(dz)hB(νz;µz), (2.2a)

where {νz(·) = ν(· | G)(z)} (resp. {µz}) is the regular conditional distribution of ν
(resp. µ) knowing G (see [19]). In particular,

hB(ν;µ) ≥ hG(ν;µ) and (hB(ν;µ) = hG(ν;µ)) ⇔ (νz = µz, ν − a.s.). (2.2b)

We will also need that ([9])

h(ν;α)− h(ν;µ) =
∫

E

ν(dx) log
dµ

dα
(2.2c)

for µ¿ α and h(ν;α) ∧ h(ν;µ) < +∞.
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2.2. Maximal entropy principle. Consider the Feynman-Kac semigroup, for A
a Borelian

PV
t (x,A) := Ex1A(Xt) exp

(
−

∫ t

0

V (Xs) ds
)
, (2.3a)

and the dual Feynman-Kac semigroup

P̂V
t (x,A) := Êx1A(Xt) exp

(
−

∫ t

0

V (Xs) ds
)
. (2.3b)

Let

P̃V
x |F0

1
:= (PV

1 1)−1(x) exp
(
−

∫ 1

0

V (Xs) ds
)
· Px, ∀x ∈ E

P̃V
µ0

:=
∫

E

µ0(dx)P̃V
x

(2.4a)

be the normalized Feynman-Kac measures and

P̃V
1 (x,A) := P̃V

1 (X1 ∈ A) (2.4b)

its transition kernel. The following is a simple application of Csiszär theorem [9]:

Proposition 2.1. Assume that there is some µ ∈M(µ0, µ1) such that

h(µ;µ0 ⊗ P̃V
1 ) < +∞. (2.5)

Then there is a unique Q attaining the

inf{hF0
1
(Q; P̃V

µ0
);Q ∈M1(Ω,F0

1 ) and Q((X0, X1) ∈ ·) ∈M(µ0, µ1)}, (2.6)

which is the probability measure Q = PV
µB of a Bernstein process with µB ∈

M(µ0, µ1) minimizing

inf{h(µ;µ0 ⊗ P̃V
1 );µ ∈M(µ0, µ1)}. (2.7)

Moreover ((Xt),PV
µB ) is Markov.

If there is some µ ∈M(µ0, µ1) such that

h(µ;µ0 ⊗ P̃V
1 ) < +∞ and µ ∼ µ0 ⊗ P1, (2.8)

then µB is characterized by

µB(dx, dy) = p(x)q(y)µ0(dx)P̃V
1 (x, dy) (2.9)

for some nonnegative measurable functions p, q on E.

Proof. For any Q ∈M1(Ω,F0
1 ), let µ = Q((X0, X1) ∈ ·). By (2.2),

hF0
1
(Q; P̃V

µ0
) = h(µ;µ0 ⊗ P̃V

1 )

+
∫

E×E

µ(dx, dy) · hF0
1
(Q(· | 0, x; 1, y);PV (· | 0, x; 1, y)).

Then Q attains the infimum in (2.6) if and only if its boundary law µ minimizes
(2.7) and

Q(· | 0, x; 1, y) = PV (· | 0, x; 1, y), µ− a.e.

Under the condition (2.5), the variational problem (2.7) admits a unique solution
µB by the well known entropy projection theorem of Csiszär [9, Th. 2.1]. Hence Q =
PV

µB is the unique solution of (2.6). Since ((Xt), P̃V
µ0

) is Markov, then ((Xt),PV
µB )

is Markov too.
Moreover, µB is characterized by (2.9) under (2.8), by [9, Corollary 3.1]. ¤
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Remark 2.1. The idea of using Csiszär entropy projection for this problem is due
to Föllmer [4]. See Nagasawa [10], Brunaud [11], Cattiaux and Léonard [12] and
the references therein for further developments. The above argument is simply an
adaptation of that in [4] (in the Brownian Motion case) to the present setting.

Remark 2.2. If µB ∈ M(µ0, µ1) is given by (2.9), then it minimizes (2.7), without
the condition (2.8).

Remark 2.3. The usual maximal entropy principle is expressed here as the mini-
mal relative entropy principle (2.6). The reason why P̃V

µ0
is chosen as the reference

measure will be clear afterwards. Since the concept of entropy is, in fact, irrele-
vant to quantum mechanics, section 3 will provide another interpretation of the
Bernstein-Markov process along the line suggested by Feynman’s path integrals
[13].

2.3. Factorial equation of Schrödinger. Let us make a remark on the relation
between Csiszär factorial form (2.9) and a factorial equation due to Schrödinger [3]:

Corollary 2.2. If the condition (2.8) is satisfied, then Schrödinger’s factorial equa-
tion for φ and ψ,

ψPV
1 φ =

dµ0

dα
, φP̂V

1 ψ =
dµ1

dα
, α− a.e. on E, (2.10)

admits a solution with φ, ψ nonnegative measurable functions on E satisfying, in
addition,

log φ ∈ L1(µ1), logPV
1 1− logPV

1 φ ∈ L1(µ0). (2.11)
Moreover, µB, determined in Proposition 2.1, is given by

µB(dx, dy) = ψ(x)φ(y)α(dx)PV
1 (x, dy). (2.12)

Proof. By Proposition 2.1, (2.9) is valid. As PV
1 (x, dy) = PV

1 1(x) · P̃V
1 (x, dy), (2.9)

can be rewritten as

µB(dx, dy) = p(x)
dµ0

dα
(x)[PV

1 1(x)]−1q(y) · α(dx)PV
1 (x, dy)

= ψ(x)φ(y)α(dx)PV
1 (x, dy),

where

φ(y) := q(y), ψ(x) := p(x)
dµ0

dα
(x)[PV

1 1(x)]−1 (Borel version).

Since µB ∈M(µ0, µ1) and α(dx)PV
1 (x, dy) = α(dy)P̂V

1 (y, dx), we have

µ0(dx) = ψ(x)PV
1 φ(x)α(dx)

µ1(dy) = φ(y) P̂V
1 ψ(y)α(dy)

(2.13)

and then (2.10) follows. (2.11) is a translation of the second claim in (2.9). ¤
Corollary 2.3. Assume moreover that (Pt) is symmetric and ergodic with respect
to α. Then the solution (φ, ψ) of (2.10) satisfying (2.11), when it exists, is unique
up to a constant factor, i.e., if (φ′, ψ′) is another such couple, then there is a
constant C > 0 such that

φ = Cφ′, ψ =
1
C
ψ′, α− a.e.

Proof. Notice that (Pt) is strictly positive improving (well known, see [35, p. 255]),
as well as (PV

t ) by our assumption (1.1). For two solutions (φ, ψ) and (φ′, ψ′) of
(2.10) satisfying (2.11), define

q(y) := φ(y), p(x) :=
PV

1 1(x)
PV

1 φ(x)
, (2.14)
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and similarly (q′, p′) corresponding to (φ′, ψ′). Then both (p, q) and (p′, q′) satisfy
(2.9). Since the measure given by (2.9) is the entropical projection (i.e., minimizing
(2.7)) by Remark 2.2, it is unique by Proposition 2.1. Thus p(x) q(y) = p′(x) q′(y),
µ0(dx)P1(x, dy)− a.e. on E2 or equivalently for µ0 − a.e. x ∈ E,

log p(x)− log p′(x) = log q(y)− log q′(y), P1(x, dy)− a.e. y ∈ E (2.15)

in [−∞,+∞), by Fubini’s theorem.
If, on the contrary, log q− log q′ were not constant α− a.e., then there would be

−∞ ≤ a < b < +∞, such that α(log q − log q′ ≤ a) ∧ α(log q − log q′ ≥ b) > 0. By
the strict positive improving property, for α− a.e. x ∈ E,

P1(x; [y; log q(y)− log q′(y) ≤ a]) ∧ P1(x; [y; log q(y)− log q′(y) ≥ b]) > 0,

which is obviously in contradiction with (2.15).
Consequently log q − log q′ is constant, α − a.e.. Returning to φ by the first

formula in (2.14), φ = Cφ′, α − a.e. for some constant C > 0. By the strict
positivity of PV

1 φ and the first equation in (2.10), ψ = 1
Cψ

′, α− a.e. too. ¤

Remark 2.4. The desintegration formula (2.12) is much more convenient that (2.9),
especially for the time reversal. See §4, 5.

Remark 2.5. If there is µ ∈M(µ0;µ1) such that

h(µ;µ0 ⊗ P1) < +∞ and µ ∼ µ0 ⊗ P1, (2.16a)

logPV
1 1 ∈ L1(µ0) and logZ(0, x; 1, y) ∈ L1(µ), (2.16b)

then the condition (2.8) is verified.
In fact, by (2.2c), we have under (2.12)

+∞ > h(µ;µ0 ⊗ P1)− h(µ;µ0 ⊗ P̃V
1 )

=
∫
µ log

P̃V
1 (x, dy)
P1(x, dy)

=
∫
µ(dx, dy)

[
− logPV

1 1(x) + logEx

(
exp

(
−

∫ 1

0

V (Xs) ds
) ∣∣∣∣ X1 = y

)]

=
∫

logZ(0, x; 1, y)µ(dx, dy)−
∫

logPV
1 1(x)µ0(dx)

> −∞.

Then h(µ;µ⊗ P̃V
1 ) < +∞, as desired.

A direct proof of existence and uniqueness of positive solutions of (2.10) for
strictly positive µ0 and µ1 has been given by Beurling [14]. See also [7].

3. The least action principle

We extend the least action principle for Bernstein processes [1, 8] to the general
setting of section 1.

3.1. Forward and backward kinetic energies. The presentation of this para-
graph is inspired by [4] and especially [12].

Let Q ∈M1(Ω1 := C([0, 1], E),F0
1 ) such that Q¿ Pα. Denote by Qt := Q(Xt ∈

·) the (marginal) law of Xt under Q. Assume Q0 = µ0, Q1 = µ1. Then Q ¿ Pµ0 .
Consider the density martingale

Mt =
dQ
dPµ0

∣∣∣∣
F0

t

, ∀t ∈ [0, 1]



BERNSTEIN PROCESSES ASSOCIATED WITH A MARKOV PROCESS 7

which can be chosen continuous Pµ0−a.s. (this will be assumed afterwards) because
of our continuous path assumption for ((Xt),P). Define

τQ := inf{t ∈ [0, 1];Mt = 0} (convention: inf ∅ = +∞), (3.1)

which is stopping time with respect to (Fµ0
t ), the completion of (F0

t ) by Pµ0 . It is
well known that

Pµ0(Mt = 0,∀t ∈ [τQ, 1]) = 1,

and then
Q(τQ > 1) = Eµ0M11[tQ>1] = Eµ0M11[M1>0] = 1. (3.2)

We define the stochastic integral, ∀t < τQ,

LQt =
∫ t

0

1
Ms

dMs. (3.3)

It is a local martingale in t ∈ [0, τQ). By Itô’s formula and the fact that M0 = 1,
we have Pµ0 − a.s.,

logMt =
∫ t

0

1
Ms

dMs − 1
2

∫ t

0

1
M2

s

d〈M〉s = LQt −
1
2
〈LQ〉t, ∀t < τQ,

where 〈·〉 denotes the usual quadratic variational previsible process. Then

Mt = 1[t<τQ] exp
(
LQt −

1
2
〈LQ〉t

)
:= E(LQ)t, ∀t ∈ [0, 1]. (3.4)

On the other hand by [16, p. 149, (3.25)], up to Pµ0 -equivalence,

[〈LQ〉1∧τQ = ∞] =
[

lim
t↗1∧τQ

E(LQ)t = 0
]

= [τQ ≤ 1]. (3.5)

From the condition Q¿ Pµ0 on F0
1 , we get therefore

Q[〈LQ〉1∧τQ <∞] = Q(τQ > 1) = 1. (3.6)

Definition 3.1. For Q ∈M1(Ω1,F0
1 ),

K+(Q) := K+(Q;P) :=
1
2
EQ〈LQ〉11[τQ>1], if Q¿ Pα, and +∞ otherwise (3.7a)

is called the forward kinetic energy of Q with respect to the free process P. And
the backward kinetic energy is defined as

K−(Q) := K+(Q̂; P̂), (3.7b)

where (γω)(t) = ω(1− t) is the time reversal on Ω1 and Q̂ := γQ is the law of the
time reversed process (X̂t := X1−t)t∈[0,1] under Q.

Lemma 3.2. It holds that for any Q ∈ M1(Ω1,F0
1 ) with Q0 = µ0, Q1 = µ1, if

Q¿ Pα, the kinetic energies coincide with the Kullback entropies

K+(Q) = hF0
1
(Q;Pµ0); (3.8a)

if Q̂¿ P̂α,
K−(Q) = hF0

1
(Q̂; P̂µ1). (3.8b)

Proof. (Following [12].) Let τn = inf{0 ≤ t ≤ τQ; 〈LQ〉t ≥ n}∧ τQ (inf ∅ := ∞). By
(3.5) and (3.6), 1 ∧ τn ↑ 1 ∧ τQ, Pµ0 +Q− a.e.. Thus

hFµ0
1∧τn

(Q,Pµ0) −→ hFµ0
1∧τQ

(Q,Pµ0) = EQ logM1∧τQ = hF0
1
(Q;Pµ0),
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as n tends to infinity (where the last equality follows from (3.2)). On the other
hand,

hF0
1∧τn

(Q,Pµ0) = EQ
(
LQ1∧τn

− 1
2
〈LQ〉1∧τn

)

=
1
2
EQ(〈LQ〉1∧τn

),

where the last equality follows from Girsanov’s formula: in fact (LQt∧τn
−〈LQ〉t∧τn

),
being a Q-local martingale with bounded quadratic variational process, is a Q-
martingale.

Combining these two facts, we obtain (3.8a) by Fatou’s lemma. Applying (3.8a)
to Q̂ with respect to P̂, we get (3.8b). ¤
Fundamental example 3.3. [17, 4, 5] Let E = Rd and ((Xt), (Px)) be the stan-
dard Brownian Motion such that Px(X0 = x) = 1. Assume K+(Q) < +∞. Then
the coordinates process (Xt) satisfies Itô’s stochastic differential equation

dXt = dBt + v+
t dt,

where (Bt) is a Q-Brownian Motion and

v+
t = lim

ε→0+

1
ε
EQ(Xt+ε −Xt | F0

t ) := D+
t Xt (3.9)

is the forward velocity of ((Xt),Q) (see [4] for a precise description of (3.9)). Fix a
Borel version of v+. By the Girsanov formula,

dQ
dPµ0

∣∣∣∣
F0

t

= Mt = E(LQ)t,

where LQt =
∫ t

0
v+

s dXs, ∀t < τ := inf
{
t;

∫ t

0
|v+

s |2 ds = +∞}
= τQ (by (3.5) under

Pµ0 . Then, by definition,

K+(Q) =
1
2
EQ〈LQ〉11[1<τ ] =

1
2
EQ

∫ 1

0

|v+
t |2 dt, (3.10a)

where the last expression is precisely the forward kinetic energy, justifying our
general definition (3.7a).

Similarly, assume K−(Q) < +∞ and let

v−t = lim
ε→0+

1
ε
EQ(Xt−ε −Xt | F t

1) := D−t Xt

be the backward velocity of ((Xt),Q); then

K−(Q) =
1
2
EQ

∫ 1

0

|v−t |2 dt, (3.10b)

justifying (3.7b).

Remark 3.1. In the expressions (3.10a) and (3.10b), the mass is assumed to be
one. If there is a nontrivial mass tensor, or ((Xt),Px) is the Brownian Motion on a
Riemannian manifold whose metric is determined by the mass tensor, we can still
justify that (3.7a) and (3.7b) define, respectively, natural forward and backward
kinetic energies (cf. section 6).

Lemma 3.4. Let µt(x) = dµt

dα (x) for t = 0, 1. If K+(Q) < +∞, and

µ0(x) log µ0(x)− µ1(x) logµ1(x) ∈ L1(α), (3.11a)

then the relation between the two kinetic energies can be written as

K−(Q) = K+(Q) +
∫

E

[µ0(x) log µ0(x)− µ1(x) logµ1(x)]α(dx). (3.11b)



BERNSTEIN PROCESSES ASSOCIATED WITH A MARKOV PROCESS 9

Proof. By (3.8b) and (2.2),

K−(Q) = h(Q̂; P̂µ1) = EQ̂ log
dQ̂
dP̂α

· 1
µ1(X0)

= EQ log
dQ
dPα

· 1
µ1(X1)

(
since

dQ̂
dP̂α

=
dQ
dPα

(γ)
)

= EQ log
dQ
dPµ0

· µ0(X0)
µ1(X1)

= K+(Q)− EQ[logµ0(X0)− logµ1(X1)]

= K+(Q)−
∫

E

[µ0(x) log µ0(x)− µ1(x) logµ1(x)] dα(x).

¤

3.2. The least action principle. From now on we always assume
∫

E

µ0(dx)PV
t 1(x) < +∞,

∫

E

µ1(dx)P̂V
t 1(x) < +∞. (3.12)

Lemma 3.5. Under (3.12), if one of K±(Q) is finite, then

EQ
∫ 1

0

V −(Xs) ds < +∞, or, equivalently, EQ
∫ 1

0

V (Xs) ds ∈ (−∞,+∞].

(3.13)

Proof. We treat only the case where K+(Q) < +∞. By Lemma 3.2, h(Q;Pµ0) =
K+(Q) < +∞. By (2.2c),

+∞ > h(Q;Pµ0)− h(Q; P̃V
µ0

)

= EQ log
dP̃V

µ0

dPµ0

= EQ log
exp(− ∫ 1

0
V (Xs) ds)

PV
1 1(X0)

= −EQ
∫ 1

0

V (Xs) ds−
∫

E

dµ0(x) logPV
1 1(x).

Thus (3.13) follows by the condition (3.12). ¤

It follows from this lemma that the potential energy EQ
∫ 1

0
V (Xs) ds of the Bern-

stein process Xs is well defined.
This allows us to introduce action functionals:

Definition 3.6. For Q ∈M1(Ω1,F0
1 ) with Qt = µt, t = 0, 1,

A±(Q) = K±(Q) + EQ
∫ 1

0

V (Xs) ds, when K±(Q) < +∞ (= +∞ otherwise)

(3.14)
is called respectively the forward and backward action functional of Q. We shall
use occasionally

A(Q) =
1
2
[A+(Q) +A−(Q)], (3.15)

called the symmetrized action functional of the process.

The following result is along the line of variational principles in [1, 2, 8]:
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Proposition 3.7. Assume (3.12). The condition (2.5) of Proposition 2.1 is equiv-
alent to

inf
{A+(Q) | Q ∈M1(Ω,F0

1 ),Q0 = µ0,Q1 = µ1

}
< +∞. (3.16)

In that case, there is a unique probability measure Q attaining the infimum in (3.16),
which is given by the Bernstein-Markov measure PV

µB of Proposition 2.1

Proof. By Lemma 3.2 and the proof of Lemma 3.5, we have

A+(Q) = h(Q; P̃V
µ0

)−
∫

E

dµ0(x) logPV
1 1(x), if K+(Q) < +∞. (3.17)

Since the last constant in (3.17) is finite by condition (3.12), the conclusion follows
directly from Proposition 2.1. ¤

Another extension of the variational principles of EQM involves the symmetrized
action functional:

Theorem 3.8. Assume (2.5), (3.11a) and (3.12). Then

inf
{A(Q) | Q ∈M1(F0

1 ),Q0 = µ0,Q1 = µ1

}
< +∞ (3.18)

and it is attained by a unique Q, which is given by the Bernstein-Markov measure
PV

µB determined in Proposition 2.1.

Proof. By Proposition 3.7, there exists Q satisfying Qt = µt for t = 0, 1 and
A+(Q) < +∞. By Lemma 3.4 (3.11b), we have, for any such Q,

A(Q) = A+(Q) +
1
2

∫

E

[µ0(x) log µ0(x)− µ1(x) logµ1(x)] dα(x), (3.19)

which is finite. Since the last term in (3.19) is independent on Q (i.e., depends only
on (µ0, µ1)), this result follows from Proposition 3.7. ¤

4. Schrödinger’s factorization and node estimate

In this section we assume that (2.8) holds.
According to (2.12), there are two nonnegative Borel measurable functions φ and

ψ such that µB(dx, dy) = ψ(x)φ(y)α(dx)PV
1 (x, dy). They will be fixed from now

on. Consequently, the Bernstein-Markov measure determined in Proposition 2.1 is
given by

PV
B := PV

µB = ψ(X0)φ(X1) exp
(
−

∫ 1

0

V (Xt) dt
)
· Pα, on F0

1 . (4.1)

Recalling the definition of the Feynman-Kac semigroups (PV
t ) and (P̂V

t ) given in
(2.3), we define for all (t, x) ∈ [0, 1]× E,

φ(t, x) := PV
1−tφ(x); ψ(t, x) := P̂V

t ψ(x). (4.2)

They are Borel-measurable on [0, 1] × E with values in [0,+∞]. The following
lemma is the key of this section.

Lemma 4.1.
a) Let (MB

t ) be the Pν-continuous martingale version of

Eν

[
ψ(X0)φ(X1) exp

(
−

∫ 1

0

V (Xt) dt
) ∣∣∣∣ Fν

t

]
, (4.3)

where ν is a probability measure equivalent to α with dν/dα bounded, and
(Fν

t ) is the completion of (F0
t ) by Pν . Then, with Pν-probability one,

MB
t = ψ(X0)φ(t,Xt) exp

(
−

∫ t

0

V (Xs) ds
)
, ∀t ∈ [0, 1]; (4.4)
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b) the map t→ ψ(X0)φ(t,Xt) is Pα-a.e. continuous and finite on [0, 1];
c) the map t→ φ(X1)ψ(t,Xt) is Pα-a.e. continuous and finite on [0, 1].

Proof. Step 1. We prove at first that t→ φ(t,Xt) is optional w.r.t. (Fν
t ), and for

any stopping time 0 ≤ τ ≤ 1 w.r.t. (Fν
t ),

Eν

[
φ(X1) exp

(
−

∫ 1

τ

V (Xs) ds
) ∣∣∣∣ Fν

τ

]
= φ(τ,Xτ ). (4.5)

For this purpose, let V N
n = [V ∨ (−n)] ∧N and φn = φ ∧ n for any n,N ∈ N. Let

φN
n (t, x) := P

V N
n

1−tφn(x) = Exφn(X1−t) exp
(
−

∫ 1−t

0

V N
n (Xs) ds

)
.

¤

Since t → mt := exp
(−nt − ∫ t

0
V N

n (Xs)ds
)

is multiplicative, then Q. := mtP.
defines a right Markov process by Sharpe [36, Th. (61.5), p. 287]. Applying [36,
Th. (7.4).(viii), p. 31] to Q., we get that

t→ e−ntφN
n (t,Xt) is right continuous on [0, 1], Pν − a.s.

Hence (φN
n (t,Xt))t∈[0,1] is optional w.r.t. (Fν

t ).
By the same argument as in [36, Th.(7.4). (iv)⇒(vi),p. 33] (w.r.t. Q.), we have

Eν

[
φn(X1) exp

(
−

∫ 1

τ

V N
n (Xs) ds

) ∣∣∣∣ Fν
τ

]
= φN

n (τ,Xτ ). (4.6)

Now by dominated convergence and Fatou’s lemma, for all (t, x) ∈ [0, 1]× E,

φ(t, x) = lim
n→∞

↑ lim
N→∞

↓ φN
n (t, x).

Thus for all (t, ω) ∈ [0, 1]× Ω,

φ(t,Xt(ω)) = lim
n→∞

↑ lim
N→∞

↓ φN
n (t,Xt(ω)),

where the desired optionality of t → φ(t,Xt) (w.r.t. (Fν
t )) follows. Finally, taking

at first N →∞ and next n→∞ (as above), (4.6) becomes (4.5).
Step2: part a). Since MB

1 = ψ(X0)φ(X1) exp
(− ∫ 1

0
V (Xt) dt

) ∈ L1(Pα) by
(4.1), we have MB

1 ∈ L1(Pν) as well by our assumption on ν. By Doob’s stopping
time theorem, for any stopping time 0 ≤ τ ≤ 1 w.r.t. (Fν

t ),

MB
τ = Eν(M1 | Fν

t )

= ψ(X0) exp
(
−

∫ τ

0

V (Xt) dt
)
· Eν

[
φ(X1) exp

(
−

∫ 1

τ

V (Xt) dt
) ∣∣∣∣ Fν

τ

]

= ψ(X0) exp
(
−

∫ τ

0

V (Xt) dt
)
· φ(τ,Xτ ),

(4.7)

where the last equality follows from (4.5).
Now notice that (MB

t )t∈[0,1] and
(
ψ(X0)φ(t,Xt) exp

(− ∫ t

0
V (Xs) ds

))
t∈[0,1]

are
two optional processes satisfying (4.7). By the well known section theorem in
Dellacherie and Meyer [15, Vol. 1,chap. IV] (or [36, Th. (A4.13).(ii), pp. 389,390]),
these two processes are Pν-indistinguishable. Then (4.4) follows. Part a) is proved.

Step 3: part b). By (4.4), Pν − a.s., we have for all t ∈ [0, 1],

ψ(X0)φ(t,Xt) = Mt exp
(∫ t

0

V (Xs) ds
)
.

But the last process above is continuous and finite on [0, 1], Pν ∼ Pα − a.e..
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Step 4: part c). By reversing the time in (4.1), we have

γPV
B = P̂V

B = φ(X0)ψ(X1) exp
(
−

∫ 1

0

V (Xs) ds
)
· P̂α. (4.8)

Let (M̂B
t ) be the P̂ν-continuous martingale version of

Êν

[
φ(X0)ψ(X1) exp

(
−

∫ 1

0

V (Xs) ds
) ∣∣∣∣ Ft

]
.

By the same proof as in part a) above, we have

M̂B
t = φ(X0)ψ(1− t,Xt) exp

(
−

∫ t

0

V (Xs) ds
)
, ∀t ∈ [0, 1], P̂ν ∼ P̂α − a.e.

(4.9)
Thus, still by the time reversed process X̂t := X1−t, we get

0 = P̂α

(
t→ φ(X0)ψ(1− t,Xt) is not continuous on [0, 1]

)

= Pα

(
t→ φ(X1)ψ(1− t, X̂t) is not continuous on [0, 1]

)

= Pα

(
s→ φ(X1)ψ(s,Xs) is not continuous on [0, 1]

)
,

the desired claim c).

Proposition 4.2. Let µt := PV
B(Xt ∈ ·) be the marginal law of the Bernstein-

Markov process PV
B (given in (4.1)) for t ∈ [0, 1]. Then it holds that

µt(dx) = φ(t, x)ψ(t, x)α(dx), ∀t ∈ [0, 1]; (4.10)

PV
B

(
φ(t,Xt)ψ(t,Xt) > 0, ∀t ∈ [0, 1]

)
= 1. (4.11)

Remark 4.1. The relation (4.10) is called Euclidean Born interpretation in [1, 2].
The reason of this terminology will be clear in the next section, when we will come
back to the fundamental example 3.3. Let us only observe here that the multiplica-
tive form (4.10), essential to the structure of EQM, was the original motivation of E.
Schrödinger [3]. The equality (4.11) means that under PV

B , the process (Xt) cannot
reach the nodal set {(t, x) ∈ [0, 1]×E;φ(t, x)ψ(t, x) = 0}. It was at first established
by Zheng [21] in a particular (and different) context. The node estimate (4.11) was
stated in [10, Th. 5.3, pp. 128,129] (for L = 1

2∆), but its proof (only three lines,
from line −6 to −4 of p. 129 in [10]) is both far from being complete and false: it
is claimed that (4.11) follows from the fact that PV

B(φ(t,Xt)ψ(t,Xt) > 0) = 1 for
each t fixed (trivial by (4.10)) and the right continuity of t → φ(t,Xt), which was
not proved.

Proof. Formula (4.10) is an immediate consequence of (4.1). To show the node
estimate (4.11), observe that PV

B(φ(0, X0)ψ(0, X0) > 0) = µ0(dµ0/dα > 0) = 1 and

((1/φ(0, X0)ψ(0, X0))MB
t )

is the density martingale of PV
B w.r.t. Pµ0 . By (3.2) we have

1 = PV
B

(
1

φ(0, X0)ψ(0, X0)
MB

t > 0,∀t ∈ [0, 1]
)

= PV
B

(
φ(t,Xt) exp

(
−

∫ t

0

V (Xs) ds
)
> 0,∀t ∈ [0, 1]

)

= PV
B

(
φ(t,Xt) > 0, ∀t ∈ [0, 1]

)
,

where the second equality follows from (4.4)
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Similarly from (4.9) we deduce

PV
B

(
ψ(t,Xt) > 0, ∀t ∈ [0, 1]

)
= P̂V

B

(
ψ(1− t,Xt) > 0, ∀t ∈ [0, 1]

)

= P̂V
B

(
M̂B

t > 0, ∀t ∈ [0, 1]
)

= 1.

Combining these two estimates we get (4.11). ¤

5. Regularity of φ(t, x) and ψ(t, x)

By definition (4.2) it follows formally from Feynman-Kac formula that(
∂

∂t
+ L

)
φ(t, x) = V (x)φ(t, x)

(
− ∂

∂t
+ L̂

)
ψ(t, x) = V (x)ψ(t, x)

(5.1)

where L and L̂ are respectively the (formal) generators of (Pt) and (P̂t).
At this point, it is illuminating to come back to the abovementioned

Fundamental example 3.3: In this case we have L = L̂ = 1
2∆. Using (5.1)

we may reinterpret explicitly some of the results found in section 3 (least action
principle).

Let us define the two scalar fields

R̄(t, x) =
1
2

log(φψ)(t, x),

S̄(t, x) =
1
2

log
(φ
ψ

)
(t, x),

where φ and ψ are the two positive solutions of (5.1) needed for the construction.
Since, formally, these equations (5.1) are time reversed of each other, together with
their solutions, R̄ is even and S̄ odd under time reversal.

Let us define the differential form

ωe = dR̄(t, x).

Using (5.1) and defining the Hamiltonian H by

H = −L+ V

when φ and ψ are regular enough we have

ωe =
1
2

[
Hφ

φ
− Hψ

ψ

]
dt+

1
2

[∇φ
φ

+
∇ψ
ψ

]
dx.

After integration on the time interval [0, 1] and interpreting the space differential
as a Stratonovich one along the process Xt, with probability density µt(dx) =
(φψ)(t, x)dx (cf. (4.10)) we obtain∫

Rd

dx [µ1(x) log µ1(x)− µ0 logµ0(x)]

=
1
2

{
Ea

∫ 1

0

[
1
2
|D+

t Xt|2 + V (Xt)
]
dt− Ea

∫ 1

0

[
1
2
|D−t Xt|2 + V (Xt)

]
dt

}

≡ A+(Q)−A−(Q)

≡ K+(Q)−K−(Q),

where the notations of (3.10a) and (3.10b) have been introduced for the forward
and backward kinetic energies, as well as the ones of (3.14) for the associated action
functionals. The last relation coincides with (3.11b).

Starting from the scalar field S̄, which is odd under time reversal, and defining

ω0 = dS̄(t, x)
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we find as well, after a similar computation,
∫

Rd

dx

[
µ1(x) log

φ

ψ
(1, x)− µ0(x) log

φ

ψ
(0, x)

]

=
1
2

{
EQ

∫ 1

0

[
1
2
|D+

t Xt|2 + V (Xt)
]
dt+ EQ

∫ 1

0

[
1
2
|D−t Xt|2 + V (Xt)

]
dt

}
. (5.2)

In particular, we obtain in this way another interpretation of the action func-
tionals, namely

EQ
∫ 1

0

d(S̄ + R̄)(t,Xt) = A+(Q)

and

EQ
∫ 1

0

d(S̄ − R̄)(t,Xt) = A−(Q),

the symmetrized action functional (3.15) corresponding simply to

EQ
∫ 1

0

dS̄(t,Xt) = A(Q).

It is natural to call Lagrangians the integrands of these action functionals. The
reason why those actions are fundamental will be shown in the last section.

Also notice that the definitions of the scalar fields R̄ and S̄ provide us with a
nontrivial decomposition of the two positive solutions φ and ψ of the equations
(5.1) according to their behaviour under time reversal, namely

φ(t, x) = eR̄+S̄(t, x),

ψ(t, x) = eR̄−S̄(t, x).

It is in this sense that µt(dx) = (φψ)(t, x) dx = e2R̄(t, x)dx is the probabilistic
(or “Euclidean”) counterpart of Born’s interpretation of the quantum wave function
solving Schrödinger equation. The pair of equations (5.1) is the counterpart of
Schrödinger’s equation and its complex conjugate.

A concise interpretation of (5.1) is accessible through the

Definition 5.1. A real measurable function u(t, x) on [0, 1] × E belongs to the
α-extended domain Dα(A) (respectively Dα(Â)) of A := ∂/∂t + L (respectively
Â := −∂/∂t + L̂), if there is a measurable function v(t, x) on [0, 1] × E such that∫ 1

0
|v(t,Xt)| dt < +∞, Pα − a.e. and

Mt(u) := u(t,Xt)− u(0, X0)−
∫ t

0

v(s,Xs) ds, t ∈ [0, 1]

(resp. M̂t(u) := u(1− t,Xt)− u(1, Xt)−
∫ t

0

v(1− s,Xs) ds)

is a continuous local martingale on [0, 1] w.r.t. Pν (resp. P̂ν), where ν ∼ α is a
probability measure. In that case, Au(t, x) := v(t, x) (resp. Âu(t, x) := v(t, x)).

The above definition does not depend on the probability measure ν ∼ α.

Proposition 5.2. a) The process

φ(t,Xt)− φ(X0)−
∫ t

0

V (Xs)φ(Xs) ds, t ∈ [0, 1]

is a Pµ0-local continuous martingale on [0, 1]. In particular, if µ0 ∼ α, then
φ(t, x) ∈ Dα(A) and Aφ(t, x) = V (x)φ(t, x), i.e., the first formula in (5.1)
holds in the sense of Definition 5.1.
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b) The process

ψ(1− t,Xt)− ψ(X0)−
∫ t

0

V (Xs)ψ(1− s,Xs) ds, t ∈ [0, 1]

is a P̂µ1-local continuous martingale on [0, 1]. In particular, if µ1 ∼ α, then
ψ(t, x) ∈ Dα(Â) and Âψ(t, x) = V (x)ψ(t, x), i.e., the second formula in
(5.1) holds in the sense of Definition 5.1.

Notice that in a) and b) φ(x), ψ(x) are the nonnegative functions used in (4.1).

Proof. a) By Lemma 4.1 (4.4), Pµ0 − a.s., for all t ∈ [0, 1],

φ(t,Xt) =
1

ψ(X0)
MB

t exp
(∫ t

0

V (Xs) ds
)
.

Writing et = exp
(∫ t

0
V (Xs) ds

)
, we get by Itô’s formula,

φ(t,Xt)− φ(0, X0) =
1

ψ(x0)

∫ t

0

es dM
B
s +

1
ψ(X0)

∫ t

0

V (Xs) esM
B
s ds.

The first term at the right hand side above is a Pµ0 -local continuous martingale,
the second term above coincides with

∫ t

0

V (Xs)φ(s,Xs) ds.

Thus part a) is shown.
Part b) can be derived from (4.9) instead of (4.4), in the same way. ¤

Remark 5.1. Since one of the two PDEs (5.1) does not define a well posed Cauchy
problem, Proposition 4.2 shows that, in general, the life time of Bernstein processes
will be finite [2].

6. The equations of motion

6.1. The velocity. Generalizing (3.9), let us consider the forward mean derivative
in the sense of Nelson [17] along the Bernstein process:

D+
t f(t,Xt) = lim

ε→0

1
ε
Et

[
f(t+ ε,Xt+ε)− f(t,Xt)

]
.

Then, if Γ(φ, f) denotes ∇φ.∇f ,

D+
t f =

∂

∂t
f + Lf +

1
φ

Γ(φ, f), for f ∈ D
( ∂

∂t
+ L

)
.

From now on, we shall assume that we have a tangent space to E and a positive
definite inner product 〈, 〉 in each tangent space Tx(E), turning Tx(E) into a Hilbert
space with o.n. basis {ei(x)}. We also assume the existence of a derivative ∇ so
that Lf = δ∇f , where δ denotes the dual of the derivative in L2(E,α) with respect
to the metric 〈, 〉. Then

D+
t f =

∂

∂t
f + Lf +

1
φ
〈∇φ,∇f〉.

When considering the divergence of a vector field Z, we can split it into two
terms: one coming from the contribution of the measure in the integration by
parts, another from the metric.
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Written in the case of a Riemannian manifold with metric g this means, for f
regular enough:

∫
〈Z,∇f〉 dα =

∫
gij∂eifZ

j dα

= −
∫
f(∂eigij)Zj dα−

∫
fδαZ dα,

where we have denoted by δαZ the remaining terms, not due to the derivation of
the metric. For example, if dα = ρ dm, for m the Riemann measure, we have:

δαZ = gij∂ei
Zj + gijZ

j∂ei
log ρ.

We remark that if a metric preserving the connection is known, then ∂ek
gij

is given by the Christoffel symbols associated with the metric, namely ∂ek
gij =

gljΓl
ki + gilΓl

kj .

Definition 6.1. The velocity of a Bernstein process is the vector field v defined by

〈v, eρ〉 = δαeρ + 〈∇ log φ, eρ〉.
When the derivative of the metric in the tangent space is zero, i.e., when δα

coincides with the divergence δ, then v(Xt) = D+
t Xt is the forward mean derivative

along the process Xt.

6.2. The second order equations. The equations of motion for the Bernstein
processes will be given by the result of the computation of D+

t v, where v is the
velocity and D+

t the mean forward derivative. In this subsection, we shall compute
D+

t v in the following cases:

6.2.1: E = Rd, dα = ρ dx.
6.2.2: E is a finite dimensional manifold with metric g, dα = dm, the
Riemann measure, and L is the Laplace-Beltrami operator.
6.2.3: E is the Wiener space E = C([0; 1];Rd), α the Wiener measure and
L the Ornstein-Uhlenbeck operator.

6.2.1. In this case, vl = δel + ∂l log φ, i.e., v = ∇ log ρ + ∇ log φ, and L = ∆ +
∇ log ρ.∇. By (5.1),

∂

∂t
log φ = −Lφ

φ
+ V,

therefore we have:

D+
t v

l = −∂l

(Lφ
φ

)
+ ∂lV + L(∂l log φ) +∇ log φ.∇(∂l log φ)

+ L(∂l log ρ) +∇ log φ.∇(∂l log ρ).

Now (L∂l − ∂lL)F = −〈∇F,∇(∂l log ρ)〉 and

L log φ =
Lφ
φ
− |∇ log φ|2.

Therefore,

Dvl = ∂lV − ∂l|∇ log φ|2 +∇ log φ.∇(∂l log φ) + L(∂l log ρ)

and, finally,
D+

t v
l = ∂lV + L(∂l log ρ).

For example, for the O.U. process, D+
t v = D+

t D
+
t Xt = ∇V (Xt) +Xt.
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6.2.2. In the case of a Riemannian manifold there is, in general, a non trivial
contribution from the derivative of the metric and δα 6= δ. The velocity is v =
∇ log φ and, in order to compute the equations of motion we use Weitzenböck’s
formula:

∆(∇ log φ) = ∇(∆ log φ) + Ricci(∇ log φ).

On the other hand, ∂/∂t commutes with the derivative and from (5.1) as before
one derives:

D+
t v = ∇V + Ricci v

(see also [22]). The additional Ricci term in the right hand side is unpleasant since
it does not cancel at the formal limit of smooth trajectories, where only the physical
forces should appear. On the other hand, the above definition of the forward mean
derivative D+

t involves implicitly the choice of a stochastic parallel displacement
along the trajectories of the Brownian motion on E. The choice adopted here
is the one originally made by Itô [23], namely the Stratonovich interpretation of
Levi-Civita classical parallel displacement, associated with the Laplace-Beltrami
operator. Other choices are possible. One of them [24] replaces the standard
Laplacian by

(∆X)l = ∇k∇kX
l +Rl

kX
l

acting on a vector field X. By Weitzenböck’s formula, −∆ is the De Rham-Kodeira
Laplacian on scalar and one-form [17]. Then the forward mean derivative becomes,
in the notations of the fundamental example 3.3,

D+
t X

l =
∂X l

∂t
+ vk

t∇kX
l +

~
2
(∆X)l.

It follows that the equation of motion reduces indeed to

D+
t v = ∇V.

As a matter of fact, as we are going to see, this equation is also more appropriated
in the perspective of the study of the symmetries of Bernstein measures (cf. section
7).

6.2.3. In the Wiener space case there is no contribution from the metric and the
velocity is given by

v(x) = −x+∇ log φ(x),

where ∇ is taken as the gradient in the sense of Malliavin calculus [25].
Let us compute the equations of motion for the Ornstein-Uhlenbeck process

(∇ log φ = 0). We consider a “continuous basis” on the tangent space (i.e., on the
Cameron-Martin space H) defined by the vectors eτ,l(ξ) = 1τ<ξel, where el are
the elements of the canonical basis in Rd. These vectors constitute a basis of the
tangent space in the sense that a vector field Z : E → H may be written as

Z(ξ) =
∑

l

∫ 1

0

d

dτ
Zτ,leτ,l(ξ) dτ.

The velocity is
vl(x)(τ) = −xl(τ) + (∇ log φ(x))l(τ).

We want to compute

L︷︸︸︷
δ∇ (δẽτ,l), where ẽτ,l = (ξ∧τ)el (i.e., ẽτ,l is the “primitive”

of eτ,l).
For every smooth functional f : E → R, we have, by definition of the divergence

δ:
E

(
δ∇(δẽτ,l)f

)
= E

(
δẽτ,l.δ∇f

)
= E

(
Dẽτ,l

(δ∇f)
)
.
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The commutator between the derivative and the divergence [25] is given by

Dh(δ∇f) = δDh∇f +Dhf.

Therefore
E

(
δ∇(δẽτ,l)f

)
= E(∇f(τ) | el)Rn

= E〈∇f, ẽτ,l〉H
= E

(
fδ(ẽτ,l)

)
= E(fxl(τ)).

Since f is arbitrary, we deduce the following a.e. equation of motion for the Ornstein-
Uhlenbeck process Xt:

D+
t v

τ,l(Xt) = D+
t D

+
t X

τ,l
t = Xτ,l

t , α− a.e.

For the general Bernstein process, we have to consider the supplementary terms
( ∂

∂t
+ L+∇ log φ.∇

) (
(∇ log φ(x))l(τ)

)− (L+∇ log φ.∇)(xl(τ)).

The computation is analogous to the one in 6.2.1. In this case the following com-
mutation formula holds [25]:

(L∇−∇L)F = −∇F ;

therefore

L(∇ log φ(x)l(τ))− (∇L log φ(x))l(τ) = −(∇ log φ(x))l(τ).

One finally obtains

D+
t v

τ,l(x) = D+
t D

+
t x

l(τ)

= xl(τ) + (∇V (x))l(τ)

i.e.,
D+

t v = D+
t D

+
t x = x+∇V (x), α a.e.

It is easy to check that the time reversed version of all the equations of motion
mentioned above hold as well. They involve the backward mean derivative D−t
defined in the fundamental example 3.3 instead of D+

t . Indeed, if, as in Definition
3.1, X̂t = X1−t, then D+

t X̂t = −DX1−t. For example, the time reversal of the last
equation of motion is simply

D−t D
−
t x = x+∇V (x), α a.e..

7. Symmetries of Bernstein processes and some open problems

As observed in sections 2 and 3, it is not the concept of entropy which is really
essential for the relation between Bernstein processes and quantum mechanics but
the two underlying concepts of action functionals (see the fundamental example
3.3). Besides their fundamental relation with Feynman’s path integral approach,
these actions carry, indeed, the crucial information on the symmetries of Bernstein
measures.

Let us illustrate this point in the context of 6.2.2, namely when E is a Riemannian
manifold with metric tensor gij . Let us consider the forward action functional A+

for the fundamental example 3.3:

A+(Q) = K+(Q) + EQ
∫ 1

0

V (Xs) ds.

More explicitly, using (3.10a) and replacing the interval [0, 1] of integration by [t, t1],

A+ = E

∫ t1

t

(1
2
|D+

s Xs|2 + V (Xs)
)
ds, (7.1)
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where Xs is such that Px(Xt = x) = 1. This allows us to regard as well our
functional (7.1) as a scalar function S(x, t) on E × R. Then another variational
principle inspired by stochastic control theory [26] shows that the drift of the unique
minimal point of this action functional (in a large class of non-necessarily Markovian
processes with diffusion coefficient fixed by the metric of E: E(dXi

sdX
j
s | F0

s ) =
~gijds; it is more illuminating here to reintroduce the Planck constant ~ 6= 1)
satisfies

D+
t X

i
t = −∇iS(Xt, t). (7.2)

As a matter of fact, we already know the explicit form of the function S in this
case; it follows from our computations in the fundamental example 3.3 that

S = −(S̄ + R̄)

= −~ log φ(q, t),
(7.3)

where, by (5.1), φ is a positive solution of the heat equation

~
∂φ

∂t
+
~2

2
∇j∇jφ− V (q, t)φ = 0, (7.4)

since the Laplace-Beltrami operator is the generator of (Pt)t≥0 in this situation.
It follows immediately from (7.3) that S solves a non-linear uniformly parabolic
partial differential equation known as the Hamilton-Jacobi-Bellman equation [26]:

−∂S
∂t

+
1
2
|∇S|2 − ~

2
∇i∇iS − V = 0, (q, t) ∈M × R. (7.5)

This equation was the original motivation for the development, by Crandall and
Lions, of their method of “viscosity solutions” [27]. After reintroduction of the
constant ~, notice that it follows from (7.2) and (7.3) that the velocity v defined in
6.2.2 is

v = −∇S. (7.6)
Let us define as well the energy by

E = −∂S
∂t

= −1
2
vivi − ~2∇

ivi + V,

(7.7)

where the second expression results from the Hamilton-Jacobi-Bellman equation
and from (7.6).

Proposition 7.1. For the fundamental example 3.3, the α − a.e. equations of
motion of the Bernstein process are

D+
t v

i = ∇iV

D+
t E =

∂V

∂t
.

(7.8)

Proof. Indeed, we already know the first equation from 6.2.2, with D+
t the forward

mean derivative on vector field. On scalar fields such as the energy E, the De Rahm-
Kodeira Laplacian of D+

t reduces to the Laplace-Beltrami operator. Taking ∂
∂t of

the second expression of (7.7) and using the integrability condition ∂
∂tvi = ∇iE.

we verify the second equation of (7.8). ¤

Let us consider the local group of transformations of the equation (7.4) generated
by

N = Xi(q, t)∇i + T (t)
∂

∂t
+

1
~
ϕ(q, t), (7.9)

where the vector field X and scalar fields T and ϕ are real and analytic. Conditions
on X, T and ϕ insuring that N generates a symmetry group of equation (7.4), i.e.,
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transforming solutions of (7.4) to other solutions, are know as the defining equations
of this group [29]. When they are satisfied, one shows the following

Theorem 7.2. [30, 31] Suppose that the action functional (7.1) is invariant under
the abovementioned Lie groups of transformations, i.e., ∀[t0, t1] in the time interval
of existence of the Bernstein process,

Et0

∫ t1

t0

(1
2
|D+

s Xs|2 + V (Xs)
)
ds

= Eτ1

∫ τ1

τ0

(1
2
|D+

τ Qτ |2 + V (Qτ )
)
dτ − αEt1

∫ t1

t0

D+
s ϕ(Xs, s) ds + o(α). (7.10)

In (7.10), Qτ denotes the one-parameter family of diffusions resulting from the
change of space-time variables associated with (7.9), i.e.,

Q = q + αX(q, s) + o(α), τ = s+ T (s) + o(α),

for X, T and ϕ solving the determining equations of the symmetry group of equation
(7.4).

Then, along the Bernstein diffusion Xs

D+
s (viX

i + ET − ϕ)(Xs, s) ≡ D+
s Ms(Xs) = 0, a.s., (7.11)

i.e., Ms is a Pµt0
continuous local martingale over F t0

s .

Let us now specialize this result to the simplest (flat) realization of the fun-
damental example, namely E = R, dα = dq, V = 0, i.e. (7.4) of the form
~∂φ/∂t+ (~2/2)∆φ = 0.

Here is the list of the martingales M i
t , i = 1, . . . , 6, associated by Noether’s

Theorem with the symmetry group of the one-dimensional free heat equation [30]:

M1
t = 1, M2

t = E(Xt, t), M3
t = v(Xt, t),

M4
t = v(Xt, t).t−Xt, M5

t = v(Xt, t).Xt + E(Xt, t).2t

M6
t = v(Xt, t).Xt.t+ E(Xt, t)t2 − 1

2
(X2

t − ~t),
(7.12)

where the velocity and energy are given respectively by

v(q, t) = ~
∇φ
φ

(q, t) (7.13)

and

E(q, t) = −
(1

2
v2 +

~
2
∇v

)
(q, t). (7.14)

Consider the corresponding situation in quantum mechanics, i.e., for the free
Schrödinger’s equation i~∂ψ/∂t + (~2/2)∆ψ = 0 in L2(R), instead of the above-
mentioned free heat equation. Then the construction of Bernstein processes, relying
heavily on the positivity of the integral kernel of the Brownian Motion transition
semigroup, falls down [32]. Consider, however, the solution of the (Heisenberg’s)
free quantum equation of motion. In this case, since the operator equations of
motion are linear, the free Hamiltonian H = −(~2/2)∆ generates the classical
automorphism [33] and therefore

(
Q(t)
P (t)

)
=

(
1 t
0 1

) (
Q
P

)
, (7.15)

where Q : ψ(q) → qψ(q) and P : ψ(q) → −i ∂
∂qψ(q) denote respectively the

Cartesian position and momentum observables, self-adjoints on D(H) ⊂ L2(R, dq).
(Let us recall that if ψt denotes the solution Utψ0 of Schrödinger’s equation in
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terms of the one-parameter unitary group of evolution Ut = exp((−i/~)Ht) then
Q(t) = U−1

t QUt and P (t) = U−1
t PUt.)

We claim that the probabilistic counterpart of the solution (7.15) in Euclidean
Quantum Mechanics is simply(

Xt

D+
t Xt

)
=

(
1 t
0 1

)(
M4

t

M3
t

)
, (7.16)

where M3
t and M4

t are two of the martingales of (7.12) associated by Noether’s
Theorem with this free evolution. Here we have

D+
t =

∂

∂t
+ v

∂

∂q
+
~
2
∂2

∂q2
(7.17)

for v as in (7.13). Since M3
t is a martingale, it is clear that D+

t D
+
t Xt ≡ D+

t v = 0.
Since the energy E is another one (M2

t according to (7.12)), D+
t E(Xt, t) = 0

so that the equations of motion (7.8) for V = 0 are satisfied. Also notice that
the two martingales involved in (7.16) play the role of initial conditions of (7.15)
(read classically or quantically) and that the concept of solution involved here is
interestingly distinct from the usual one of a SDE.

The fact that, for classical dynamical systems (i.e., in EQM perspective, the
singular limit ~ = 0), the free equation of motion and its solution contain the
complete geometric essence of the idea of integrability [34] suggests the following

Conjecture. For any system governed by a.e. equations of motion of the form (7.8)
with a special class of scalar potentials V , one can define a concept of stochastic
integrability so that, using the martingales predicted by Noether’s Theorem, we have
existence and uniqueness of their solution, on the model of (7.16).

Such a result would involve various extensions of basic concepts of the theory
of smooth (classical) dynamical systems, very natural from the point of view of
the quantization. Indeed, as mentioned in the introduction, the whole point of
Euclidean quantum mechanics is to shed a new light on the relations between regular
quantum physics and probability theory. In particular, it has been shown [32], in
the context of what we call here the fundamental example 3.3, that our stochastic
approach to symmetries of Bernstein measures translates into a quantum result
richer than those known via Hilbert space methods (to prove this result within the
full generality of the present paper is another open problem).

In other words, the point of EQM is to show that, instead of being an artificial
way to approach quantum physics, the theory of probability and stochastic analysis
may help us to have a deeper understanding of quantum reality.
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63177 Aubière, France

E-mail address: zambrini@alf1.cii.fc.ul.pt

URL: http://alf3.cii.fc.ul.pt/gfm/Members/JCZ.en.html
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