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1. Introduction

The Portuguese Mathematical Society (SPM) published, in 2001, a set
of didactical puzzles called Puzzles com poliedros e números (Puzzles with
polyhedra and numbers) [2]. It is a set of paper models of eight puzzles
with polyhedra that everyone with age and knowledge to manipulate
them can construct even if the mathematical culture is poor.

For those that already have some mathematical knowledge, these puz-
zles are a source for many examples and exercises, that go from the ele-
mentary to complex ones, in combinatorics, group theory (including sym-
metry and permutation groups), programming, and so on. The object
of this work is to point out some possibilities by giving simple examples.
See also References [1] and [3].

2. Definitions of the puzzles using combinatorics

Consider, for example, a platonic polyhedron. Its faces are regular
polygons. Construct plates with the same shape and size as the polyhe-
dron faces. Near each side of these plates let us draw numbers 1, 2, . . . , n,
as it is shown in figures 1,2 and 3. Assume that in each plate all the num-
bers are distinct. Let j be the number of the plate sides: j = 3 in the
tetrahedron, octahedron and icosahedron cases; j = 4 in the cube case;
j = 5 in the dodecahedron case.

How many different plates it is possible to construct in this way? If ν is
the number of different plates the answer of this question is the following:

a) For j = 3 and n = 3, then ν = 2 (see figure 1).
b) For j = 3 and n = 4, then ν = 8 (see figure 2); 8 is precisely

the number of the octahedron faces. With these 8 plates we
make the octahedron puzzle.

c) For j = 3 and n = 5, then ν = 20; 20 is precisely the number
of the icosahedron faces. With these 20 plates we make the
icosahedron (1) puzzle.

The Mathematical Physics Group is supported by the Portuguese Ministry for
Science and Technology.
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d) For j = 3 and n = 6, then ν = 40; 40 is precisely the double
of the number of the icosahedron faces.

e) For j = 4 and n = 4, then ν = 6 (see figure 3); 6is precisely the
number of the cube faces. With these 6 plates we make the
cube puzzle.

f) For j = 5 and n = 5, then ν = 24; 24 is precisely the double
of the number of the dodecahedron faces.

The general formula is

ν = (j − 1)!

(
n

j

)
=

n!

(n− j)! j
.

From now on, we shall concentrate ourselves in the octahe-
dron case. With j = 3 and n = 4, we have 8 distinct plates (figure
2), that we use in order to do the octahedron puzzle. One says that a
solution of the puzzle is obtained if one has every plate over a face of the
octahedron in such a way that the two numbers near the same edge are
equal for every edge.

1 1

32

3 2

Figure 1.

3. The octahedron: notations, planar representations,
solutions

Figure 4 represents the octahedron centered at the origin. The set of
the edges is denoted E = {e1, e2, . . . , e12}. The letter F denotes the face
set.

Figures 5 and 6 represent two different octahedron planar representa-
tions where the edges are well identified.

Figure 7 has two different representations of the same solution of the
octahedron puzzle. The first one is a planar representation of the puz-
zle as it is done, in practice. The second one is more schematic and
shows that a puzzle solution associates to every edge a number of the set
{1, 2, 3, 4}.

In fact, to give a puzzle solution implies to give a function ε : E →
{1, 2, 3, 4} (the converse is not true). We shall say that this function ε
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is a solution of the puzzle. In the case of figure 7, ε is the following
function:

e1 7→ 4 e2 7→ 1 e3 7→ 2 e4 7→ 3
e5 7→ 2 e6 7→ 3 e7 7→ 4 e8 7→ 1
e9 7→ 3 e10 7→ 4 e11 7→ 1 e12 7→ 2

.
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4. The puzzles and the elementary group theory

4.1. Permutation groups. Let n ∈ N. The permutation group of
{1, 2, . . . , n}, Sn, is the set of the one-to-one functions σ : {1, 2, . . . , n} →
{1, 2, . . . , n}, with the composition of functions as operation. We shall
use the notation: σ1 ◦ σ2 ≡ σ1σ2. Here the identity is denoted σ0:
σ0(1) = 1, σ0(2) = 2, . . . , σ0(n) = n.

We shall write σ = (α1α2 · · ·αk) · · · (β1β2 · · · βl), if
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σ(α1) = α2, σ(α2) = α3, . . . , σ(αk) = α1, . . . ,
σ(β1) = β2, σ(β2) = β3, . . . , σ(βk) = β1

where α1, α2, . . . , αk, . . . , β1, β2, . . . , βl ∈ {1, 2, . . . , n}.
If γ ∈ {1, 2, . . . , n}� {α1, α2, . . . , αk, . . . , β1, β2, . . . , βl}, then σ(γ) =

γ.
In the octahedron case we are interested in the situation where n = 4.

In what follows a, b, c, d are different elements of {1, 2, 3, 4}. S4, a group
of order 24 (the group cardinal), contains, obviously, σ0, the 6 elements
of the (abcd) type, the 8 elements of the (abc) type, the 3 elements of the
(ab)(cd) type and the 6 elements of the (ab) type.
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4.2. The octahedron group. The group of the octahedron symmetries,
called the octahedron group, Ω, is the set of all isometries ω of R3, that
send vertices to vertices, which implies that they send edges to edges,
faces to faces. We shall denote: ω1 ◦ ω2 ≡ ω1ω2. If ω ∈ Ω, then ω
induces one-to-one functions F −→ F , E −→ E, that, we shall denote,
when no confusion is possible, by the same letter ω. Remark that not all
one-to-one functions F −→ F , E −→ E are in Ω.

An element of Ω is, for example, the central symmetry ω(x, y, z) =
−(x, y, z), that induces the function ω : E −→ E

ω(e1) = e11 ω(e2) = e12 ω(e3) = e9 ω(e4) = e10

ω(e5) = e7 ω(e6) = e8 ω(e7) = e5 ω(e8) = e6

ω(e9) = e3 ω(e10) = e4 ω(e11) = e1 ω(e12) = e2

.

The central symmetry has determinant −1. The symmetries with de-
terminant 1 (Ω+), can be seen like this: one transports a chosen face in
such a way that it goes to one of the eight faces of the octahedron; as
one has three possibilities of making them coincide (they are equilateral
triangles), there are 24 (3× 8) symmetries with determinant 1. Figure 8
shows one of these symmetries. In this case the function ω : E → E, is
the following:

ω(e1) = e4 ω(e2) = e7 ω(e3) = e12 ω(e4) = e8

ω(e5) = e3 ω(e6) = e11 ω(e7) = e9 ω(e8) = e1

ω(e9) = e2 ω(e10) = e6 ω(e11) = e10 ω(e12) = e5

.

The advantage of describing in this way the symmetries of Ω+

is that it can be easily adapted to other polyhedra, and used in
their computation in a computer program.

Another way of counting the symmetries of Ω+ is the following: the
identity (1); the rotations of 90◦, 180◦ and 270◦ around the three axes
defined by opposite vertices (9); the rotations of 180◦ around the six axes
defined by the centers of opposite edges (6); the rotations of 120◦ and
240◦ around the four axes defined by the centers of opposite faces (8).

The symmetries with determinant −1 (Ω−) are the compositions of
the symmetries of Ω+ with the central symmetry. The cardinal of Ω, the
order of Ω, is, therefore, 48.

Let us see two examples:
a) Consider, in the figures 9 and 10, the rotations of 0◦, 90◦, 180◦ and

270◦ around the z-axis. They form a subgroup of Ω+ of order four. The
action of these rotations on the octahedron faces, sends every green face,
by order of succession, to the place of all other green faces and every
magenta face, by order of succession, to the place of all other magenta
faces. The set of the green faces and the set of the magenta faces are the
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Figure 8.

orbits of this action (see figure 10). Hence, there are two orbits, each one
of them with four elements. We say that the action of this subgroup is
of the (1, 2× 4) type. The first component, the 1, is the determinant of
the generator.

b) Consider, in figures 9 and 11, the rotations of 0◦, 120◦ and 240◦

around the w-axis. They form a subgroup of Ω+ of order three. The
action of these rotations on the octahedron faces keeps the green face
fixed, as well the yellow one (which is the green face opposite), and sends
every blue face, by order of succession, to the place of all other blue faces
and every magenta face, by order of succession, to the place of all other
magenta faces. The set with the green face, the set with the yellow face,



8 JORGE REZENDE

w
v

z

x
y

Figure 9.

the set of the blue faces and the set of the magenta faces are the orbits
of this action (see figure 11). Therefore, there are four orbits, two with
three elements each, and two with only one element each. We say that
the action of this subgroup is of the (1, 2 × 1 + 2 × 3) type. The first
component, the 1, is the determinant of the generator.

4.3. The plate group. The octahedron plate group is S±4 ≡ {−1, 1} ×
S4. If (δ1, σ1), (δ2, σ2) ∈ S±4 , then (δ1, σ1)(δ2, σ2) = (δ1δ2, σ1σ2). This
group acts on the puzzle plates in the way that figure 12 describes, with
s1 = (1, σ), s2 = (−1, σ), a1 = σ(a), b1 = σ(b), c1 = σ(c).

Let us look at two examples:
a) If s = (1, (1234)), see figure 13.
In this case s ≡ σ = (1234), and A1 = σ(A0), A2 = σ(A1), A3 = σ(A2),

A0 = σ(A3), B1 = σ(B0), B2 = σ(B1), B3 = σ(B2), B0 = σ(B3).
The sets {A0, A1, A2, A3}, {B0, B1, B2, B3}, are the action orbits of the
subgroup, of order four, generated by s ≡ σ = (1234), on the plate set.
We say that the action of the subgroup generated by s is of the (1, 2× 4)
type. The first component, the 1, is the first component of s.

b If s = (1, (123)), see figure 14.
In this case s ≡ σ = (123), and A = σ(A), B = σ(B), C1 = σ(C0),

C2 = σ(C1), C0 = σ(C2), D1 = σ(D0), D2 = σ(D1), D0 = σ(D2). The
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sets {A}, {B}, {C0, C1, C2}, {D0, D1, D2}, are the action orbits of the
subgroup, of order three, generated by s ≡ σ = (123), on the plate
set. We say that the action of the subgroup generated by s is of the
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(1, 2×1+2×3) type. The first component, the 1, is the first component
of s.
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5. Solutions

As we have already seen, to a puzzle solution corresponds a function
ε : E → {1, 2, 3, 4}. We shall now study in more detail the octahedron
puzzle solutions.

5.1. Natural solutions. Consider ε1, ε2 : E → {1, 2, 3, 4} two solutions
of the octahedron puzzle. One says that they represent the same natural
solution, if there is ω : E → E, ω ∈ Ω+, such that

ε1 ◦ ω = ε2.

This equation involving ε1 and ε2 defines an equivalence relation, and
a natural solution is an equivalence class of this relation. Remark that if
ε1 = ε2, then ω is the identity.

In practice, we do not distinguish two representatives of the same
natural solution, because there are no Cartesian axes associated to the
polyhedron as we see in figure 4.

Figure 15 shows two solutions that, although they are not equal, rep-
resent the same natural solution. The octahedron puzzle has sixteen
different natural solutions.
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5.2. The solution group. The group S4 × Ω is defined with the fol-
lowing product: if (σ1, ω1), (σ2, ω2) ∈ S4 × Ω, then (σ1, ω1)(σ2, ω2) =
(σ1σ2, ω2ω1).

Let ε : E → {1, 2, 3, 4} be a puzzle solution. The group of this solution,
Gε, is the S4 × Ω subgroup, such that (σ, ω) ∈ Gε if

σ ◦ ε ◦ ω = ε,

or, equivalently,

ε ◦ ω = σ−1 ◦ ε.

This relation implies that ω order equals σ order, which means that
ωk is the identity if and only if σk = σ0. The generalization of this
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property can be seen in [3]. In the two following examples we shall look
for solutions with groups which have prescribed cyclic subgroups.

a) Figure 16 shows the different possibilities when ω is a rotations of
90◦ around the z-axis (figure 9) and σ = (1234). The equivalence class A
of figure 13 must be either over all the green faces or over all the magenta
faces of figure 10. If A is over the green faces, then B is over the magenta
faces. If A is over the magenta faces, then B is over the green faces.

11 432

1

43
1432

1 2
1 432

3214
1

432

1 432

1

4

2

32
1432

1

43

1432

1 2
14

1

432

1

1

1

4

2

1

2

4
3

2

1

4

3
2

1

3

2

1

1

2

2

1

A

B

A

B

A

B

A

B

Figure 16.

b) Figure 17 shows the different possibilities when ω is the rotation of
120◦ around the w-axis (figure 9) and σ = (123). We put the plate A,
of figure 14, over the green face. Of course that B, of figure 14, must be
over the yellow face. The equivalence class C of figure 14 must be either
over all the blue faces or over all the magenta faces. If C is over the blue
faces, then D is over the magenta faces. If C is over the magenta faces,
then D is over the blue faces.

5.3. Equivalent solutions. Consider ε1, ε2 : E → {1, 2, 3, 4} two solu-
tions of the octahedron puzzle. We say that they are equivalent, if there
are ω ∈ Ω, σ ∈ S4 such that
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σ ◦ ε1 ◦ ω = ε2.

As the name says, this relation between ε1 and ε2 is an equivalence
relation. Two representatives of the same natural solution are, of course,
equivalent. The octahedron puzzle has three equivalence classes that one
can identify looking at the vertices. Take a solution, a vertex and note
the numbers in the four edges that meet in this vertex. One can have two
different cases: a) the numbers are all different, or b) there is one number
that is repeated. The vertices of the b) case are marked in figures 16 and
17 with a circle. In the solution either there are 0 vertices of the b) type,
or there are 4 vertices of the b) type, or there are 6 vertices of the b)
type. Those are the three equivalence classes, that, by the way, one can
see in figures 16 and 17.
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If a solution has 0 vertices of b) type, one says that it is one of the
canonical natural solutions (there are two). Its group has order 24 and
it helps to identify Ω+ with S4. Look at figure 18.
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The four rotations around the z-axis, that belong to Ω, can easily
be associated with the four elements of the group generated by (1234).
The three rotations around the w-axis, that belong to Ω, can easily be
associated with the three elements of the group generated by (123). The
two rotations around the v-axis, that belong to Ω, can easily be associated
with the two elements of the group generated by (23). And so on.

If a solution has 4 vertices of b) type, its group contains also (σ0, ω)
where ω is the reflection (determinant−1) that uses as mirror the equator
plane, the plane xy. Its group has order 8. There are 48/8 such natural
solutions, being 48 the order of the plate group.

Remark that these two first are the maximal equivalence classes of the
octahedron puzzle. The last one is not maximal.

If a solution has 6 vertices of b) type, its group contains also three
elements ((ab), ω), where ω is a rotation of 180◦ around an axis which is
orthogonal to the w-axis, and contains the centers of opposite edges. Its
group has order 6. There are 48/6 such natural solutions.
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Hence, the number of natural solutions is 16:

16 = 48

(
1

24
+

1

8
+

1

6

)
.

For more details see reference [3].
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