
Ann. Henri Poincaré 17 (2016), 2439–2473
c© 2016 Springer International Publishing
1424-0637/16/092439-35
published online January 25, 2016
DOI 10.1007/s00023-016-0460-2 Annales Henri Poincaré
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Abstract. We consider the problem of finding universal bounds of
“isoperimetric” or “isodiametric” type on the spectral gap of the Lapla-
cian on a metric graph with natural boundary conditions at the vertices,
in terms of various analytical and combinatorial properties of the graph:
its total length, diameter, number of vertices and number of edges. We
investigate which combinations of parameters are necessary to obtain non-
trivial upper and lower bounds and obtain a number of sharp estimates
in terms of these parameters. We also show that, in contrast to the Lapla-
cian matrix on a combinatorial graph, no bound depending only on the
diameter is possible. As a special case of our results on metric graphs, we
deduce estimates for the normalised Laplacian matrix on combinatorial
graphs which, surprisingly, are sometimes sharper than the ones obtained
by purely combinatorial methods in the graph theoretical literature.

1. Introduction

A classical question in spectral theory consists in determining for which
bodies—among all those with prescribed volume, or surface measure, or per-
haps another relevant geometric quantity—a given combination of eigenvalues
of the associated Laplacian, say with Dirichlet or Neumann boundary condi-
tions, is maximised or minimised. In the case of domains, this goes back as
far as 1870 to a now-famous conjecture of Lord Rayleigh, answered in the
affirmative by Faber in 1923 in the planar case and Krahn in 1926 in the
general case, that the first eigenvalue λ1 of the Laplacian on Ω ⊂ R

d with
Dirichlet boundary conditions is always at least as large as that of a ball in R

d

with the same volume, with equality being attained if and only if Ω is in fact

Part of this work was completed while J. B. K. was the recipient of a fellowship of the Alexan-
der von Humboldt Foundation, Germany. P. K. was partially supported by the Swedish
Research Council (Grant D0497301). G. M. and D. M. were partially supported by the Land
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a d-dimensional ball. This result was arguably the starting point of spectral
geometry. Analogous results for the first positive eigenvalue λ1 of the Laplacian
with Neumann boundary conditions were proved by Szegő and Weinberger in
1954 and 1956, respectively: in the Neumann case, it turns out that the first
(non-trivial) eigenvalue is maximal if Ω is a d-dimensional ball. We refer to [17]
for a survey of such isoperimetric inequalities for differential operators.

The importance of the first positive eigenvalue cannot be overstated. For
example, in the theory of parabolic equations, λ1 gives the speed of convergence
of the system towards equilibrium. In mathematical physics, it is the energy
level associated with the ground state of the system, or the first excited state,
if Neumann conditions are imposed; in the latter case, λ1 is therefore often
referred to as the spectral gap.

In recent years, it has become increasingly clear that there exist par-
allel differential geometrical theories in the continuous setting of manifolds
and in the discrete setting of graphs, see e.g. the survey [19]. In the case of
graphs, however, there are several competing notions which can be considered
as generalisations of the Laplacian, including the discrete Laplacian L and the
normalised Laplacian Lnorm; moreover, it is not quite indisputable which geo-
metric quantities should be chosen to impose meaningful restrictions on the
class of sets under consideration. For instance, it was already proved by M.
Fiedler in [15] that among all connected graphs on a given number of vertices,
the first positive eigenvalue of the discrete Laplacian L is maximal (resp., min-
imal) in the case of the complete (resp., path) graph. A more delicate analysis
is needed to discuss the cases of graphs whose number of vertices and edges,
or else whose number of vertices of degree one, is prescribed; see [8,23]. Com-
parable results are known for the normalised Laplacian Lnorm, cf. Sect. 8.

In the present paper, we are going to focus on quantum graphs: roughly
speaking, a (compact) quantum graph is a (finite, connected) graph, each of
whose edges e is identified with an interval of R of (finite) length |e|. Then, the
usual Euclidean distance on each edge induces in a natural way a metric space
structure on a quantum graph—we refer the reader to the monographs [6,
22,28] for more details. It is thus possible to define on each such interval a
differential operator (which plays the role of a Hamiltonian in the framework
of quantum mechanics on graphs): here, we will only focus on the case of
(one-dimensional) Laplacians. Gluing all these operators together by means of
suitable boundary conditions yields a new Laplacian-type operator, the subject
of our investigations.

It is mathematical folklore that quantum graph Laplacians “interpolate”
between Laplace–Beltrami operators on compact manifolds and normalised
Laplacians on combinatorial graphs; indeed, interesting relations have been
proved using these interplays. It is perhaps surprising that very few results are
known in the area of spectral geometry for quantum graphs: possibly the only
Faber–Krahn-type result for quantum graphs says that the lowest non-trivial
eigenvalue λ1, i.e. the spectral gap, of the Neumann (i.e. Kirchhoff) Laplacian
on a quantum graph is minimised among all graphs of given total length by
the path; cf. [16,21,29] (not maximised, as in the case of domains).
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Our principal aim here is to undertake a more systematic investigation of
universal eigenvalue inequalities for the quantum graph Laplacian with natural
conditions at the vertices. Since we wish to gain a sense for which problems are
(mathematically) “natural” or “sensible”, thereby also laying the foundations
for future work, we will restrict ourselves to the prototype problem of upper
and lower estimates on the spectral gap and to what we consider to be the
four most natural quantities (see Sect. 2 below for precise definitions):

• the total length L of a graph,
• its diameter D,
• the number V of its vertices and
• the number E of its edges.

In fact, even in the most elementary cases, it turns out to be a surprisingly
subtle question as to which problems are well posed; as we shall attempt to
show below, quantum graphs can in fact display types of behaviour that are
in a sense more complex than those of manifolds and combinatorial graphs.
For up-to-date and fairly comprehensive overviews of the currently known
estimates for the spectral gap of the discrete and normalised Laplacians of a
combinatorial graph, we refer to [26] and [11], respectively.

If all edges of a quantum graph have the same length, i.e. if the graph
is equilateral, then von Below showed in [5, Theorem, p. 320] that all spectral
problems concerning the Laplacian can be equivalently reduced to correspond-
ing spectral problems for the normalised Laplacian Lnorm on the underlying
combinatorial graph (see Sect. 8 for a brief definition). In particular, the lowest
non-zero eigenvalue λ1 of the quantum graph Laplacian agrees with

λ1 = arccos2(1 − α1) provided α1 ∈ [0, 2), (1.1)

where α1 is the lowest non-zero eigenvalue of Lnorm, cf. [9, Fig. 1]. Indeed,
abundant information is available on the spectrum of Lnorm; see e.g. [4,11].
However, the setting of [5] is a very special case of general quantum graphs:
the topic of this paper will be the far more challenging case of quantum graphs
with different edge lengths. One may argue that investigating the spectrum of
a differential operator is less convenient than working with a matrix. In fact,
we maintain that our approach based on quantum graphs has some advantages
that come from the flexibility offered by the continuous setting.

On the other hand, spectral geometry on quantum graphs is markedly
different from the situation on domains and manifolds, since elementary vari-
ational principles become far more powerful in an essentially one-dimensional
setting: here, one can perform various types of “surgery” on graphs which
have a given effect on the spectral gap. Our analysis will typically be based
on nothing more than an—at times, rather subtle—application of these prin-
ciples, together with an explicit analysis of the resulting class of extremising
graphs to identify the overall maximiser or minimiser. It is thus all the more
surprising that so little seems to be known; in fact, one of the messages of the
current paper is that one can go much further, and by more elementary means,
than on domains or manifolds.
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Quantum graphs have already been occasionally used in the past as a tool
for spectral investigations of manifolds, cf. [10]; the main goal of this paper is
to start, however, a systematic investigation of spectral geometry of quantum
graphs. In Sects. 2 and 3, we summarise the elementary properties of quantum
graphs which we will need in the sequel: in particular, in Sect. 2, we state the
fundamental variational principles we will use, which show how the spectral
gap depends on the structural properties of the graph (see Lemma 2.3); most of
these have already appeared scattered throughout the literature, albeit not in
one place, and they do not seem to have been used previously to study extrem-
ising problems. In Sect. 3, we list a number of classes of graphs with natural
extremising properties. Section 4 is devoted to proving an upper bound on the
spectral gap in terms of L,E that complements the known lower bound (4.1)—
the old result of Nicaise alluded to above that has been rediscovered several
time since [29]. In Sect. 5, we will prove that fixing the diameter D of a graph
alone is not enough to yield estimates on the spectral gap. This is in our opin-
ion the most surprising result of this paper. In particular, to show that D
alone cannot bound the spectral gap from above, we will introduce a special
class of graphs, so-called pumpkin chains; see Definition 5.3. They have a large
spectral gap for a given diameter and will allow us to reduce our problem to a
Sturm–Liouville one. While one-dimensional reductions have been used for the
spectral analysis of (rather particular types of) graphs in the past [18,30], our
approach seems somewhat different: we do not need to make any symmetry
assumptions on our graphs, and we obtain our results by studying sequences
of Sturm–Liouville operators with smooth coefficients, that is, we are led to
natural, intrinsically one-dimensional phenomena. This method is also quite
possibly amenable to further development. These pumpkin chains will also
allow us to prove various upper bounds in conjunction with other quantities
such as V or L in Sects. 6 and 7. We will briefly summarise the bounds for the
normalised Laplacian which can be deduced from our results in Sect. 8.

While our graphs will always have finitely many edges and vertices, in
some cases we are going to prove bounds that cannot be attained by such
finite graphs, but are approximated by suitable families of finite graphs with
increasingly many edges.

We can represent the outcome of our investigations in a schematic form;
two tables in Sect. 9 summarise the corresponding bounds and whether optimal
graphs realising the bounds exist:

Parameter(s) λ1

Upper estimate? Lower estimate?

V , E ✗ (Remark 2.4) ✗ (Remark 2.4)
L ✗ [Eq. (4.1)] ✓ [Eq. (3.2)]
L, V ✗ [Eq. (3.2)] ✓ [Eq. (4.1), Example 4.1]
L, E ✓ (Theorem 4.2) ✓ [Eq. (4.1), Example 4.1]
D ✗ (Theorem 5.10) ✗ (Example 5.1)

D, V ✓ (Theorem 6.1) ✗ (Example 5.1)
D, E ✓ (Remark 6.3) ✓ (Remark 6.3)
D, L ✓ (Theorem 7.1) ✓ (Theorem 7.2)
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2. Notation and Basic Techniques

Throughout this paper, all graphs are metric graphs, unless otherwise stated.
We shall mostly adopt the usual notation of graph theory: graphs will be
denoted by G, and their edge and vertex sets will be denoted by E and V,
respectively. Then again, we will adopt the notation e and v for edges and
vertices, respectively. In graph theory, it is customary to denote by n (resp.,
m) the cardinality of V (resp., E), but in this case we prefer to adopt the
alternative notation

V (G) := |V| and E(G) := |E|,
since we wish to perform analysis on graphs. We will denote by

L(G) :=
∑

e∈E

|e|

the total length of G, i.e. the sum of the lengths of all edges of G and the
diameter of G by

D(G) := sup {dist (x, y) : x, y ∈ G} , (2.1)

where the distance between two points of a graph is as usual defined to be
the length of the shortest path within G connecting them (cf. [28, Sect. 3.2]).
Note that here we take the supremum over all points x, y ∈ G. If we restrict
ourselves to considering x, y ∈ V, then we have a “weaker” notion of diameter,
which we shall call the combinatorial diameter DV of G, i.e.

DV(G) := sup {dist (x, y) : x, y ∈ V (G)} . (2.2)

This is consistent with the classical notion of diameter from combinatorial
graph theory and is in practice easier to compute if the graph is particularly
large. Obviously, we have DV(G) ≤ D(G), while if the longest edge in G is of
length a > 0, say, then since the maximum distance of any point of G to V is
a/2, we have D(G) ≤ DV(G) + a. See also Remark 5.5.

We will also impose the following standing assumption on all the graphs
we consider to ensure simultaneously the non-triviality and the finiteness of
all the quantities we consider.

Assumption 2.1. The metric graph G is connected. It is compact and finite,
i.e. it consists of finitely many edges of finite length.

The object of our investigations is a realisation of the operator that acts
as a second derivative on the intervals associated with each edge of G. The
most common choice in the literature is to define a Laplacian Δ on a quantum
graph by imposing two conditions in each vertex of G: functions in the domain
of Δ
• are continuous across the vertices and
• their normal derivatives about each vertex sum up to 0.

Under Assumption 2.1 and with this choice of “natural” (i.e. continuity and
Kirchhoff) boundary conditions, −Δ is a self-adjoint, positive semi-definite
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operator with compact resolvent on the Hilbert space L2(G) of square inte-
grable functions supported on the intervals associated with the edges of the
graph. Thus, −Δ has pure point spectrum σ(−Δ) ⊂ [0,∞); we will call its
elements simply the eigenvalues of G, since the operator is uniquely determined
by the metric graph G.

The value λ0 = 0 is an eigenvalue of multiplicity one (since G is con-
nected) with eigenfunction u0 ≡ 1. Thus, the spectral gap coincides with the
lowest non-trivial eigenvalue λ1 > 0, which can be obtained by minimising the
Rayleigh quotient subject to the constraint of L2-orthogonality to the eigen-
subspace corresponding to λ0 = 0:

λ1(G) = inf
{∫

G
|u′(x)|2 dx∫

G
|u(x)|2 dx

: u ∈ H1(G),
∫

G

u(x) dx = 0
}

. (2.3)

Here, H1(G)—the form domain of −Δ—is the space consisting of those func-
tions defined on the intervals associated with the edges of the graph, belonging
to the first Sobolev space H1 thereon and satisfying continuity conditions in
the vertices, cf. [6, Sect. 1.3] or [28, Sect. 3.2].

Remark 2.2. (a) Unlike in combinatorial graph theory, for the purposes of
quantum graph theory, vertices of degree two are unessential objects that can
be inserted or removed without changing either the space H1(G) or the domain
of Δ, and in particular without affecting the spectrum.

(b) In general, we are not going to assume graphs to be simple. Indeed,
for our purposes it is always possible to add dummy vertices in the middle of
an edge e—thus replacing an edge of length |e| by two edges of length |ẽ| and
|e| − |ẽ|, respectively—turning a non-simple graph into a simple one without
changing the spectrum of the Laplacian.

From (2.3), we deduce a handful of elementary but powerful principles
of which we will make extensive use; we note that many of these have already
appeared in [20]; see also [7,14] for other results on edge dependence of eigen-
values and eigenfunctions of a slightly different flavour.

Lemma 2.3. Suppose G and G′ are quantum graphs satisfying Assumption 2.1.

1. If G′ is formed by attaching a pendant edge, or more generally a pendant
graph, to one vertex of G, then λ1(G) ≥ λ1(G′).

2. If G′ is formed from G by identifying two vertices of G (say, v1, v2 are
replaced by a new vertex v0 and each edge having v1 or v2 as an end point
is replaced by a new edge having v0 as an end point, and in particular the
edges between v1 and v2 are replaced by loops around v0), then λ1(G) ≤
λ1(G′).

3. If we add an edge e = v1v2 between two already existing vertices of a quan-
tum graph G, producing the new quantum graph G′, then λ1(G) ≥ λ1(G′)
provided there is an eigenfunction corresponding to λ1(G), attaining the
same value on both v1, v2.

4. If G′ is formed from G by lengthening a given edge, then λ1(G) ≥ λ1(G′).
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5. If G′ is obtained from G by scaling each edge with the factor 1/c ∈ R,
then the corresponding eigenvalues scale as c2, that is,

λ1(G) = c−2λ1(G′).

By “pendant graph” (or edge), we mean that the graph to be added, i.e.
G′\G, is attached to G only at the one vertex, sometimes called a “cutvertex”
in the graph theoretical literature. In particular, this covers the case of adding
a loop.

Proof of Lemma 2.3. We will merely sketch a proof of the statements; details
can in most cases be found in [20].
(1) Let ψ be any eigenfunction associated with λ1(G), and suppose that we
obtain G′ by attaching a pendant graph to a vertex v ∈ G. We extend ψ
to a function ψ̃ ∈ H1(G′) by setting ψ̃ = ψ(v) on G′\G. Then the function
ϕ = ψ̃ − ∫

G′\G ψ̃ is a valid test function for λ1(G′) and it may be checked that
the Rayleigh quotient of ϕ is not larger than λ1(G).
(2) This follows immediately from the fact that H1(G′) may be identified with
a subspace of H1(G), since the continuity conditions imposed on functions in
the former space are more restrictive; but the Rayleigh quotient is given by
the same formula.
(3) The proof is similar to (1): extending the eigenfunction ψ1 and minimising
the Rayleigh quotient for G by a constant on the new edge (equal to the
common value ψ1(v1) = ψ1(v2)) yields a trial function for G′ whose Rayleigh
quotient can be no larger, even after a possible orthogonalisation.
(4) Let us denote by e1 ⊂ G the edge to be lengthened, which we identify
with the interval (0, a), identify the lengthened interval with (0, a′), a′ > a,
and let ψ1 be the eigenfunction on G. Consider the function ψ̃ ∈ H1(G′)
which is equal to ψ1 on G\e1 (identified canonically with a subset of G′) and
on (0, a), and which is extended by ψ1(a) on (a, a′). As in (1), the function
ϕ = ψ̃ − ∫

G′ ψ̃ = ψ̃ − (a′ − a)ψ(a) is a valid test function for λ1(G′), and as in
(1) its Rayleigh quotient is not larger than λ1(G). Alternatively, this may be
viewed as a special case of (3).
(5) The proof follows essentially (4). One needs to take into account that all
edges are scaled with the same factor and no orthogonalisation is needed. �
Remark 2.4. (a) Statement (3) can be interpreted as saying that diffusion
processes in the quantum graphs may in some cases actually converge to equi-
librium faster upon removing edges. This seeming paradox seems to have been
first explicitly remarked on in [20] and may be solved by realising that the
edges whose removal increases the spectral gap are in some sense redundant.

(b) Statement (2) says that “pulling apart” any vertex of a graph (to
create a new graph with the same set of edges and lower connectivity) always
lowers the spectral gap. This process can be continued until a quantum graph
of minimal connectedness–a tree–is reached. This seems reminiscent of the
principle that each spanning tree of a combinatorial graph G and has lower
spectral gap (for the discrete Laplacian) than G itself; cf. [25, Corollary 3.4].
Obviously, the metric trees associated in this way with G are formed from the



2446 J. B. Kennedy et al. Ann. Henri Poincaré

same set of edges as G, while the (discrete) spanning trees live on the same set
of vertices as G. It is an interesting question, but one we will not investigate
here: to what extent these metric trees really are the metric equivalent of
“spanning trees”.

(c) On combinatorial graphs G, there is a wide range of upper and lower
bounds available which depend only on intrinsically combinatorial quantities
such as V , the minimal degree degmin (G), the maximal degree degmax (G) and
the edge connectivity e(G) of G. We mention for example that the second lowest
eigenvalue β1 of the discrete Laplacian L on a combinatorial graph satisfies
the bounds

2e(G)
(
1 − cos

π

V

)
≤ β1 ≤ V

V − 1
degmin (G),

cf. [15], whence the bounds

2e(G)
degmax (G)

(
1 − cos

π

V

)
≤ α1 ≤ V

V − 1
, (2.4)

on the second lowest eigenvalue α1 of the normalised Laplacian Lnorm; if G is
planar, then the upper bounds may be improved to

β1 ≤ 8
V

degmax (G) and α1 ≤ 8
V

degmax (G)
degmin (G)

,

cf. [31] (see also Sect. 8 for definitions and references to further bounds). How-
ever, Statement (5) implies the obvious fact that spectral estimates for the
continuous Laplacian cannot be obtained without taking into account any
metric parameter like the total length or the length of one of the edges. In
particular, estimates based solely on the number of vertices and/or edges are
impossible. This also confirms that existing estimates for combinatorial Lapla-
cians cannot be directly applied in our case, since combinatorial graphs lack
metric parameters.

(d) It is natural to ask whether the statements also hold for the higher
eigenvalues. It is obvious (and trivial to adapt the proofs to show) that (2)
and (5) hold for all λn, n ∈ N. We also expect (1) and (4) to hold; indeed,
they are intuitively obvious. They should be a consequence of the min–max
principle for the eigenvalues of G′, similarly to λ1, but it is not entirely clear
how one should transplant the eigenfunctions of G onto G′ to show this; the
proof for λ1 does not seem to generalise easily owing to the more complicated
nature of the orthogonality conditions that then arise. We do not expect (3)
to hold in general, although we do not have a counterexample. However, since
in the present context we are only interested in λ1, we will not pursue these
questions further here.

3. Extremal Graphs and Special Classes of Graphs

In the process of studying optimisation problems, it is natural to look for
classes of potential optimisers, and the following special classes of graphs seem
at various times to play an important role. To obtain effective estimates, it
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is important to be able to calculate the spectrum of an optimiser explicitly,
which is possible only for graphs with very special choice of the edge lengths. If
all edges of a quantum graph have the same length, then we call it equilateral:
unless otherwise stated, we will always assume flower, star, pumpkin, and
complete graphs to be equilateral.
• Path graphs I(L) are intervals of length L viewed as quantum graphs.

Because on a path graph, the imposed boundary conditions boil down
to continuity of a function and its derivative on the internal vertices and
Neumann on the extremal ones, the spectral gap of a path graph of total
length L clearly agrees with that of an interval of length L, i.e.

λ1(I(L)) =
π2

L2
. (3.1)

• Flower graphs F(L,E) are quantum graphs built upon non-simple combi-
natorial graphs consisting of one vertex and E loops attached to it, which
we shall call petals. A direct computation shows that the spectral gap of
a flower graph of total length L on E ≥ 2 edges is

λ1(F(L,E)) =
π2E2

L2
; (3.2)

if E = 1, then we have a loop of length L, which has λ1 = 4π2/L2.
• Star graphs S(L,E) are quantum graphs consisting of a central vertex v

and E ≥ 2 edges radiating out from v. If we take all edges to have equal
length L/E (as we shall always do), then

λ1(S(L,E)) =
π2E2

4L2
. (3.3)

• Pumpkin graphs P(L,E), sometimes also called dipole or banana graphs
in the literature, are quantum graphs built upon non-simple combina-
torial graphs consisting of two vertices and E parallel edges, which we
shall call slices, having both vertices as endpoints. The spectral gap of a
pumpkin graph of total length L on E edges is also

λ1(P(L,E)) =
π2E2

L2
, (3.4)

since one can see directly that there is a corresponding eigenfunction
having the form sin(πE·

L ) on each edge, where we identify each edge with
the interval (0, L

E ).
• Complete graphs KV are quantum graphs built upon simple combinatorial

graphs consisting of V vertices and exactly one edge joining any pair of
vertices, meaning E = V (V −1)

2 edges in total. By (1.1), the spectral gap
of a complete graph of total length L on E edges is

λ1(KV ) =
(

arccos
1

1 − V

)2
V 2(V − 1)2

4L2
. (3.5)

Remark 3.1. The expressions in (3.2) and (3.4) imply in particular that adding
to an (equilateral) flower or pumpkin graph arbitrarily many petals or slices (in
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the case of flowers and pumpkins, respectively) does not change the spectral
gap, instead increasing the multiplicity of λ1, as long as each of the new edges
has the same length as the original ones.

In several cases, we will also perform graph surgery to produce examples.
A distinguished class consists of what we call dumbbell graphs, which are
obtained by joining two quantum graphs (ideally, two “massive ones”) by only
one edge. Naturally, dumbbell graphs are the analogue of dumbbell domains.

Remarkably, we are going to see that in most cases the correct quantum
graph equivalents of balls are not complete graphs, as one may naively think
(and—as a rule of thumb—as is actually the case when discrete graphs are
investigated [15]), but rather flower graphs.

4. Estimates Involving the Length

Perhaps the most natural quantity of a graph G to consider is its total length L,
which is the equivalent of the volume of a domain. However, quantum graphs
lack a natural (continuous) notion of perimeter, and in some sense V and E
might be thought of as discrete counterparts thereof; so, it is also natural to
consider V and/or E in combination with L. This section is thus devoted to
estimates on the spectral gap in terms of the total length L and possibly V
and E; first, we will consider lower bounds and then upper bounds.

We remark at this juncture that a graph on E edges can have at most
V = E +1 vertices, so that bounding E from above automatically also bounds
V from above; put differently, controlling E is in a certain sense a stronger
restriction on the graph than controlling V . Moreover, using standard matching
conditions allows one to increase the number of vertices and edges without
actually changing the metric graph (by introducing new vertices at inner points
on the edges), so in general we expect controlling E and V from above to lead
to both better upper and lower bounds, since this is a restriction on the degree
of complexity of the graph.

4.1. Lower Estimates

The first and fundamental lower estimate was obtained by Nicaise [29,
Théoréme 3.1] and later independently re-proved by Friedlander [16, Theo-
rem 1] and by Naboko and one of the present authors [21, Theorem 1]:

λ1(G) ≥ π2

L2
, (4.1)

where G is any graph having total length L > 0. The minimiser is essentially
unique: it is simply a path graph, which is a one-dimensional ball. This estimate
is easy to understand intuitively: the diffusion in a quantum graphs of total
length L can be at most as slow as on the interval [0, L].

The lower estimate cannot be improved without taking into account new
parameters, since we have a minimiser. However, neither E nor V can be used
in combination with L to give a refined lower bound on λ1(G) any better
than (4.1), as we show next. The idea behind this is that perturbing a graph
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in a small, but rather complicated way does not affect the spectral gap in a
serious way, although it can have an arbitrarily large effect on the graph’s
combinatorics.

Example 4.1. Given any natural numbers E ≥ 2 and V ≥ 2 with V ≤ E + 1
and any positive numbers L > 0 and ε > 0, we can find a connected graph G
having E edges, V vertices and total length L, such that

λ1(G) ≤ π2

L2
+ ε.

To do so, we take an arbitrary connected graph G̃ having V − 1 vertices and
E − 1 edges (if V ≥ 3, it is always possible to do by starting with a tree with
V −1 vertices and V −2 ≤ E−1 edges, and adding extra edges between vertices
in an arbitrary fashion until there are E − 1; if V = 2, we take a flower with
E − 1 petals), rescale G̃ to have total length δ > 0 and form G by taking a V th

vertex v and joining v to an arbitrary vertex w of G̃ by an Eth edge e = vw of
length L − δ. It follows from Lemma 2.3(1) that λ1(G) ≤ λ1(e) = π2/(L − δ)2

(“adding” the graph G̃ to the edge e can only decrease the eigenvalue); choosing
δ > 0 small enough proves the claim.

4.2. Upper Estimates

The explicit examples considered in Sect. 3 show that no upper estimate is
possible in terms of L alone: by (3.2), λ1 can be made arbitrarily large by
considering flower graphs on more and more edges of smaller and smaller
length. Moreover, the same example shows that fixing just L and V together
is not enough to bound λ1 from above.

However, if we fix L and E, then we obtain a sharp upper bound on λ1

in terms of the arithmetic mean value A = L/E of the edge length.

Theorem 4.2. Let G be a quantum graph having length L > 0 and E ≥ 2 edges.
Then,

λ1(G) ≤ π2E2

L2
≡ π2

A2
, (4.2)

with equality if and only if G is an equilateral pumpkin or flower graph. If
E = 1, then

λ1(G) =
{

4π2/L2 if G is a loop,
π2/L2 if G is a path.

It is an interesting phenomenon that we have two fundamentally distinct
classes of maximisers. In fact, our proof implicitly contains a second charac-
terisation of the maximisers, which curiously allows us to obtain indirectly the
following statement.

Corollary 4.3. A finite equilateral quantum graph G of length L > 0 and E ≥ 3
edges admits an eigenfunction corresponding to λ1(G) which takes on the value
zero at all vertices of G, if and only if G is an (equilateral) pumpkin or flower
graph.
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Proof of Theorem 4.2. Assume that G is any quantum graph as in the state-
ment of the theorem, with L > 0 and E ≥ 2 given, and denote by G̃ the
corresponding flower graph having the same number of edges with the same
lengths as G, i.e. G̃ is the graph which may be formally obtained from G by
identifying all vertices of the latter. Then, H1(G̃) may be canonically identi-
fied with the subset of H1(G) consisting of all functions u ∈ H1(G), such that
u(v1) = · · · = u(vn) for all vertices v1, . . . , vn of G. It follows from Lemma 2.3(2)
that λ1(G) ≤ λ1(G̃).

We now show that the equilateral flower graph F(L,E) is the (unique)
maximiser of λ1 among all flower graphs of fixed total length L > 0 and
number of edges E ≥ 2, which will then complete the proof of (4.2), since
λ1(F(L,E)) = π2E2/L2 by (3.2). To that end, let e1, e2 be the longest two
edges of the arbitrary flower graph G̃ (or any two longest edges if these are not
uniquely determined); by the pigeonhole principle, M := |e1| + |e2| ≥ 2L/E.
Denote by G12 the flower graph consisting of these two longest edges. Since
each petal of G̃ may be regarded as a pendant graph attached to G12, by
Lemma 2.3(1) [or Lemma 2.3(3)],

λ1(G̃) ≤ λ1(G12).

But we see immediately that λ1(G12) ≤ 4π2/M2 ≤ π2E2/L2, since we may
use any eigenfunction belonging to the first eigenvalue of a circle of length M
as a test function on G12, provided it is rotated appropriately so as to satisfy
the continuity condition at the points corresponding to the vertex of G12. This
establishes the inequality.

To prove the case of equality, we first note that this is only possible if
M = 2L/E, that is, if the two longest edges (and thus all other edges) have
length L/E each, and so G̃ must already be equilateral in this case.

We also note that pumpkins and flowers satisfy the equality, cf. (3.4) and
(3.2). We now show via a test function argument that any equilateral graph
G with at least three vertices must have λ1(G) < π2E2/L2; the cases V = 1, 2
(and E = 1) are trivial. To that end, suppose G is equilateral with V (G) ≥ 3.
Then there exists a partition of G into graphs G+,G−,G0 with the following
properties: V(G+) ∩V(G−) = ∅, every edge in G0 begins at a vertex in G+ and
ends at a vertex in G−, and E(G+) is non-empty (but it is possible that G−
consists of a single vertex).

We now construct a test function ψ on G by setting ψ|G+ := 1, ψ|G− :=
−1, and on each edge of G0, which we identify with the interval [0, L/E] (the
point 0 corresponding to a vertex in G+ and L/E to a vertex in G−), we let
ψ(x) = cos(πEx/L). Then, ψ ∈ H1(G), and by construction ψ|G0 has Rayleigh
quotient equal to π2E2/L2. Although ψ will not necessarily have mean value
zero on G, since ψ is constant on G\G0, the Rayleigh quotient of ψ −∫

G
ψ on G

can only be lower than that of ψ on G0; the proof of this claim is identical to
the proof of Lemma 2.3(1) or (4). Moreover, since G\G0 has positive measure,
ψ−∫

G
ψ cannot be an eigenfunction on G; hence, λ1(G) is strictly smaller than

the Rayleigh quotient of ψ − ∫
G

ψ, which is no larger than π2E2/L2. �
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Proof of Corollary 4.3. The “if” statement is clear. For the other direction,
we show that the equality λ1(G) = π2E2/L2 follows from the existence of
an eigenfunction ψ of G vanishing on all vertices (in fact this is equivalent,
that is, a characterisation, but we do not need this). Since by Theorem 4.2
only pumpkins and flowers have this property, this establishes the claim. If
ψ(v1) = · · · = ψ(vn) = 0, then, by identifying all vertices of G, ψ can be
mapped directly onto a function ψ̃ ∈ H1(F) having mean value zero and the
same Rayleigh quotient, where F is a flower graph having the same length and
number of edges as G.

Since ψ satisfies the equation −u′′ = λ1(G)u on each edge of G and the
Kirchhoff condition at each vertex of G, the same is necessarily true of ψ̃ on
F (for the vertex condition, sum up all the derivatives of ψ on all vertices of
G; this is still zero). Hence, ψ̃ is an eigenfunction on F with eigenvalue λ1(G).
Since λ1(G) ≤ λ1(F) by Lemma 2.3(2), and ψ̃ has the same Rayleigh quotient
as ψ, the only possibility is that ψ̃ is associated with λ1(F). Hence, there is
equality. �

Remark 4.4. Theorem 4.2 can be regarded as a counterpart to the value of the
spectral gap of the second derivative with Neumann conditions on an interval,
given that L/E is the arithmetic mean of all edge lengths. A similar assertion
for another problem, the first eigenvalue of the Laplacian with a Dirichlet
condition on at least one vertex, was recently proved in [13, Thm. 3.8]. There
are other, weaker, estimates on λ1 in terms of the arithmetic, geometric and
harmonic means of the sequence of edge lengths of the graph, which we denote
by A,G,H, respectively: [22, Thm. 2] states that

λ1(G) ≤ 4π2

AH =
4π2

G2
;

the factor of four may even be dropped if G is bipartite. Observe that this
estimate is still sharp, as it is attained in the case of (equilateral) flowers and
pumpkins, although (4.2) is better, including in the case where G is bipartite.

An estimate of a similar flavour in terms of the maximal edge length
M of G can be obtained via a trivial test function argument, by placing a
suitable sine function on the longest edge, extended elsewhere by zero: λ1(G) ≤
4π2/M2. This is however in general far worse than (4.2). This may be the
natural counterpart to the usual estimate in terms of in-radii in the case of
domains.

5. Estimates in Terms of the Diameter Alone: Negative Results

Another natural choice of metric quantity is the graph diameter D (see (2.1)).
Diameter has been regarded as a natural quantity in the spectral optimisation
of (convex) domains, at least since van den Berg’s formulation of the Gap
Conjecture in 1983, finally proved by Andrews and Clutterbuck just a few
years ago [2], which in the case of the Dirichlet Laplacian states that the
difference between the first two eigenvalues on a convex d-dimensional domain
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of diameter D is at least 3π2/D2, the corresponding value for an interval of
length D. Diameter also plays an interesting role in spectral gap estimates for
combinatorial graphs, often in interplay with the somewhat related quantity
of mean distance, cf. [1,11,24,26].

In this section, we will prove that fixing the diameter of a graph alone
is not in fact enough to yield upper or lower estimates on the spectral gap.
Finding examples showing the impossibility of lower bounds is fairly straight-
forward; the question of an upper bound is however far more subtle. To that
end we will introduce the pumpkin chains referred to in the introduction (see
Definition 5.3 below), which are an extremising class of graphs for the diam-
eter (Lemma 5.4). We will not need this extremising property to prove that
no estimate is possible, but use it in Sects. 6 and 7 to obtain various upper
bounds in conjunction with other quantities such as V or L. We also present
it in this section to try to give a better insight into how to generate graphs
with large spectral gaps. The same types of examples will allow us to show
that certain other quantities alone also do not control the spectral gap; see
Sec. 5.3.

5.1. Lower Bounds are Impossible

We will start with the easier case: proving that no lower bound on λ1 is possible
in terms of the diameter alone. This is in contrast with the theory of Laplacians
on combinatorial graphs, whose lowest non-trivial eigenvalue is not less than

4
V D ; see e.g. [26, Sect. 5.3].

Example 5.1. Given D > 0, we construct a sequence of (finite and connected)
dumbbell graphs Gn, all having diameter D, such that λ1(Gn) → 0: all these
graphs will be flower-dumbbells.

More precisely, we start with an edge e0 of length D/2 with end
points v−1 �= v1 and attach to each of these vertices one flower on n edges
e±1, . . . , e±n each of length D/2, so that the diameter of Gn is D for all n ∈ N.
Then, of course, the number of edges of Gn becomes arbitrarily large as n → ∞.

However, λ1(Gn) → 0: to see this, we use a simple test function argument.
Identifying e0 with the interval (−D/4,D/4), we set

ψn(z) :=

⎧
⎪⎨

⎪⎩

1 if z ∈ ek, 1 ≤ k ≤ n,

sin(2πx/D) if z ∈ (−D/4,D/4) � e0,

−1 if z ∈ ek, −n ≤ k ≤ −1.

Then, ψn ∈ H1(Gn) and by symmetry
∫
Gn

ψn = 0; moreover,
∫
Gn

|ψ′
n|2 is

constant in n ≥ 1, ψ′
n being supported on the fixed edge e0, while clearly∫

Gn
|ψn|2 → ∞ as n → ∞. It follows immediately from the variational charac-

terisation (2.3) that λ1(Gn) → 0 as n → ∞ (Fig. 1).

Remark 5.2. Making our graphs flower dumbbells allows us to keep the number
of vertices of Gn equal to two. One can of course attach more general graphs of
small diameter, but large total length, to achieve the same result. One can also
find fundamentally different (i.e. non-dumbbell) types of graphs; for example,
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Figure 1. A flower graph F(L, 7) on seven edges (petals)

Figure 2. A pumpkin graph P(L, 7) on seven edges (slices)

consider a sequence of “comb graphs” as in Fig. 2. We take a sequence of
graphs by adding more and more “prongs” (the vertical edges) to the comb,
keeping it symmetric and making sure that its diameter remains constant.
We then build a test function by constructing a stretched cosine along the
lower edge and extending it by a constant along the prongs; by symmetry, this
function is orthogonal to the constant functions and it is easy to check that
the corresponding Rayleigh quotient goes to zero, provided the prongs do not
accumulate too rapidly in the middle.

5.2. Upper Bounds are also Impossible

To produce a counterexample, we follow the natural line of reasoning one
would use to attempt to prove that an upper bound exists. We first show
that while searching of a graph with the largest spectral gap, it is enough to
consider the so-called pumpkin chains (defined below). Then we prove that
the spectral problem for a pumpkin chain is equivalent to a Sturm–Liouville
one-dimensional problem with an integer weight. This analogy allows us to
construct a sequence of pumpkin chains of fixed diameter with arbitrarily
large gap (Figs. 3, 4).

Pumpkin Chains Maximise the Spectral Gap

The following class of finite graphs is going to play an important role in our
constructions:
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Figure 3. A complete graph K7 on seven vertices

Figure 4. A comb graph on 14 prongs

Figure 5. A pumpkin chain on nine edges and four vertices

Definition 5.3. We call a metric graph G on V vertices satisfying Assump-
tion 2.1 a pumpkin chain if

#{v ∈ V : v is adjacent to exactly two other vertices} = V − 2,

#{v ∈ V : v is adjacent to exactly one other vertex} = 2,

and if additionally the lengths of any two edges connecting v,w is the same
for any pair of adjacent vertices v,w.

In other words, G consists of a chain of vertices, each one connected to
a predecessor and a successor, all connecting two “end vertices”, call them v0
and vD. Every path from v0 to vD (of which there may be many) must pass
through each of the V − 2 interior vertices. Alternatively, a pumpkin chain
may be thought of as a connected chain of pumpkin graphs; hence the name.
See Fig. 5. Any two edges connecting the same pair of vertices (i.e. belonging
to the same pumpkin) will be called parallel.
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The diameter of a pumpkin chain G is given by D(G) = dist(v0, vD), and,
if G has at least three vertices, then the two end vertices are the only points
realising D. Moreover, there is a canonical mapping S : G → [0,D] such that
S(v0) = 0, S(vD) = D, given by S(z) = dist(v0, z). We shall call S(z) the level
of a point z ∈ G.

The next result shows that for the purpose of estimating the spectral
gap from above in terms of D in conjunction with V or L, we do not have to
bother about any graphs other than pumpkin chains—or, to put it in another
way, no spectral information that is relevant to us is lost whenever we prune a
quantum graph by deleting all edges that are not crossed by paths that realise
the diameter.

Lemma 5.4. Given any compact, connected, non-empty metric graph G, there
exists a pumpkin chain G̃ such that

1. D(G̃) = D(G), L(G̃) ≤ L(G) and V (G̃) ≤ V (G) + 2;
2. λ1(G̃) ≥ λ1(G).

Proof. We will give an algorithm which constructs G̃ out of G (note that we
do not claim G̃ to be unique).

Step 1 Choose any two points x, y ∈ G such that dist(x, y) = D := D(G) and
relabel them as v0, vD, i.e. relabel them as (artificial) vertices of G. Denote by
Γ1 any shortest path through G connecting v0 and vD, that is, Γ1 is a subgraph
of G with L(Γ1) = D(G), and any v ∈ V (G)∩Γ1\{v0, vD} has degree two when
considered as a vertex of Γ1. Without loss of generality, Γ1 may be considered
as a directed path from v0 to vD, where no part of Γ1, be it edge or vertex, is
counted twice.

Step 2 Assuming such a path to exist, denote by Γ2 any (directed) shortest
path from v0 to vD such that Γ2 �⊂ Γ1 (as sets), and no point of G is counted
twice by Γ2 (in particular, Γ2 does not contain any loops). Since G is compact,
if there is any such path, there will be one of minimal length. Repeat this
process inductively to obtain n such paths Γ1, . . . ,Γn ⊂ G, that is, Γk is a
directed path from v0 to vD without passing through any point twice, with

Gk �⊂
k−1⋃

j=1

Gj

for all k ≥ 2, and D = L(Γ1) ≤ · · · ≤ L(Γk) ≤ · · · . Since G is compact, this
process will terminate after n ≥ 1 steps, that is, no further path Γ ⊂ G can be
found without either being contained in

⋃
k≤n Γk or passing through at least

one point of G at least twice.

Step 3 Set

Ĝ :=
n⋃

k=1

Γk,
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taking the vertex set of Ĝ to be

V(Ĝ) := {v0, vD} ∪ {v ∈ V : v has degree ≥ 2 in Ĝ}.

Then, clearly D(Ĝ) = D(G), L(Ĝ) ≤ L(G) and V (Ĝ) ≤ V (G) + 2. We also
see directly that λ1(Ĝ) ≥ λ1(G), as follows from Lemma 2.3(1): since any
connected component of G\Ĝ is connected to Ĝ at a single vertex (otherwise,
we could find another path not contained in Γ1, . . . ,Γn as in step two), adding
this component to Ĝ can only decrease λ1. Since G\Ĝ can only consist of finitely
many connected components, it follows that λ1(Ĝ) ≥ λ1(G).

Step 4 We shorten the paths Γ2, . . . ,Γn inductively to obtain new paths
Γ̃2, . . . , Γ̃n, so that (with Γ̃1 = Γ1) L(Γ̃1) = L(Γ̃2) = · · · = L(Γ̃3) = D,
without changing the topology of Ĝ (although some edges may contract to a
point).

More precisely, we form a new graph G̃2 from Ĝ by shortening Γ2\(Γ1∪V)
by length L(Γ2) − D ≥ 0; then, λ1(G̃2) ≥ λ1(Ĝ) by Lemma 2.3(4). Note that
this may also shorten (a subset of) the other paths Γ3, . . . ,Γn, but each will
still have length at least D and will still be ordered by increasing the length.
We then proceed inductively, creating a graph G̃k out of G̃k−1 by shortening
Γk\ ⋃

j≤k−1 Γ̃j to have length D. We end up with a graph G̃n consisting of
n possibly overlapping paths Γ̃1, . . . , Γ̃n from v1 to v2, such that L(Γ̃k) = D

for all k = 1, . . . , n, with D(G̃n) = D, L(G̃n) ≤ L(G), V (G̃n) ≤ V (G) + 2 and
λ1(G̃n) ≥ λ1(G).

Step 5 Finally, we obtain a pumpkin chain G̃ out of G̃n by identifying all points
at a given level where (at least) two of the paths have a common vertex. For
each k, there exists a mapping Sk : Γ̃k → [0,D] given by Sk(z) = dΓ̃k

(z, v0)
for all z ∈ Γ̃k, where dΓ̃k

denotes (Euclidean) distance measured along the
path Γ̃k. The vertices v ∈ V(G̃n) ∩ Γ̃k along the path Γ̃k have the form v0 =
S−1

k (0), v1
k = S−1(x1

k), . . . , vnk

k = S−1(xnk

k ), vD = S−1
k (D) for certain levels

x1
k, . . . , xnk

k ∈ (0,D), for each k = 1, . . . , n.
For every xj

k, for all j = 1, . . . , nk and all k = 1, . . . , n, we insert an
artificial vertex at each point S−1

i (xj
k) for all i = 1, . . . , n, and then form G̃

out of G̃n by identifying for every fixed pair j, k the vertices S−1
i (xj

k) for all
i = 1, . . . , n. The graph G̃ is then a pumpkin chain with the same diameter,
length and number of vertices as G̃n, in particular satisfying condition (1) of
the lemma, and λ1(G̃) ≥ λ1(G̃n) [cf. Lemma 2.3(3)], so that (2) is satisfied as
well. �

Remark 5.5. It is clear that V (G̃) will be no greater than V (G) if the diameter
is realised as a distance between certain two vertices—there will be no need
to introduce artificial vertices in Step 1. In some cases, it is more convenient
to work with the combinatorial diameter DV (see (2.2)), which we recall is the
maximal distance within G of any two vertices of G: an inspection of the proof
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of Lemma 5.4 reveals that it can be trivially modified to allow one to prove
the existence, for any given G, of a corresponding pumpkin chain G̃ with

1. DV(G̃) = DV(G), L(G̃) ≤ L(G) and V (G̃) ≤ V (G), and
2. λ1(G̃) ≥ λ1(G).

All of our statements involving the diameter—at least, all the negative state-
ments as well as all the upper bounds in Sect. 6 below—also hold for DV, as
is easy to see.

Note that if G is e.g. a pumpkin chain, a tree, a (higher dimensional)
cube or a complete bipartite graph, see e.g. [12, Chapter 1], then D = DV, but
this is not the case if G is a complete graph.

Reduction to a Sturm–Liouville Problem

Next, we prove that we can find an eigenfunction ψ1 of λ1(G) (where G is a
pumpkin chain) which only depends on the level S(z) of any z ∈ G, that is,
ψ1 takes on the same value on all parallel edges: this is the crucial argument
that will allow us to study our problem by Sturm–Liouville arguments.

Lemma 5.6. Suppose G is a pumpkin chain. There exists an eigenfunction ψ1

associated with λ1(G) and a function ϕ : [0,D] → R such that ψ1(z) = ϕ(S(z))
for all z ∈ G.

Proof. If there exists an eigenfunction ψ which does not vanish on at least one
vertex of G, then we may construct a new eigenfunction ψ1 by averaging the
value of ψ at each fixed level. It is easily checked that ψ1 �≡ 0 created in this
way is an eigenfunction for λ1(G), as a linear combination of eigenfunctions
on each edge, which also satisfies the Kirchhoff condition at the vertices, and
which by construction only depends on the level. So we merely need to ensure
the existence of such an eigenfunction ψ.

Denote the vertices of G by v0, v1, . . . , vV = vD (V ≥ 2) and the V − 1
pumpkin subgraphs of G by G1, . . . ,GV −1, Gk running from vertex vk−1 to vk.
If there exists an eigenfunction ψ such that ψ(vk) = 0 for all k = 0, . . . , V ,
then, since ψ cannot vanish identically on any pumpkin, ψ is in particular an
eigenfunction of the Dirichlet Laplacian on each Gk. Denoting by μn(Gk) the
nth Dirichlet eigenvalue of Gk, it follows that for each k, there exists n ≥ 1 with
λ1(G) = μn(Gk) ≥ μ1(Gk) ≥ λ1(G), the last inequality following by an easy
monotonicity argument. This implies that G must necessarily be equilateral,
and ψ restricted to each edge, identified with (0, a) ⊂ R, is either identically 0
or of the form ± sin(

√
λ1x) = ± sin(πx/a), x ∈ (0, a). It follows that each Gk

has another eigenfunction taking on the value ±1 at vk−1 and ∓1 at vk (i.e.
of the form ± cos(πx/a) on each of its corresponding edges); we may therefore
build another eigenfunction on G taking on the alternate values 1 and −1 at
successive vertices. This proves the claim (note that it also follows that V = 2
in this case, since for V ≥ 3 one can see directly that any such eigenfunction
cannot be associated with λ1, but we do not need this). �

Let ψ1 be such an eigenfunction as in the lemma, corresponding to λ1(G).
We denote by

ρ(x) = #S−1{x} (5.1)
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the counting function for the number of parallel edges of G at the level x ∈
[0,D], and by ϕ(x) := ψ1(S−1(x)) the well-defined composite function (in a
slight abuse of notation) in H1(0,D); since S′(z) = 1 almost everywhere, it
follows that

λ1(G) =

∫ D

0
ϕ′(x)2ρ(x)dx

∫ D

0
ϕ(x)2ρ(x)dx

= inf

{∫ D

0
u′(x)2ρ(x)dx

∫ D

0
u(x)2ρ(x)dx

: u ∈ H1(0,D),
∫ D

0

u(x)ρ(x)dx = 0

}
; (5.2)

for the second equality, “≥” is clear, and “≤” follows since every such function
u ∈ H1(0,D) can be mapped canonically onto a function g ∈ H1(G) via
g(z) = u ◦ S(z) for z ∈ G (so that we may use the minimisation property of ψ
on G). We see in particular that, when looking for a pumpkin chain with the
largest spectral gap, it is enough to study a one-dimensional problem.

We shall now introduce a principle which allows us to pass from pumpkin
chains to actual one-dimensional weighted eigenvalue problems. The central
argument here is that the set of possible weights ρ corresponding to pumpkin
graphs, {ρ ∈ L∞(0,D;N\{0})}, is large enough within L∞(0,D) in a sense rel-
evant for our eigenvalue problems. This in turn is based on the scale invariance
of (5.2): nothing changes if we multiply ρ by an arbitrary nonzero constant.

Proposition 5.7. Given any function ω ∈ C1[0,D] such that minx∈[0,D] ω(x) >
0, there exists a sequence of pumpkin chains Gn of diameter D, such that
λ1(Gn) → λ1(ω).

Here, we have denoted by λ1(ω) > 0 the first non-trivial eigenvalue of
the Sturm–Liouville problem

{ − (ω(x)u′(x))′ = λω(x)u(x), x ∈ (0,D),

u′(0) = u′(D) = 0,
(5.3)

i.e.

λ1(ω) = inf

{∫ D

0
u′(x)2ω(x) dx

∫ D

0
u(x)2ω(x) dx

: u ∈ H1(0,D),
∫ D

0

u(x)ω(x)dx = 0

}
,

(5.4)
as it is easy to see by the usual means.

Remark 5.8. We note that (5.4) makes sense when ω ∈ L∞(0,D) with
ess inf ω(x) > 0, and in this case it is still possible to find pumpkin chains
Gn with λ1(Gn) → λ1(ω)—as our proof shows, although we will not go into
details. Hence, it follows from (5.2), Lemma 5.4 and Proposition 5.7 that

sup{λ1(G) : D(G) = D} = sup{λ1(G) : G pumpkin chain, D(G) = D}
= sup{λ1(ω) : ω ∈ L∞(0,D;N\{0})}.

We can in fact further refine the class of functions that are relevant to us: as
noted, it follows directly from (5.4) that λ1(αω) = λ1(ω) for any α > 0, which
leads us finally to consider
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W = {ρ ∈ L∞(0, D) : ερ := ess inf ρ > 0, ρ(0, D) is a finite subset of ερ N\{0}} ,

the set of all weights which can be obtained by multiplying the weight associ-
ated with a pumpkin chain by an arbitrary positive constant. In this way, our
original spectral problem on a graph has been reduced to a suitable Sturm–
Liouville-like problem with possibly discontinuous elliptic coefficients. We con-
sider this transference principle to be the largest point of interest of this article,
which can likely be applied to different investigations in the theory of quantum
graphs.

The proof of Proposition 5.7 relies on the following lemma, whose proof
is standard and hence omitted.

Lemma 5.9. Given ωn, ω ∈ L∞(0,D) with ess inf ω(x), ess inf ωn(x) ≥ ε > 0 for
all n ∈ N, if ωn → ω in L∞(0,D), then λ1(ωn) → λ1(ω) (with λ1(ωn), λ1(ω)
defined as in (5.4)).

In fact, we can expect convergence in a much stronger sense, but this is
all we will need.

Proof of Proposition 5.7. Every finite step function ρ ∈ L∞(0,D) taking on
only positive integer values corresponds to a pumpkin chain; hence, the propo-
sition reduces to showing that we can find a sequence of functions ρn ∈ W
with λ1(ρn) → λ1(ω), with ω as in the statement of the proposition, since
the closure of W in the L∞-norm contains {ω ∈ C1[0,D] : min ω > 0}, as
an elementary (and omitted) approximation argument shows. But this follows
from Lemma 5.9. �

Counterexample

We are finally in a position to show that no upper estimate on the spectral
gap is possible in terms of the diameter alone. Our result is non-constructive,
but it should not be hard to write down a family of examples explicitly based
on our proof: a sequence of pumpkin chains, where the pumpkins become
increasingly small, and in each pumpkin chain the number of slices of the
successive pumpkins increases exponentially from v0 to vD.

Theorem 5.10. Given D > 0, there exists a sequence of pumpkin chains Gn

with D(Gn) = D for all n ∈ N, but λ1(Gn) → ∞.

Proof. Proposition 5.7 together with a diagonal argument shows that this
follows from the existence of a sequence of weights ωn ∈ C1[0,D] with
λ1(ωn) → ∞. We make the explicit choice ωn(x) := enx, then it follows from
(5.3) and a short calculation that λ1(ωn) is the lowest non-zero eigenvalue of

{ − u′′(x) − nu′(x) = λu(x), x ∈ (0,D),

u′(0) = u′(D) = 0.
(5.5)

We claim that all non-trivial eigenvalues λk(ωn) of the above problem are
bounded from below by n2/4, from which the assertion of the theorem will
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follow. To see this, we use the substitution w(x) := e
n
2 xu(x) to transform (5.5)

into ⎧
⎪⎨

⎪⎩

− w′′(x) = μw(x), μ = λ − n2

4
, x ∈ (0,D),

w′(0) =
n

2
w(0), w′(D) =

n

2
w(D).

An elementary calculation shows that every eigenvalue μ of this problem is at
least −n2

4 ; the unique eigenfunction corresponding to μ0 = −n2

4 is w(x) = e
n
2 x.

The next eigenvalue μ1 is positive, meaning λ1(ωn) ≥ n2/4. �
Remark 5.11. The property λ1(Gn) → ∞ is a global property of the sequence
of graphs, as can be seen as follows: create a new graph G̃n out of the graph
Gn from Theorem 5.10 by attaching to its end vertex vD a single pendant edge
of fixed length  > 0. Then, D(G̃n) = D +  and the spectral gap does not
blow up any more; in fact, λ1(G̃n) ≤ π2/2 for all n ∈ N by Lemma 2.3(1) and
(3.1).

5.3. Applications: The Radius and the Longest Cycle of a Graph

One could say that the principles set out in the preceding section are more
general than simply applying to the quantity diameter. For example, in a
natural analogy with the radius of a combinatorial graph, cf. [12, Sect. 1.3],
we may define the radius of a quantum graph G by

R(G) := inf
x∈G

sup
y∈G

dist(x, y),

where, as usual, dist denotes the shortest (Euclidean) distance between points
along paths within the graph, and as with diameter, infimum and supremum
are taken over all points in the graph, not just vertices. This is fairly closely
related to diameter, and indeed for the flower dumbbells in Example 5.1, the
combs in Remark 5.2 and all pumpkin chains, we have that R(G) = D(G)/2.
In particular, radius alone leads to neither a lower nor an upper bound on
λ1(G).

As another example, the length of a longest cycle of a graph G also
yields neither a lower nor an upper bound on λ1(G) (unlike the length of the
longest edge). For the lower bound, if we take the sequence of graphs Gn from
Example 5.1 and modify each by inserting a second edge e00 of length D/2
between v1 and v−1, then we obtain a sequence of graphs having a longest
cycle of length D and spectral gap tending to zero, as we can see by extending
ψn by another sine curve in the obvious way on e00. For the upper bound, take
a sequence of pumpkin chains Gn as in Theorem 5.10 and identify for each n
the two end vertices v0 and vD to form a new graph G′

n having a longest cycle
of length D and λ1(G′

n) ≥ λ1(Gn) by Lemma 2.3(3).

6. Estimates Involving the Diameter

If beyond the diameter we place additional restrictions on our graphs, we
can recover bounds. An interesting fact is that, unlike in the case of length



Vol. 17 (2016) On the Spectral Gap of a Quantum Graph 2461

(Example 4.1), bounding V from above is now, in conjunction with D, enough
to obtain an upper bound.

Theorem 6.1. Let G be a quantum graph having diameter D > 0 and V ≥ 2
vertices. Then,

λ1(G) ≤ π2

D2
(V + 1)2, (6.1)

and even

λ1(G) ≤ π2

D2
V

(V − 1)2 (6.2)

where DV is the combinatorial diameter of G introduced in Remark 5.5.

Proof. To prove (6.1), it suffices to prove that

sup
{

λ1(G) : G is a pumpkin chain, D(G) = D and V (G) ≤ V
}

≤ π2

D2
(V − 1)2, (6.3)

since by Lemma 5.4 for any graph G we can find a pumpkin chain G̃ with
D(G̃) = D(G), V (G̃) ≤ V (G) + 2 and λ1(G) ≤ λ1(G̃); (6.2) will follow from the
same statement, appealing to Remark 5.5. We establish this via a somewhat
crude test function argument. By the pigeonhole principle, at least two vertices
v,w of G, say at levels a = S(v) < b = S(w) ∈ [0,D], must satisfy dist(v,w) =
b − a ≥ D/(V − 1). Roughly speaking, we build a scaled cosine function on
(a, b) and extend this by ±1 to the rest of the graph. More precisely, we set

ψ(z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α if x = S(z) ∈ [0, a)
α cos(π(x − a)/(b − a)) if x = S(z) ∈ [a, (a + b)/2]
β cos(π(x − a)/(b − a)) if x = S(z) ∈ [(a + b)/2, b]
−β if x ∈ (b,D]

for all z ∈ G, where x = S(z) throughout, and the constants α, β > 0 are
chosen so that

∫
G

ψ = 0. It is easy to check that ψ has Rayleigh quotient
no larger than π2/(b − a)2 ≤ π2(V − 1)2/D2, establishing (6.3) and hence
(6.1). �

Remark 6.2. (a) A bound on the diameter D is stronger than one on the total
length L (as D ≤ L), but on the other hand a bound on the number V of
vertices is weaker than the one on the number E of edges, as an upper bound
on E implies one on V . Comparing Theorem 6.1 with Theorem 4.2 seems
therefore to be interesting. We recall (Example 5.1) that D and V together
are not enough for a lower bound.

(b) We do not expect the bounds in Theorem 6.1 to reflect the opti-
mal growth of λ1 with respect to V ; for example, we conjecture that
{λ1(G) : DV(G) = DV and V (G) ≤ 4} is equal to 4π2/D2

V. We also expect that
in general such optima can only be approximated and never attained, since
(roughly speaking) one can always add more edges to such a graph without
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altering D and V , but if added between the right vertices they should speed
up diffusion on the graph.

(c) The bounds

4
V DV degmax

≤ α1 ≤ 1
degmax degmin

4 log2
2 V

D2
V

(6.4)

on the spectral gap α1 of the normalised Laplacian of a combinatorial graph
in terms of combinatorial diameter DV and number of vertices are a direct
consequence of those obtained in [1, Thm. 2.7] and [24, Thm. 4.2] for the
unnormalised Laplacian, cf. Remark 2.4(c) for the definition of degmax ,
degmin . As expected, the upper bound is a monotonically increasing func-
tion of V and an inverse function of DV. Interestingly, the lower bound in
(6.4) requires a combination of the maximal degree degmax together with V ;
the nature of the counterexamples in Example 5.1 suggests that the same may
be true of the continuous case.

Remark 6.3. Fixing the diameter D and bounding the number of edges E from
above is enough to yield non-trivial upper and lower bounds on λ1(G). Indeed,
since at least one edge must have length greater than or equal to D/E, we
obtain the crude upper bound

λ1(G) ≤ 4π2E2

D2
,

while since L ≤ DE, (4.1) implies the lower bound

λ1(G) ≥ π2

D2E2
,

with equality if G is a loop in the first case and a path in the second. Both
these bounds are however in general probably far from optimal. Since λ1(G)
depends continuously on changes in the length of any given edge of G, even as
the edge length tends to zero, it seems likely that there should exist maximisers
and minimisers for each D > 0 and E ≥ 1 (as opposed to only a maximising
sequence as in Theorem 6.1); we expect that our current bounds are only sharp
if E = 1. However, we leave this as an open problem, together with the much
harder problem of determining the optimal constants and optimisers for each
E ≥ 2.

7. Estimates in Terms of Both the Total Length
and the Diameter

We will now prove bounds on the eigenvalue in terms of D and L. We will
start with the upper bound, which is the easier case.

7.1. An Upper Bound in Terms of D and L

Interesting in the following upper bound is that the bound is a monotonically
increasing function of L, a consequence of L representing a finiteness condition
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on G as a counterpart to D; it is entirely possible that there could be another
upper bound on λ1 which depends inversely on L and positively on D.

Note that our upper estimate is again probably far from optimal, as we
obtain it using another somewhat coarse test function argument, although it
is “sharp” in the sense that we have equality when L = D, i.e. when G is a
path.

Theorem 7.1. Any quantum graph G satisfying Assumption 2.1 and having
diameter D > 0 and total length L ≥ D satisfies

λ1(G) ≤ π2

D2

4L − 3D

D
. (7.1)

Proof. Since the dependence of the right-hand side of (7.1) on L is positive, the
claim will follow from Lemma 5.4 if we can prove the corresponding statement
for pumpkin chains. So, assume that G is indeed a pumpkin chain. Denoting
as usual by v0 and vD the terminal vertices of G, and by S(z) = dist(z, v0) the
level of the point z ∈ G, we construct a test function on G by setting

ψ(z) :=

⎧
⎨

⎩
A cos

(
πS(z)

D

)
if S(z) ≤ D/2

B cos
(

πS(z)
D

)
if S(z) > D/2

for all z ∈ G, where A, B > 0 are chosen to ensure
∫
G

ψ = 0. Denote by

L := |{z ∈ G : S(z) ≤ D/2}| − D/2

and

R := |{z ∈ G : S(z) > D/2}| − D/2

the total extra length of G not accounted for by the first path Γ1 in G, realising
the diameter in the left and the right half of G, respectively. Then, L + R =
L − D by definition, and, estimating ψ2 from below by zero and (ψ′)2 from
above by A2 and B2 on the corresponding part(s) of G, we have

λ1(G) ≤ π2

D2

A2
∫ D/2

0
sin2(πx/D) dx + A2�L + B2

∫ D

D/2
sin2(πx/D) dx + B2�R

A2
∫ D/2

0
cos2(πx/D) dx + B2

∫ D

D/2
cos2(πx/D) dx

=
π2

D2

(A2 + B2)D
4 + A2�L + B2�R

(A2 + B2)D
4

.

Estimating both L and R from above by L − D and rearranging yield (7.1).
�

7.2. A Lower Bound in Terms of D and L

Finally, we will give a lower bound. It would appear that the minimum is given
by the solution of a transcendental equation, which represents the first non-
zero eigenvalue of a second-order problem on an interval with a non-standard
boundary condition, in which the operator itself appears. This is often called
a generalised Wentzell, or Wentzell–Robin, condition in the literature; see for
example [3,27].
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Theorem 7.2. For any quantum graph G satisfying Assumption 2.1 and hav-
ing diameter D > 0 and total length L ≥ 2D, the first eigenvalue λ1(G) is
at least as large as κ2, where κ > 0 is the smallest positive solution of the
transcendental equation

cos(2κD) = (L − 2D)κ sin(2κD). (7.2)

In particular,

λ1(G) ≥ 1
2D(L − D)

>
1

2DL
. (7.3)

Remark 7.3. (a) It is not clear if (7.2) is optimal. It follows from Lemma 7.6
below that the optimal bound is not larger than the square of the first positive
solution κ̃ > 0 of

cos
(

κ̃
D

2

)
= κ̃

L − D

2
sin

(
κ̃

D

2

)
, (7.4)

and it is not hard to show that
1

DL
<

1
DL − D2

2

≤ κ̃2 ≤ 3
3DL − 2D2

<
3

DL

(for the upper bound, use the estimate cotx ≤ 1/x−x/3 for x ∈ (0, π); for the
lower bound, argue as in the proof of Theorem 7.2, with D in place of 2D). In
particular, the dependence in Theorem 7.2 on D and L is of the correct form.

(b) If D ≥ L/2, then it follows from (4.1) that

λ1(G) ≥ π2

L2
≥ π2

2DL
.

We see that lower bounds involving L and D are of most interest when D is
much smaller than L, and in this case Theorem 7.2 is applicable.

(c) Both equations (7.2) and (7.4) arise by reducing a graph to a path
graph of length D with “mass” equal to L − D concentrated at the two ver-
tices and correspond to a one-dimensional Laplacian with generalised Wentzell
boundary conditions at one end point. More precisely, consider the problem

−u′′(x) = κ2u(x) in (0,D)
u′′(0) − 2

L−D u′(0) = 0

u′′(D) + 2
L−D u′(D) = 0.

The first antisymmetric eigenfunction corresponds to the problem on the half
interval

−u′′(x) = κ2u(x) in (0,D/2)
u′′(D/2) + 2

L−D u′(D/2) = 0

u(0) = 0.

Then any eigenfunction has the form ψ(x) = sin(κx), and a short computation
using the condition at x = D shows that κ satisfies (7.4) if and only if it solves
this problem [for (7.2) consider the same problem on (0, 2D)].

Important for the proof will be the following class of graphs.
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Definition 7.4. A symmetric star dumbbell graph (or SSD graph for short) G
of diameter D and star size  is a graph consisting of an edge e0 (the handle)
of length D − 2 between two vertices v1 and v2, with identical star graphs
S1, S2, each consisting of m ≥ 2 edges each of length  attached to v1 and v2,
respectively.

The next lemma shows that these graphs have a small first eigenvalue for
the given D and L. Our graphs do not need to be star dumbbells; it is merely
important that as much mass as possible be concentrated as near the end
points as possible. However, stars have the advantage that their eigenvalues
can be more easily computed.

Lemma 7.5. Given any quantum graph G satisfying Assumption 2.1, there is
an SSD graph T with L(T) ≤ L(G), D(T) ≤ min{2D(G), L(G)}, and λ1(T) ≤
λ1(G).

An inspection of our proof shows that if the graph G is symmetric about
a path representing the diameter, then one can find an SSD graph having the
same diameter as G, with the other conclusions of Lemma 7.5. One can also
find another graph T′ with D(T′) ≤ D(G), L(T′) ≤ 2L(G) and λ1(T′) ≤ λ1(G).
Moreover, if G is already an SSD graph, then we can find an SSD graph T′′

with D(T′′) = D(G), L(T′′) = L(G) and λ1(T′′) ≤ λ1(G).

Proof. Given G with length L and diameter D, we take any eigenfunction ψ
corresponding to λ1(G). If ψ vanishes identically on an edge, or a collection of
edges, then we may remove them from G, decreasing D and L, and leaving λ1

unchanged. So, we may assume that the set where ψ = 0 consists of finitely
many points. We turn these into (artificial) vertices and identify them, which
cannot increase D. By Lemma 2.3(2), this can only increase λ1, but since ψ
remains an eigenfunction which is obviously still associated with the first non-
trivial eigenvalue, as the new graph cannot have a smaller one, λ1 remains in
fact unchanged.

Hence, we may assume that G consists of two subgraphs, G+ and G−,
joined at a single vertex v0, with a first eigenfunction ψ satisfying ψ > 0 on
G+ and ψ < 0 on G−. In particular, ψ is also a first eigenfunction (with λ1

the corresponding first eigenvalue) of the mixed Dirichlet–Neumann/Kirchhoff
problem on G+ and G−, i.e. where we impose a Dirichlet condition at v0 and
the usual continuity and Kirchhoff conditions on all other vertices. Moreover,
it is immediate that

sup{dist(x, v0) : x ∈ G+}, sup{dist(x, v0) : x ∈ G−} ≤ D,

and at least one of these graphs, say G+, has a total length not more than
L/2 (of course, one of them will also have this supremum at most D/2, but its
length may then be large. Choosing this graph would lead to the comparison
with T′). Set

d := sup{dist(x, v0) : x ∈ G+} ≤ min{D,L/2}.

Denote by T an SSD graph having a total length L and diameter 2d, where the
length of the edges of the star graphs will be fixed later. Identify the midpoint
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(with respect to which T is symmetric) with 0, and the end vertices—i.e.
the vertices of degree one in S1 and S2, cf. Definition 5.3—with −d and d,
respectively. Denote the right half of the graph by T+.

We will now construct a test function ϕ on T out of ψ. Let z ∈ G+

be such that ψ reaches its maximum M > 0 in G+ at z; then in particular,
s := dist(z, v0) ≤ d. Denote by Γ any shortest path from v0 to z. Now, we
map the values of ψ on Γ onto T: for x ∈ [0, s] ⊂ [0, d] let ϕ(x) = ψ(w), where
dist(w, v0) = x, so that ϕ(0) = 0 and ϕ(s) = M . If s < d, then extend ϕ by
M on (s, d], and on the star graph S2 let ϕ take on the value it takes on at v2.
We then take ϕ to be symmetric on T; it is clear that ϕ ∈ H1(T).

Now, fix ε > 0, to be specified later. We assume that v2 is near enough
to d that ϕ(v2) ≥ M − ε. It remains to show that the Rayleigh quotient of ϕ
is not larger than that of ψ on G; note that we only have to consider G+, as
it follows from the fact that ψ is an eigenfunction and that G+ is one of its
nodal domains that

λ1(G) =

∫
G+ |ψ′|2∫
G+ |ψ|2 .

By symmetry, we also only have to consider ϕ on T+. Now, it is clear from the
construction that∫

T+
|ϕ′|2 =

∫

(0,s)

|ϕ′|2 =
∫

Γ

|ψ′|2 ≤
∫

G+
|ψ′|2.

We claim that ∫

T+
|ϕ|2 ≥

∫

G+
|ψ|2

if ε > 0 is small enough. If d = L/2, then G+ and T+ are both just path graphs,
and it is clear that there is equality between the corresponding eigenvalues. If
d < L/2, then L(G+) ≤ L(T+) = L/2; moreover, since ψ reaches its maximum
M on a finite set of points, there exists δ > 0 such that

∫

G+\Γ

|ψ|2 ≤ (M − δ)2L(G+\Γ) ≤ (M − δ)2
(

L

2
− s

)
.

If we choose ε ∈ (0, δ), then, since L(S2 ∪ (s, d)) = L/2 − s,
∫

T+\(0,s)

|ϕ|2 =
∫

S2∪(s,d)

|ϕ|2 ≥ (M − ε)2
(

L

2
− s

)
> (M − δ)2

(
L

2
− s

)
.

Since clearly
∫

(0,s)

|ϕ|2 =
∫

Γ

|ψ|2,

our claim follows, and we have shown that λ1(T) ≤ λ1(G). Since T has total
length L and diameter 2d ≤ 2D, we are done. �

We now show that the spectral gap of a sequence Tn of SSD graphs of
fixed diameter and total length converges to the claimed equation as the stars
become smaller and more concentrated.
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Figure 6. A symmetric star dumbbell graph on 22 rays

Lemma 7.6. Suppose that Tn is a sequence of SSD graphs with D(Tn) = D
and L(Tn) = L for all n, such that n → 0. Then, λ1(Tn) is greater than and
converges to κ2, where κ is the first positive solution of

cos
(

κ
D

2

)
= κ

L − D

2
sin

(
κ

D

2

)
.

Proof. Assume that the SSD graph is formed by one edge of length dn and
2n “short” edges of lengths n attached to two vertices as shown in Fig. 6.
Elementary calculations allow one to determine dn and n through D and L

{
D = 2n + dn

L = 2nn + dn

⇒

⎧
⎪⎪⎨

⎪⎪⎩

n =
L − D

2(n − 1)

dn =
nD − L

n − 1

.

We are interested in the case of large n, when dn � n. The lowest
eigenvalue is λ0 = 0 with the eigenfunction ψ0 ≡ 1; for sufficiently large n, the
first nontrivial eigenfunction is antisymmetric with respect to the reflection in
the middle point of the dumbbell and hence zero at that point. By symmetry,
it will also attain the same values on all smaller edges attached to each of the
vertices, and the Kirchhoff condition implies its normal derivative is zero at
every boundary vertex. Taking into account that the function is continuous
and the sum of normal derivatives at the inner vertices is zero, we derive the
following dispersion equation:

k cot
(

k
nD − L

2(n − 1)

)
= nk tan

(
k

L − D

2(n − 1)

)
.

We are interested in its solution in the interval 0 < k <
π

D
. Multiplying the

equation by sin
(
k nD−L

2(n−1)

)
· cos

(
k L−D

2(n−1)

)
and using trigonometric identities,

this equation can be written in an equivalent form

gn(k) := (1 + n) cos
(

k
D

2

)
− (n − 1) cos

(
k

(
D

2
− L − D

n − 1

))
= 0.

The function gn(k) is obviously positive when k = 0 and k1 is its first zero on
the positive semi-axis. Using the fact that the graph of the cosine function on
the interval (0, π/2) lies below its tangent line, we have
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cos
(

k

(
D

2
− L − D

n − 1

))
≤ cos

(
k

D

2

)
+ k

L − D

n − 1
sin

(
k

D

2

)
·,

which in turn implies that

gn(k) ≥ (1 + n) cos
(

k
D

2

)
− (n − 1)

(
cos

(
k

D

2

)
+ k

L − D

n − 1
sin

(
k

D

2

))

= 2
(

cos
(

k
D

2

)
− k

L − D

2
sin

(
k

D

2

))
.

It follows that k1 lies to the right of the lowest positive solution to the equation

g∞(k) := cos
(

k
D

2

)
− k

L − D

2
sin

(
k

D

2

)
= 0.

On the other hand, k1 approaches the first zero of g∞(k) as n → ∞, since gn

converges to g∞ pointwise. �

Proof of Theorem 7.2. The proof of (7.2) follows directly from combining
Lemmata 7.5 and 7.6. To see that (7.3) follows from (7.2), we merely note that
since cos x ≥ 1 − x2/2 and sinx ≤ x for all x ≥ 0, it follows from (7.2) that
2D(L − 2D)κ2 ≥ 1 − (2κD)2/2; rearranging yields κ2 ≥ 1/(2DL − 2D2). �

8. Estimates on the Spectral Gap of the Discrete Laplacian

The normalised Laplacian Lnorm of a graph was implicitly introduced
in [15], but it has only enjoyed broad interest since Chung’s thorough investi-
gations of its properties, summarised in [11], which link combinatorics, spectral
theory and geometry. It is defined as the symmetric, V ×V -matrix whose diag-
onal entries are 1 and whose off-diagonal entry corresponding to the vertices
v,w ∈ V is given by −(deg(v) deg(w))− 1

2 , where deg(v) denotes the degree
of vertex v, i.e. the number of edges incident to it. The normalised Lapla-
cian always has real spectrum and in fact one can show by simple varia-
tional methods that its eigenvalues are all positive, cf. [11, Chapter 1] (another
popular matrix in graph theory is the discrete Laplacian, thoroughly studied
since [15], in which each non-zero off-diagonal entry of the normalised Lapla-
cian is replaced by −1 and each diagonal entry equals minus the sum of the
non-diagonal entries on the same row).

In the introduction, we observed that our estimates on λ1 in the special
case of equilateral metric graphs can be turned into estimates on the spectral
gap α1 of the normalised Laplacian, and vice versa, by the formula (1.1).
Remarkably, some estimates obtained by studying quantum graphs turn into
estimates on α1 that currently seem to be unavailable by purely combinatorial
methods.

Let us write such estimates down for the case of the normalised Laplacian,
which corresponds to equilateral quantum graphs with edges of unit length (in
which case we have L = E). It follows from (1.1) that
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α1 = 1 − cos
√

λ1 whenever λ1 < π2;

hence, α1 is a monotonically increasing function of λ1 in the range λ1 ∈ [0, π2).
For instance, from our first upper bound 0 ≤ λ1 ≤ π2E2

L2 = π2, we deduce
the well-known fact that α1 always lies in [0, 2]—in fact, so do all eigenvalues
of the normalised Laplacian. Furthermore, from our results in Sects. 6 and 7,
we can obtain the following upper bounds:

Parameters α1

Available upper bound Holds if

DV, V 1 − cos
π

DV
(V + 1) V + 1 ≤ DV

DV, E 1 − cos

(
π

DV

√
4E

DV
− 3

) √
4E

DV
− 3 ≤ DV

The first bound can only hold for paths, for which however the second bound is
sharper (and in fact tight). Here, we need the combinatorial diameter DV ≤ D
of Remark 5.5, since the diameter D is meaningless in the case of combinatorial
graphs.

For equilateral quantum graphs with unit side length, which are the only
ones we need to consider, we necessarily have D ≤ DV+1, since points realising
the diameter can be at distance no more than 1/2 from a vertex. Hence, we
have the following estimates, which are valid for all graphs:

Parameter α1

Available lower bound

E 1 − cos
π

E

DV, E 1 − cos
π

(DV + 1)E

DV, E 1 − cos
1√

(DV + 1)E

The first bound is always better than the second (and in fact tight for paths,
cf. [11, Example 1.4]), while the third—which can be improved slightly by using
(7.2) rather than the simpler (7.3)—is better than the first if E/(DV +1) ≥ π2

(e.g. for all complete graphs on more than six vertices).
By estimating cos by a truncated power series expansion, we can sum-

marise our bounds as follows:
π2

2E2
− π4

24E4
< 1 − cos

π

E

1
2(DV + 1)E

− 1
24(DV + 1)2E2

< 1 − cos
1√

(DV + 1)E

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
≤ α1

α1 ≤ 1 − cos

(
π

DV

√
4E

DV
− 3

)
<

π2

2D2
V

4E − 3DV

DV
, (8.1)
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where the upper bound holds if 4E ≤ D2
V + 3DV (this latter condition holds,

e.g. for all paths, for cycles on more than six vertices, but not for non-trivial
complete graphs). Both the (non-truncated) lower bounds are asymptotically
(in E) tight for cycles and hypercube graphs, cf. [11, Examples 1.5–1.6]. More-
over, in the particular case of path graphs, the first lower bound and the upper
bound jointly give the spectral gap exactly.

These can be compared with known estimates obtained by combinatorial
means, such as

1
2DVE

≤ α1 ≤ V

V − 1
, (8.2a)

1

(degmax +1) deg�DV /2�−1
max

≤ α1 ≤ 1−2

√
degmax −1
degmax

(
1 − 2

DV

)
+

2
DV

(8.2b)

(see (2.4), [11, Lemmas 1.9 and 1.14] and [4]), the first upper bound being tight
for complete graphs and asymptotically (in V ) tight for stars and complete
bipartite graphs, cf. [11, Examples 1.1–1.3], with the second upper bound
holding whenever DV ≥ 4. However, we see that the bounds in (8.2) are not
tight (in fact, two of them are not even asymptotically tight) on path graphs.
Also, our upper bound yields

1 − cos
2π

E
= α1 ≤ 1 − cos

2π
√

5
E

for cycles of even length E ≥ 6, to be compared with the combinatorial esti-
mates by E

E−1 and 8
E in (8.2). Hence, at least for some graphs, the bounds in

(8.1) are actually sharper.

9. Concluding Remarks

It is easy to find perturbations of a graph which have an arbitrarily small
effect on the first eigenvalue, but which change the combinatorics of the graph
enormously; we saw this phenomenon in action in Example 4.1. This is an
easy, but essential, consequence of the principle that the eigenvalues depend
continuously on changes in the length of a given edge, including when that
edge is contracted to a point, cf. the results in [13, Sect. 4]. The moral is that,
at least on a small or local scale, the analytic properties of a graph are more
important for determining λ1 than its combinatorial ones; in particular, quan-
tum and combinatorial graphs can be expected to diverge considerably in their
heuristic behaviour. This intuitive rule has been—we believe—underpinned by
our results throughout this article. Nevertheless, we expect that other global
structural properties of quantum graphs are also essential, even though our
investigations have only touched on these aspects peripherally.
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Let us summarise the best bounds we currently have:

Parameter(s) λ1

Available upper bound Is it sharp?

L, E
π2E2

L2
Yes, attained on a pumpkin graph (3.4)

D, V
π2

D2
(V + 1)2 Only if V = 1, on a loop

D, E
4π2E2

D2
Only if E = 1, on a loop

D, L
π2(4L − 3D)

D3
Yes, attained on a path graph (3.1)

and

Parameter(s) λ1

Available lower bound Is it sharp?

L
π2

L2
Yes, attained on a path graph (3.1);

V, E cannot improve it (Example (4.1))

D, E
π2

D2E2
Only if E = 1, on a path graph

D, L
1

2DL
Unknown, but cf. Remark 7.3

Of course, this should be viewed as being only a starting point: apart from
the question of finding the optimal bounds and optimisers in many of the above
cases, there are many other natural properties of a graph one could consider,
as well as the higher eigenvalues, and the spectral problems which arise if
one replaces the natural (Kirchhoff) boundary conditions with more general
conditions on the vertices, such as more general δ or perhaps δ′ couplings,
cf. [6], or impose Dirichlet condition on the vertices of degree one.
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