THE POLAR REPRESENTATION THEOREM FOR LINEAR HAMILTONIAN SYSTEMS

JORGE REZENDE

Let $n=1,2, \ldots$. If M is a real matrix, we shall denote M^{*} its transpose. I_{n} is the identity $n \times n$ matrix.

Consider the time-dependent linear Hamiltonian system

$$
\begin{equation*}
\dot{Q}=B Q+C P, \quad \dot{P}=-A Q-B^{*} P \tag{1}
\end{equation*}
$$

where A, B and C are time-dependent $n \times n$ matrices. A and C are symmetric. The dot means time derivative, the derivative with respect to τ. The time variable τ belongs to an interval. Without loss of generality we shall assume that this interval is [$0, T[, T>0 . T$ can be ∞. In the following $t, 0<t<T$, is also a time variable and $\tau \in[0, t]$.

If (Q_{1}, P_{1}) and (Q_{2}, P_{2}) are solutions of (1) one denotes W ($Q_{1}, P_{1} ; Q_{2}, P_{2}$) the Wronskian (which is constant)

$$
W\left(Q_{1}, P_{1} ; Q_{2}, P_{2}\right) \equiv W=P_{1}^{*} Q_{2}-Q_{1}^{*} P_{2} .
$$

A solution (Q, P) of (1) is called isotropic if $W(Q, P ; Q, P)=0$. From now on (Q_{1}, P_{1}) and (Q_{2}, P_{2}) will denote two isotropic solutions of (1) such that $W\left(Q_{1}, P_{1} ; Q_{2}, P_{2}\right)=I_{n}$. This means that

$$
P_{1}^{*} Q_{2}-Q_{1}^{*} P_{2}=I_{n}, \quad P_{1}^{*} Q_{1}=Q_{1}^{*} P_{1}, \quad P_{2}^{*} Q_{2}=Q_{2}^{*} P_{2} .
$$

These relations express precisely that, for each $\tau \in[0, T[$ the $2 n \times 2 n$ matrix

$$
\Phi=\left[\begin{array}{ll}
Q_{2} & Q_{1} \tag{2}\\
P_{2} & P_{1}
\end{array}\right]
$$

is symplectic. Its left inverse and, therefore, its inverse, is given by

$$
\Phi^{-1}=\left[\begin{array}{rr}
P_{1}^{*} & -Q_{1}^{*} \\
-P_{2}^{*} & Q_{2}^{*}
\end{array}\right] .
$$

As it is well-known the $2 n \times 2 n$ symplectic matrices form a group, the symplectic group.

Then, one has

$$
P_{1} Q_{2}^{*}-P_{2} Q_{1}^{*}=I_{n}, \quad Q_{1} Q_{2}^{*}=Q_{2} Q_{1}^{*}, \quad P_{1} P_{2}^{*}=P_{2} P_{1}^{*},
$$

[^0]and, therefore,
$$
Q_{2}^{*} P_{1}-P_{2}^{*} Q_{1}=I_{n}, \quad Q_{2} P_{1}^{*}-Q_{1} P_{2}^{*}=I_{n},
$$
and the following matrices, whenever they make sense, are symmetric:
\[

$$
\begin{array}{llll}
P_{2} Q_{2}^{-1}, & Q_{1} P_{1}^{-1}, & Q_{2} P_{2}^{-1}, & P_{1} Q_{1}^{-1} \\
Q_{2}^{-1} Q_{1}, & P_{2}^{-1} P_{1}, & Q_{1}^{-1} Q_{2}, & P_{1}^{-1} P_{2}
\end{array}
$$
\]

Denote by J, S and M, the following $2 n \times 2 n$ matrices

$$
J=\left[\begin{array}{rr}
0 & -I_{n} \\
I_{n} & 0
\end{array}\right], \quad S=\left[\begin{array}{cc}
A & B^{*} \\
B & C
\end{array}\right],
$$

and $M=-J S . J$ is symplectic and S is symmetric.
Equation (1) can then be written

$$
\dot{\Phi}=M \Phi .
$$

Remark that, if Φ is symplectic, Φ^{*} is symplectic, and

$$
\Phi^{-1}=-J \Phi^{*} J, \quad \Phi^{*} J \Phi=J, \quad \Phi J \Phi^{*}=J .
$$

When we have a C^{1} function $\tau \longmapsto \Phi(\tau), \dot{\Phi} J \Phi^{*}+\Phi J \dot{\Phi}^{*}=0$. Hence, $\dot{\Phi} J \Phi^{*}$ is symmetric and one can recover M :

$$
M=\dot{\Phi} \Phi^{-1}=-\dot{\Phi} J \Phi^{*} J .
$$

This means that from Φ one can obtain A, B, and C :

$$
\begin{gathered}
A=\dot{P}_{1} P_{2}^{*}-\dot{P}_{2} P_{1}^{*}, \quad C=\dot{Q}_{1} Q_{2}^{*}-\dot{Q}_{2} Q_{1}^{*}, \\
B=-\dot{Q}_{1} P_{2}^{*}+\dot{Q}_{2} P_{1}^{*}=Q_{1} \dot{P}_{2}^{*}-Q_{2} \dot{P}_{1}^{*}
\end{gathered}
$$

The proof of the following theorem on a polar representation can be found in [1]. See also [2], [3], [4].

Theorem 1. Assume that $C(\tau)$ is always $>0($ or always $<0)$ and of class C^{1}. Consider two isotropic solutions of (1), $\left(Q_{1}, P_{1}\right)$ and $\left(Q_{2}, P_{2}\right)$, such that $W=$ I_{n}. Then, there are C^{1} matrix-valued functions $r(\tau), \varphi(\tau)$, for $\tau \in[0, T[$, such that: a) $\operatorname{det} r(\tau) \neq 0$ and $\varphi(\tau)$ is symmetric for every $\tau ; b)$ the eigenvalues of φ are C^{1} functions of τ, with strictly positive (negative) derivatives; c) one has

$$
Q_{2}(\tau)=r(\tau) \cos \varphi(\tau) \text { and } Q_{1}(\tau)=r(\tau) \sin \varphi(\tau)
$$

Remark that φ is not unique and that

$$
\begin{equation*}
\frac{d}{d \tau} Q_{2}^{-1} Q_{1}=Q_{2}^{-1} C Q_{2}^{*-1} \tag{3}
\end{equation*}
$$

whenever $\operatorname{det} Q_{2}(\tau) \neq 0$ (see [1]).
Theorem 1 can be extended in the following way:

Theorem 2. Assume that $C(\tau)$ is of class C^{1}. Consider two isotropic solutions of (1), $\left(Q_{1}, P_{1}\right)$ and $\left(Q_{2}, P_{2}\right)$, such that $W=I_{n}$. Then, there are C^{1} matrixvalued functions $r(\tau), \varphi(\tau)$, for $\tau \in[0, t]$, such that: a) $\operatorname{det} r(\tau) \neq 0$ and $\varphi(\tau)$ is symmetric for every $\tau ; b$) the eigenvalues of φ are C^{1} functions of $\tau ; c$) one has

$$
Q_{2}(\tau)=r(\tau) \cos \varphi(\tau) \text { and } Q_{1}(\tau)=r(\tau) \sin \varphi(\tau)
$$

Proof. Let us first remark that $Q_{2} Q_{2}^{*}+Q_{1} Q_{1}^{*}>0$. This is proved noticing that, as $P_{1} Q_{2}^{*}-P_{2} Q_{1}^{*}=I_{n}$, one has $\left(P_{1}^{*} x, Q_{2}^{*} x\right)-\left(P_{2}^{*} x, Q_{1}^{*} x\right)=|x|^{2}$, which implies that $\operatorname{ker} Q_{1}^{*} \cap \operatorname{ker} Q_{2}^{*}=\{0\}$. Hence, $\left(Q_{2}^{*} x, Q_{2}^{*} x\right)+\left(Q_{1}^{*} x, Q_{1}^{*} x\right)>0$, for every $x \neq 0$.

Define now

$$
\Phi=\left[\begin{array}{ll}
Q_{2} & Q_{1} \\
P_{2} & P_{1}
\end{array}\right], \quad \Psi=\left[\begin{array}{rr}
\cos (k \tau) I_{n} & \sin (k \tau) I_{n} \\
-\sin (k \tau) I_{n} & \cos (k \tau) I_{n}
\end{array}\right],
$$

M as before, $\Phi_{1}=\Phi \Psi$ and $M_{1}=\dot{\Phi}_{1} \Phi_{1}^{-1}$. The constant k is >0. Then, one has

$$
M_{1}=M+\Phi \dot{\Psi} \Psi^{-1} \Phi^{-1}
$$

Let the $n \times n$ matrices, that are associated with M_{1}, be A_{1}, B_{1} and C_{1}. Then

$$
C_{1}=C+k\left(Q_{2} Q_{2}^{*}+Q_{1} Q_{1}^{*}\right) .
$$

Hence, as $Q_{2} Q_{2}^{*}+Q_{1} Q_{1}^{*}>0$, for k large enough, we have that $C_{1}(\tau)>0$, for every $\tau \in[0, t]$. We can then apply Theorem 1 . There are C^{1} matrix-valued functions $r_{1}(\tau), \varphi_{1}(\tau)$, for $\tau \in[0, t]$, such that

$$
\begin{aligned}
& \cos (k \tau) Q_{2}(\tau)-\sin (k \tau) Q_{1}(\tau)=r_{1}(\tau) \cos \varphi_{1}(\tau) \\
& \sin (k \tau) Q_{2}(\tau)+\cos (k \tau) Q_{1}(\tau)=r_{1}(\tau) \sin \varphi_{1}(\tau)
\end{aligned}
$$

From this, we have

$$
\begin{aligned}
& Q_{2}(\tau)=r_{1}(\tau) \cos \left(\varphi_{1}(\tau)-k \tau I_{n}\right) \\
& Q_{1}(\tau)=r_{1}(\tau) \sin \left(\varphi_{1}(\tau)-k \tau I_{n}\right)
\end{aligned}
$$

The generic differential equations for r and φ are easily derived from equations (15), (17) and (18) in [1].

Consider (r_{0}, s), with s symmetric, such that

$$
\dot{r}_{0}=B r_{0}+C r_{0}^{*-1} s, \quad \dot{s}=s r_{0}^{-1} C r_{0}^{*-1} s+r_{0}^{-1} C r_{0}^{*-1}-r_{0}^{*} A r_{0}
$$

Then r is of the form $r=r_{0} \Omega$, where Ω is any orthogonal, $\Omega^{-1}=\Omega^{*}$, and time-dependent C^{1} matrix. From this one can derive a differential equation for $r r^{*}$.

The function φ verifies the equations

$$
\begin{equation*}
\frac{\cos C_{\varphi}-I}{C_{\varphi}} \dot{\varphi}=-\Omega^{*} \dot{\Omega}, \quad \frac{\sin C_{\varphi}}{C_{\varphi}} \dot{\varphi}=r^{-1} C r^{*-1}, \tag{4}
\end{equation*}
$$

where $C_{\varphi} \dot{\varphi}=[\varphi, \dot{\varphi}]=\varphi \dot{\varphi}-\dot{\varphi} \varphi,\left(C_{\varphi}\right)^{2} \dot{\varphi} \equiv C_{\varphi}^{2} \dot{\varphi}=[\varphi,[\varphi, \dot{\varphi}]]$, and so on.
As in Theorem 1, φ is not unique. Remark that $r(\tau)=r_{1}(\tau)$ and $\varphi(\tau)=$ $\varphi_{1}(\tau)-k \tau I_{n}$, with k large enough and φ_{1} such that its eigenvalues are C^{1} functions of τ, with strictly positive derivatives.

Remark 1. If one considers Φ^{*} instead of Φ, then Q_{2} is replaced by Q_{2}^{*} and Q_{1} is replaced by P_{1}^{*}. Then, Theorem 2 gives

$$
Q_{2}^{*}(\tau)=r(\tau) \cos \varphi(\tau) \text { and } P_{2}^{*}(\tau)=r(\tau) \sin \varphi(\tau) \text {, }
$$

or

$$
Q_{2}(\tau)=\cos \varphi(\tau) r^{*}(\tau) \text { and } P_{2}(\tau)=\sin \varphi(\tau) r^{*}(\tau) .
$$

In this case the matrix $\varphi(\tau)$ is a generalization of the so-called Prüfer angle.

References

[1] J. Rezende, A theorem on some linear Hamiltonian systems, Differ. Equ. Dyn. Syst. 5 (1997), 163-173.
[2] J. Rezende, Time-dependent linear Hamiltonian systems and quantum mechanics, Lett. Math. Phys. 38 (1996), 117-127.
[3] J. Rezende, A polar representation and the Morse index theorem. Lett. Math. Phys. 50 (1999), 91-102.
[4] J. Rezende, The Sturm-Liouville problem and the polar representation theorem, pre-print (2002).

Grupo de Física-Matemática da Universidade de Lisboa, Av. Prof. Gama Pinto 2, 1649003 Lisboa, Portugal, and Departamento de Matemática, Faculdade de Ciências da Universidade de Lisboa

E-mail address: rezende@cii.fc.ul.pt
URL: http://gfm.cii.fc.ul.pt/Members/JR.pt_PT.html

[^0]: The Mathematical Physics Group is supported by the Portuguese Ministry for Science and Technology.

