PERIOD AND ENERGY IN ONE DEGREE OF FREEDOM SYSTEMS

JORGE REZENDE

Abstract

For one degree of freedom systems there exists a very well known formula for the period (T) of periodic solutions. In this note we give a detailed description of the behavior of T in function of the total energy (E), near a stable equilibrium position of energy E_{0}. A formula for $\frac{d T}{d E}\left(E_{0}\right)$ is established. We illustrate these formulae with two examples. The second one is a new proof of a Bertrand's theorem.

1. Introduction

As it is very well known, a system with one degree of freedom is a differential equation of the form

$$
\begin{equation*}
m \ddot{x}=-U^{\prime}(x), \tag{1}
\end{equation*}
$$

where $m>0, U$, the potential, is a smooth function of x, defined in a real interval, and $\ddot{x} \equiv \frac{d^{2} x}{d t^{2}}, U^{\prime} \equiv \frac{d U}{d x}$. Equation (1) is nothing more than a Newton's equation of motion in one dimension. We follow essentially [1].

If $t \mapsto x(t)$ is a solution of (1), then

$$
E \equiv E(x(t), \dot{x}(t))=\frac{m}{2} \dot{x}(t)^{2}+U(x(t)),
$$

the energy, is constant.
Let ξ be such that $U^{\prime}(\xi)=0$. Then, ξ is called an equilibrium position; $t \mapsto x(t) \equiv \xi$ is a solution of (1). We shall assume that $U^{\prime \prime}(\xi)>0$, which implies that ξ is a stable equilibrium position. Denote $E_{0}=E(\xi, 0)$.

Under the above assumption, for E near and $>E_{0}$, there are periodic movements $t \mapsto x(t)$ around ξ and of energy E. The period T of such movements

[^0]is given by
\[

$$
\begin{equation*}
T(E)=2 \int_{x_{1}}^{x_{2}}\left[\frac{2}{m}(E-U(x))\right]^{-\frac{1}{2}} d x \tag{2}
\end{equation*}
$$

\]

where $x_{i} \equiv x_{i}(E)$ are the turning points, $U\left(x_{i}(E)\right)=E, i=1,2$.
In the limit $E \rightarrow E_{0}$ one obtains the well known formula

$$
T\left(E_{0}\right) \equiv \lim _{E \rightarrow E_{0}} T(E)=2 \pi\left[\frac{1}{m} U^{\prime \prime}(\xi)\right]^{-\frac{1}{2}} .
$$

The object of this note is to study the behavior of $T(E)$ around E_{0} (formula (3)) and compute $\frac{d T}{d E}\left(E_{0}\right)$ (formula (4)).

In order to illustrate the usefulness of this formula we give two examples. The second one is another proof of a well known result on the types of central forces that lead to periodic movements only.

2. The behavior of $T(E)$ near an equilibrium position

Assume that U is of class $C^{n}, n \geq 2$, and that $U^{\prime \prime}>0$ in $\left[x_{1}, x_{2}\right]$. Define the function $x \mapsto X=\varphi(x)$, for $x \in\left[x_{1}, x_{2}\right]$, such that

$$
\varphi(x)= \pm \sqrt{\frac{2\left(U(x)-E_{0}\right)}{U^{\prime \prime}(\xi)}}
$$

where + stands for $x \geq \xi$ and - stands for $x \leq \xi ; \varphi$ is of class C^{n-1} and $\varphi^{\prime}(x)=U^{\prime \prime}\left(\xi_{2}\right)\left(U^{\prime \prime}(\xi) U^{\prime \prime}\left(\xi_{1}\right)\right)^{-\frac{1}{2}}>0$, with ξ_{1} and ξ_{2} between ξ and x. Denote $\left[-X_{0}, X_{0}\right]=\varphi\left(\left[x_{1}, x_{2}\right]\right)$ and consider the function $f:\left[-X_{0}, X_{0}\right] \rightarrow \mathbb{R}$, such that

$$
f(X)=\frac{1}{\varphi^{\prime}\left(\varphi^{-1}(X)\right)} .
$$

The function f is of class C^{n-2}. Denote $f^{\prime}(X)=\frac{d f(X)}{d X}, f^{\prime \prime}(X)=\frac{d^{2} f(X)}{d X^{2}}$, and so on. For $n \geq 4$, and as $U^{\prime \prime}(\xi) X=U^{\prime}\left(\varphi^{-1}(X)\right) f(X)$, one has

$$
f(0)=1, f^{\prime}(0)=-\frac{U^{\prime \prime \prime}(\xi)}{3 U^{\prime \prime}(\xi)}, f^{\prime \prime}(0)=\frac{5 U^{\prime \prime \prime}(\xi)^{2}-3 U^{(4)}(\xi) U^{\prime \prime}(\xi)}{12 U^{\prime \prime}(\xi)^{2}} .
$$

Formula (2) can be written

$$
T(E)=2 \int_{-X_{0}}^{X_{0}} f(X)\left[\frac{1}{m}\left(2\left(E-E_{0}\right)-U^{\prime \prime}(\xi) X^{2}\right)\right]^{-\frac{1}{2}} d X .
$$

Writing $f(X)=1+f^{\prime}(0) X+\frac{1}{2} f^{\prime \prime}(\theta) X^{2}$, for some $\left.\theta \in\right]-X_{0}, X_{0}[$, and as

$$
\int_{-X_{0}}^{X_{0}} X^{2}\left[\frac{1}{m}\left(2\left(E-E_{0}\right)-U^{\prime \prime}(\xi) X^{2}\right)\right]^{-\frac{1}{2}} d X=\frac{\pi \sqrt{m}}{U^{\prime \prime}(\xi)^{\frac{3}{2}}}\left(E-E_{0}\right),
$$

one has

$$
\begin{equation*}
T(E)-T\left(E_{0}\right)=\sigma \frac{\pi \sqrt{m}}{U^{\prime \prime}(\xi)^{\frac{3}{2}}}\left(E-E_{0}\right), \tag{3}
\end{equation*}
$$

for some $\sigma \in f^{\prime \prime}\left(\left[-X_{0}, X_{0}\right]\right)$.
Hence
(4)

$$
T^{\prime}\left(E_{0}\right) \equiv \frac{d T}{d E}\left(E_{0}\right)=f^{\prime \prime}(0) \frac{\pi \sqrt{m}}{U^{\prime \prime}(\xi)^{\frac{3}{2}}}=\pi \sqrt{m}\left(\frac{5 U^{\prime \prime \prime}(\xi)^{2}-3 U^{(4)}(\xi) U^{\prime \prime}(\xi)}{12 U^{\prime \prime}(\xi)^{\frac{7}{2}}}\right) .
$$

Example 1. Consider a mathematical pendulum of length l under the free fall acceleration g. The potential is $U(x)=-\frac{g}{l} \cos x$, where x is the angle of deviation of the pendulum from the vertical.

In this case $\varphi(x)=2 \sin \frac{x}{2}$ and $f(X)=2\left(4-X^{2}\right)^{-\frac{1}{2}}$. Simple calculations show that formula (3) becomes

$$
T(E)-T\left(E_{0}\right)=2 \sigma \pi \sqrt{\frac{l}{g}}\left(\sin \frac{x_{0}}{2}\right)^{2}, \text { for some } \sigma \in\left[\frac{1}{4}, \frac{1+2\left(\sin \frac{x_{0}}{2}\right)^{2}}{4\left(\cos \frac{x_{0}}{2}\right)^{5}}\right] \text {, }
$$

where x_{0} is the maximum deviation angle.
Example 2. The following example is another proof of a Bertrand's theorem. We follow partially [1], Chapter 2, § 8.D. See also [2], page 51 and [4], page 90. The original proof is in [3].

Let U be the potential of a central force, μ the angular momentum and V the effective potential, $V(r)=U(r)+\frac{\mu^{2}}{2 m r^{2}}$, where $t \mapsto r(t)$ is the radial movement. Assume that there are periodic radial movements and that r_{0} is a minimum for V. Then $t \mapsto r_{0}$ is a stable circular orbit. Let $t \mapsto r(t)$ be a periodic radial movement, Φ the angle between a pericenter and an apocenter which are adjacent and let r_{1} and r_{2} be the distances from the pericenters and the apocenters to the center of the field, $r_{1}<r_{0}<r_{2}$. Making the change $x=\frac{1}{r}, x_{1}=\frac{1}{r_{1}}, x_{2}=\frac{1}{r_{2}}, x_{0}=\frac{1}{r_{0}}, W(x)=U\left(\frac{1}{x}\right)+\frac{\mu^{2}}{2 m} x^{2}$, one has $\Phi=\frac{\mu}{2 \sqrt{m}} T(E)$, where $T(E)$ is as in (2) with U replaced by W and m by 1 . As in [1] one easily obtains

$$
\begin{aligned}
\lim _{r_{1}, r_{2} \rightarrow r_{0}} \Phi & =\Phi_{\text {circ }}=\lim _{E \rightarrow E_{0}} \frac{\mu}{2 \sqrt{m}} T(E) \\
& =\pi \mu\left[m W^{\prime \prime}\left(x_{0}\right)\right]^{-\frac{1}{2}}=\pi\left(\frac{U^{\prime}\left(r_{0}\right)}{3 U^{\prime}\left(r_{0}\right)+r_{0} U^{\prime \prime}\left(r_{0}\right)}\right)^{\frac{1}{2}} .
\end{aligned}
$$

As in [1] we consider the differential equation $U^{\prime}(r)=C\left(3 U^{\prime}(r)+r U^{\prime \prime}(r)\right)$, for r in some interval and $C>0$. The solutions are $U(r)=a r^{\varepsilon}$ and $U(r)=$
$b \log r$, with $\varepsilon, a, b \neq 0$ and $\varepsilon>-2$. The second case $(b \log r)$ can easily be excluded.
As Φ does not depend on $E, T(E)$ does not depend on E. Hence $\frac{d T}{d E}\left(E_{0}\right)=$ 0. From (4), one has

$$
\begin{equation*}
5 W^{\prime \prime \prime}\left(x_{0}\right)^{2}-3 W^{(4)}\left(x_{0}\right) W^{\prime \prime}\left(x_{0}\right)=0 \tag{5}
\end{equation*}
$$

As $W(x)=a x^{-\varepsilon}+\frac{\mu^{2}}{2 m} x^{2}$, we have that $x_{0}=\left(\frac{\varepsilon a m}{\mu^{2}}\right)^{\frac{1}{\varepsilon+2}}$ which, together with (5), implies $\varepsilon=-1$ or $\varepsilon=2$. Remember that, in order to have bounded movements, for $\varepsilon=-1, a<0$, and for $\varepsilon=2, a>0$.

References

[1] V. I. Arnold, Méthodes Mathématiques de la Mécanique Classique, Éditions Mir, Moscou, 1976. English edition: Mathematical Methods of Classical Mechanics, Springer-Verlag, Berlin, 1978.
[2] V. I. Arnold (Ed.), Dynamical Systems III, in Encyclopaedia of Mathematical Sciences Vol. 3, Springer-Verlag, Berlin, 1988.
[3] J. Bertrand, C. R. Acad. Sci. Paris 77, 849-853 (1873).
[4] H. Goldstein, Classical Mechanics, Addison-Wesley Publishing Company, Reading, Massachusetts, 1980.

Grupo de Física-Matemática, Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1699
Lisboa Codex, Portugal, and Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa

E-mail address: rezende@cii.fc.ul.pt
URL: http://gfm.cii.fc.ul.pt/Members/JR.pt_PT.html

[^0]: 1991 Mathematics Subject Classification. 70H12.
 Key words and phrases. One degree of freedom systems, periodic solutions, Newtonian dynamics.

 Grupo de Física-Matemática is supported by the Portuguese Ministry for Science and Technology (MCT)..

 This paper is in final form and no version of it will be submitted for publication elsewhere.

