
POLYHEDRON PUZZLES AND GROUPS

JORGE REZENDE

1. Introduction

Consider a polyhedron. For example, a platonic, an archimedean, or
a dual of an archimedean polyhedron. Construct flat polygonal plates in
the same number, shape and size as the faces of the referred polyhedron.
Adjacent to each side of each plate draw a number like it is shown in
figures 1-10. Some of the plates, or all, can have numbers on both faces.
We call these plates, two-faced plates. In this article, the two-faced plates
have the same number adjacent to the same side. Figure 4 shows twenty
faces of triangular two-faced plates and their reverse faces are represented
in figure 5. Figure 7 shows twelve faces of pentagonal two-faced plates
and their reverse faces are represented in figure 8.

Now the game is to put the plates over the polyhedron faces in such a
way that the two numbers near each polyhedron edge are equal. If there
is at least one solution for this puzzle one says that we have a polyhedron
puzzle with numbers.

In this article we begin in Section 2 by giving some examples of puz-
zles. In Section 3 we describe the tetrahedron, the octahedron and the
icosahedron symmetry groups. In Section 4 we recall some definitions on
puzzle solutions and their relation with permutation groups. In Section
5 we show how to define puzzles using group theory.

This is the first of a series of two articles. In the next one [8], we
suggest some simple mathematical activities using polyhedron puzzles.

2. Definitions using combinatorics

2.1. Platonic and archimedean polyhedra. From now on, assume
that the numbers belong to the set {1, 2, . . . , n}, and that all the numbers
are used.

If we have plate faces which have the shape of a regular polygon with
j sides, one can ask how many possible ways ν are there to draw the
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Figure 1.

numbers 1, 2, . . . , n, without repeating them on each plate face. The
answer is

a) For j = 3 (equilateral triangle) and n = 3, then ν = 2 (see figure
1).

b) For j = 3 and n = 4, then ν = 8 (see figure 2); 8 is precisely the
number of the octahedron faces. With these 8 plates we make the
octahedron puzzle (≡ the octahedron (1) puzzle).
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c) For j = 3 and n = 5, then ν = 20 (see figure 3); 20 is precisely
the number of the icosahedron faces. With these 20 plates we make
the icosahedron (1) puzzle.

d) For j = 3 and n = 6, then ν = 40 (see figures 4 and 5); 40 is
precisely the double of the number of the icosahedron faces.
Construct different plates with the numbers written on both faces. This
gives 20 plates. We call the related puzzle, the icosahedron second puzzle
(or icosahedron (2)).

e) Consider again j = 3 and n = 6. Construct different plates with the
numbers written only on one face, but in such a way that the numbers
grow if we read them, beginning with the minimum, counter clock-wise.
This gives 20 plates (see figure 4). We call the related puzzle, the icosa-
hedron third puzzle (or icosahedron (3)).
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f) For j = 4 (square) and n = 4, then ν = 6 (see figure 6); 6 is
precisely the number of the cube faces. With these 6 plates we
make the cube puzzle (≡ the cube (1) puzzle).

g) For j = 5 (regular pentagon) and n = 5, then ν = 24 (see fig-
ures 7 and 8); 24 is precisely the double of the number of the
dodecahedron faces.

Construct different plates with the numbers written on both faces.
This gives 12 plates. We call the related puzzle, the dodecahedron first
puzzle (or dodecahedron (1)).

h) Let again j = 5 and n = 5. Construct different plates with the
numbers written only on one face, but in such a way that the numbers
read counter clock-wise, abcd5, are such that abcd form an even permu-
tation. This gives 12 plates (see figure 9). We call the related puzzle, the
dodecahedron second puzzle (or dodecahedron (2)).
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i) Consider n = 4. With j = 3, one has ν = 8 (see figure 2). With
j = 4, one has ν = 6 (see figure 6). Notice that 8 is precisely the number
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of the cuboctahedron triangular faces and 6 is precisely the number of
its square faces. This is an example of an interesting puzzle using an
archimedean polyhedron. We call it the cuboctahedron puzzle (≡ the
cuboctahedron (1) puzzle).

The general formula for ν is

ν = (j − 1)!

(
n

j

)
=

n!

(n− j)!j
.

2.2. More puzzles. Take now a deltoidal icositetrahedron. It has 24
deltoidal faces. If we have 24 plates which have the deltoidal shape the
number of possible different ways to draw the numbers 1, 2, 3, 4, without
repeating them on each plate is precisely 24. This an example of an inter-
esting puzzle using a dual of an archimedean polyhedron (see reference
[6]).

Consider again the cube. It has 6 faces that are squares. The number of
possible different ways to draw the numbers 1, 2, 3, 4, with two repetitions
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of the form aabb (the numbers are read counter clock-wise) on each square
plate is precisely 6. This gives the cube (2) puzzle.

Consider again the icosahedron. It has 20 faces that are equilateral
triangles. The number of possible different ways to draw the numbers
1, 2, 3, 4, 5, with one repetition on each triangular plate is precisely 20.
This gives the icosahedron (4) puzzle (see reference [7]).

These are simple examples of polyhedron puzzles with numbers, which
are enough in order to understand the following sections. There are,
obviously, others as we shall see. For more examples see reference [2],
which is a development of reference [1]. Reference [3] is a collection of
some of these puzzles paper models.

3. Polyhedron symmetries

Consider a polyhedron in R3. From now on V denotes the set of the
polyhedron vertices, E denotes the set of the polyhedron edges and F
denotes the set of the polyhedron faces.
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Figure 9.

The group of the polyhedron symmetries, Ω, called the polyhedron
group, is the set of all isometries ω of R3, that send vertices to vertices,
which implies that they send edges to edges, faces to faces. Every sym-
metry ω ∈ Ω induces three bijections, that we shall also denote by ω,
whenever there is no confusion possible: ω : V → V , ω : E → E and
ω : F → F . Denote also by Ω ≡ {ω : V → V } ≡ {ω : E → E} ≡
{ω : F → F}, the three sets of these functions. One can say that each
one of these three sets Ω is the set of the polyhedron symmetries. Notice
that not all one-to-one functions F −→ F , E −→ E, V −→ V are in Ω.
With the composition of functions each one of these three sets Ω forms
a group that is isomorphic to the group of the polyhedron symmetries.
If ω1, ω2 ∈ Ω, we shall denote ω1ω2 ≡ ω1 ◦ ω2.

When no confusion is possible, ω ∈ Ω represents also the group iso-
morphism ω : Ω → Ω, ω(ω1) = ω ω1ω

−1, for every ω1 ∈ Ω. Note that
ω1 and ω(ω1) have the same order. Look at the octahedron in figure 18.
If ω is a counter clock-wise rotation of 90◦ around the z-axis, and ω1 is
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a counter clock-wise rotation of 90◦ around the x-axis, then ω(ω1) is a
counter clock-wise rotation of 90◦ around the y-axis. In simple words,
ω transports x over y. Here, a counter clock-wise rotation around the
z-axis, for example, means that we look from the positive z-semiaxis.

If Ω1 is a subgroup of Ω, then Ω1 acts naturally on the face set, F : for
ω ∈ Ω1 and ϕ ∈ F , one defines the action ω ϕ = ω(ϕ).

In the following we only consider polyhedra centered at the origin, Ω+

denotes the subgroup of Ω of the symmetries with determinant 1 and Ω−

denotes the subgroup of Ω of the symmetries with determinant −1.

3.1. The tetrahedron group. Consider the tetrahedron (see figures 11
and 12) and its group, Ω.

An element of Ω is, for example, the function ω(x, y, z) = (−x, y, z),
that induces the function ω : E −→ E

ω(e1) = e1 ω(e2) = e3 ω(e3) = e2

ω(e4) = e5 ω(e5) = e4 ω(e6) = e6.
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This symmetry has determinant−1 and is one of the twelve elements of
Ω with determinant −1. They reverse the orientation. The tetrahedron
has no central symmetry.
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The symmetries with determinant 1 (Ω+), can be seen like this: one
transports a chosen face in such a way that it goes to one of the four
tetrahedron faces; as one has three possibilities of making them coincide
(they are equilateral triangles), there are 12 (3 × 4) symmetries with
determinant 1. Figure 13 shows one of these symmetries. In this case
the function ω : E → E, is the following:

ω(e1) = e4 ω(e2) = e5 ω(e3) = e1

ω(e4) = e3 ω(e5) = e6 ω(e6) = e2.

The advantage of describing in this way the symmetries of Ω+

is that it can be easily adapted to other polyhedra, and used in
their computation in a computer program.

Another way of counting the symmetries de Ω+ is the following: the
identity (1); the rotations of 180◦ around the three axes defined by the
centers of opposite edges (3); the rotations of 120◦ and 240◦ around the
four axes defined by each vertex and the center of the opposite face (8).

The symmetries with determinant −1 (Ω−) are the compositions of the
symmetries de Ω+ with a symmetry with determinant −1. The cardinal
of Ω, the order of Ω, is, therefore, 24.

Let us see two examples:
a) Consider, in the figures 11 and 14, the rotations of 0◦ and 180◦

around the z-axis. They form a subgroup of Ω+ of order two. The action
of these rotations on the tetrahedron faces, sends every green face to the
place of the other green face and every blue face to the place of the other
blue face. The set of the green faces and the set of the blue faces are
the orbits of this action (see figures 14 and 15). Hence, there are two
orbits, each one of them with two elements. We say that the action of
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this subgroup is of the (1, 2× 2) type. The first component, the 1, is the
determinant of the generator.

b) Consider, in the figures 11 and 16, the rotations of 0◦, 120◦ and
240◦ around the w-axis. They form a subgroup of Ω+ of order three.
The action of these rotations on the tetrahedron faces keeps the green
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face fixed and sends every blue face, by order of succession, to the place
of all other blue faces. The set with the green face and the set of the blue
faces are the orbits of this action (see figures 16 and 17). Therefore, there
are two orbits, one with three elements , and one with only one element.
We say that the action of this subgroup is of the (1, 1× 1 + 1× 3) type.
The first component, the 1, is the determinant of the generator.

3.2. The octahedron (cube) group. Consider the octahedron (see
figures 18 and 19) and its group, Ω. Everything that we say here about
the octahedron group can be translated to the cube group interchanging
faces with vertices. In other words the group is the same.

An element of Ω is, for example, the central symmetry ω(x, y, z) =
−(x, y, z), that induces the function ω : E −→ E

ω(e1) = e11 ω(e2) = e12 ω(e3) = e9 ω(e4) = e10

ω(e5) = e7 ω(e6) = e8 ω(e7) = e5 ω(e8) = e6

ω(e9) = e3 ω(e10) = e4 ω(e11) = e1 ω(e12) = e2.

The central symmetry has determinant −1. The symmetries with de-
terminant 1 (Ω+) can be seen like this: one transports a chosen face in
such a way that it goes to one of the eight faces of the octahedron; as
one has three possibilities of making them coincide (they are equilateral
triangles), there are 24 (3 × 8) symmetries with determinant 1. Figure
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20 shows one of these symmetries. In this case the function ω : E → E,
is the following:
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ω(e1) = e4 ω(e2) = e7 ω(e3) = e12 ω(e4) = e8

ω(e5) = e3 ω(e6) = e11 ω(e7) = e9 ω(e8) = e1

ω(e9) = e2 ω(e10) = e6 ω(e11) = e10 ω(e12) = e5.

Note once more that the advantage of describing in this way the sym-
metries of Ω+ is that it can be easily adapted to other polyhedra, and
used in their computation in a computer program.

Another way of counting the symmetries de Ω+ is the following: the
identity (1); the rotations of 90◦, 180◦ and 270◦ around the three axes
defined by opposite vertices (9); the rotations of 180◦ around the six axes
defined by the centers of opposite edges (6); the rotations of 120◦ and
240◦ around the four axes defined by the centers of opposite faces (8).

The symmetries with determinant −1 (Ω−) are the compositions of
the symmetries de Ω+ with the central symmetry. The cardinal of Ω, the
order of Ω, is, therefore, 48.

In reference [5] one can see two examples of such symmetries and a
detailed description of the octahedron puzzle case.

3.3. The icosahedron (dodecahedron) group. Consider the icosahe-
dron (see figure 21) and its group, Ω. Everything that we say here about
the icosahedron group can be translated to the dodecahedron group in-
terchanging faces with vertices. In other words the group is the same.
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An element of Ω is, for example, the central symmetry ω(x, y, z) =
−(x, y, z), that induces the function ω : E −→ E

ω(e1) = e16 ω(e2) = e17 ω(e3) = e18 ω(e4) = e19 ω(e5) = e20

ω(e6) = e21 ω(e7) = e22 ω(e8) = e23 ω(e9) = e24 ω(e10) = e25

ω(e11) = e26 ω(e12) = e27 ω(e13) = e28 ω(e14) = e29 ω(e15) = e30

ω(e16) = e1 ω(e17) = e2 ω(e18) = e3 ω(e19) = e4 ω(e20) = e5

ω(e21) = e6 ω(e22) = e7 ω(e23) = e8 ω(e24) = e9 ω(e25) = e10

ω(e26) = e11 ω(e27) = e12 ω(e28) = e13 ω(e29) = e14 ω(e30) = e15.

The central symmetry has determinant −1. The symmetries with de-
terminant 1 (Ω+) can be seen like this: one transports a chosen face in
such a way that it goes to one of the twenty faces of the icosahedron; as
one has three possibilities of making them coincide (they are equilateral
triangles), there are 60 (3× 20) symmetries with determinant 1. Figure
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22 shows one of these symmetries. In this case the function ω : E → E,
is the following:

ω(e1) = e5 ω(e2) = e8 ω(e3) = e2 ω(e4) = e10 ω(e5) = e28

ω(e6) = e3 ω(e7) = e14 ω(e8) = e11 ω(e9) = e1 ω(e10) = e27

ω(e11) = e6 ω(e12) = e7 ω(e13) = e30 ω(e14) = e19 ω(e15) = e9

ω(e16) = e20 ω(e17) = e23 ω(e18) = e17 ω(e19) = e25 ω(e20) = e13

ω(e21) = e18 ω(e22) = e29 ω(e23) = e26 ω(e24) = e16 ω(e25) = e12

ω(e26) = e21 ω(e27) = e22 ω(e28) = e15 ω(e29) = e4 ω(e30) = e24.

Another way of counting the symmetries de Ω+ is the following: the
identity (1); the rotations of 72◦, 144◦ , 216◦ and 288◦ around the six
axes defined by opposite vertices (24); the rotations of 180◦ around the
fifteen axes defined by the centers of opposite edges (15); the rotations
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of 120◦ and 240◦ around the ten axes defined by the centers of opposite
faces (20).

The symmetries with determinant −1 (Ω−) are the compositions of
the symmetries de Ω+ with the central symmetry. The cardinal of Ω, the
order of Ω, is, therefore, 120.

4. Permutation groups and puzzle solutions

Consider a puzzle with numbers 1, 2, . . . , n drawn on the plates. From
now on P denotes the set of its plates which have numbers drawn, and call
it the plate set. If no confusion is possible, P will also denote the puzzle
itself. Sn denotes the group of all permutations of {1, 2, . . . , n}; σ ∈ Sn

means that σ is a one-to-one function σ : {1, 2, . . . , n} → {1, 2, . . . , n}.
The identity is σ0: σ0(1) = 1, σ0(2) = 2, . . . , σ0(n) = n. The alternating
group, the Sn subgroup of the even permutations, is denoted by An. If
σ1, σ2 ∈ Sn, we shall denote σ1σ2 ≡ σ1 ◦ σ2.
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We shall write σ = (α1α2 · · ·αk) · · · (β1β2 · · · βl), if

σ(α1) = α2, σ(α2) = α3, . . . , σ(αk) = α1,

. . . ,

σ(β1) = β2, σ(β2) = β3, . . . , σ(βk) = β1,

where α1, α2, . . . , αk, . . . , β1, β2, . . . , βl ∈ {1, 2, . . . , n}.
If γ ∈ {1, 2, . . . , n} \ {α1, α2, . . . , αk, . . . , β1, β2, . . . , βl}, then σ(γ) = γ.
The permutation (α1α2 · · ·αk) is called a cyclic permutation, or a cycle

(in this case a k-cycle); k is the length of the cyclic permutation.
We shall use also the group {−1, 1} × Sn denoted by S±

n . If δ1, δ2 ∈
{−1, 1} and σ1, σ2 ∈ Sn, then (δ1, σ1)(δ2, σ2) = (δ1δ2, σ1σ2). We denote
S+

n = {1} × Sn ≡ Sn, (1, σ) ≡ σ, (−1, σ) ≡ σ−.
As before E denotes the set of the polyhedron edges and F denotes the

set of the polyhedron faces. A solution of the puzzle defines a function
ε : E → {1, 2, . . . , n}. Denote E the set of these functions. One can say
that E is the set of the puzzle solutions.

We shall also consider the group Sn×Ω. If (σ1, ω1), (σ2, ω2) ∈ Sn×Ω,
one defines the product (σ1, ω1)(σ2, ω2) = (σ1σ2, ω1ω2). We use here a
different definition from the one in reference [4].

4.1. The plate group. Some Sn subgroups act naturally on P . Let
π ∈ P and σ ∈ Sn. Assume that a, b, c, . . . are drawn on π, by this order.
Then σπ is a plate where the numbers σ(a) = a1, σ(b) = b1, σ(c) = c1, . . .
are drawn replacing a, b, c, . . . (see figure 23).

s2
b

1
c

1

a
1

bc

a

s1

a
1

b
1

c
1c b

a

Figure 23.

Let s ∈ S±
n and π ∈ P . If s ≡ s1 = (1, σ) ≡ σ, then sπ = σπ. If

s ≡ s2 = (−1, σ) ≡ σ−, then sπ is a reflection of σπ. In this last case, if
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the numbers a, b, c, . . . are drawn on π, by this order, then sπ is a plate
where the numbers . . . , σ(c) = c1, σ(b) = b1, σ(a) = a1 are drawn by this
order (see figure 23).

The plate group, GP , is the greatest subgroup of S±
n that acts on P .

If s ∈ S±
n and sπ ∈ P , for every π ∈ P , then s ∈ GP .

4.2. The solution group. Let ε : E → {1, 2, . . . , n} be a solution of
the puzzle. The group of this solution, Gε, is a subgroup of Sn × Ω;
(σ, ω) ∈ Gε if and only if

σ ◦ ε = ε ◦ ω.

Denote by Ωε the following subgroup of Ω: ω ∈ Ωε if and only if
there exists σ ∈ Sn such that (σ, ω) ∈ Gε. Notice that if ω ∈ Ωε there
exists only one σ ∈ Sn such that (σ, ω) ∈ Gε. From this one concludes
that ω 7→ (σ, ω) defines an isomorphism between Ωε and Gε and that
(det ω, σ) ∈ GP . This defines gε : Ωε → GP , gε(ω) = (det ω, σ), which is
an homomorphism of groups.

For a lot of puzzles (det ω, σ) defines completely ω. It is the case
of all puzzles considered in this article. Hence, when (det ω, σ) defines
completely ω, gε establishes an isomorphism between Ωε and gε(Ωε) ⊂
GP . Denote by GPε ≡ gε(Ωε). Finally, Gε and GPε are isomorphic. We
can identify (σ, ω) with (det ω, σ), and Gε with the subgroup GPε of GP .

4.3. Equivalent solutions. Let ε1, ε2 : E → {1, 2, . . . , n} be solutions
of the puzzle. One says that these solutions are equivalent, ε1 ≈ ε2, if
there are ω ∈ Ω and σ ∈ Sn such that

σ ◦ ε1 = ε2 ◦ ω.

Notice that (det ω, σ) ∈ GP .
If σ = σ0 and det ω = 1, what distinguishes the solutions ε1 and ε2 is

only a rotational symmetry. In this case,

ε1 = ε2 ◦ ω

expresses another equivalence relation, ε1 ∼ ε2. When we make a puzzle,
in practice, we do not recognize the difference between ε1 and ε2. We
shall say that they represent the same natural solution, an equivalence
class of the relation ∼.

Figure 24 shows two solutions of the octahedron puzzle that represent
the same natural solution.

Let ε, ε1, ε2 ∈ E . As ε1 ∼ ε2 and ε1 ≈ ε imply ε2 ≈ ε, one can say that
the natural solution represented by ε1 is equivalent to ε.

This equation involving ε1 and ε2 defines an equivalence relation, and
a natural solution is an equivalence class of this relation. Notice that if
ε1 = ε2, then ω1 is the identity.
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4.4. Maximal solutions. Maximal puzzles. If ε1 and ε2 are two
solutions of a puzzle, we define the relation ε1 � ε2 when Gε1 ⊃ Gε2 , or
equivalently, when Ωε1 ⊃ Ωε2 . One says that a solution ε of a puzzle is
maximal if it is maximal for this partial order relation. Every polyhedron
puzzle P has a set of Ω subgroups {Ω1, Ω2, · · · , Ωk} which are the groups
of its maximal solutions. We call it the set of maximal groups of P .

If P1 and P2 are two puzzles of the same polyhedron, we define the
relation P1 � P2 when every maximal group of P2 is contained in a
maximal group of P1. One says that a puzzle P is maximal if it is
maximal for this partial order relation.

4.5. Equivalent puzzles. Consider two puzzles and their plate sets, P1

and P2. One says that they are equivalent if there exists s ∈ S±
n such

that the function π 7→ sπ is one-to-one between P1 and P2. We denote
P2 as sP1.

As a first example take the dodecahedron (2) puzzle and its plate set
P (figure 9). If s = (1, σ) where σ is a transposition, then sP is the
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plate set of an equivalent puzzle (figure 10). Note that P 6= sP . If ε is
a solution of the dodecahedron (2) puzzle, then σ ◦ ε is a solution of the
other puzzle.

Another example concerns the icosahedron (3) puzzle and its plate set
P (figure 4). If s = (−1, σ0), where σ0 is the identity, then sP is the
plate set of an equivalent puzzle (figure 5). As before P 6= sP and if ε is
a solution of the icosahedron (3) puzzle, then ε◦ω, where ω is the central
symmetry, is a solution of the other puzzle.

In practice, equivalent puzzles are viewed as the same puzzle.

4.6. Duality. Dual puzzles. If one has a solution of any puzzle P over
a polyhedron, one can construct the dual of the solution over the poly-
hedron dual and, therefore, have another puzzle P ′. Equivalent solutions
ε1 and ε2 of the puzzle P , correspond to equivalent puzzles P ′

1 and P ′
2,

as if σ ◦ ε1 = ε2 ◦ ω, then P ′
2 = (det ω, σ)P ′

1.
Consider a puzzle P over a polyhedron and its maximal solutions

ε1, ε2, . . . , εk and construct the puzzles P ′ ≡ P ′
1, P

′
2, . . . , P

′
k, over the

polyhedron dual, that correspond to that solutions. Assume that these
puzzles are equivalent. Use the same procedure with P ′ in order to pro-
duce P ′′

1 , P ′′
2 , . . . , P ′′

j and assume that these and P are equivalent puzzles.
Then we say that P and P ′ are dual puzzles.

The icosahedron (1) and the dodecahedron (2) puzzles are dual. The
cuboctahedron (1) puzzle and the rhombic dodecahedron puzzle of ref-
erence [6] are also dual.

5. From groups to polyhedron puzzles

Let S be a subgroup of S±
n and h1, h2 : Ω → S be two isomorphisms.

One says that h1 and h2 represent the same natural isomorphism if
there exists ω ∈ Ω+ such that

h1 = h2 ◦ ω.

Two natural isomorphisms, represented by h1 and h2 are said to be
equivalent if there exists s ∈ S and ω ∈ Ω, such that

s ◦ h1 = h2 ◦ ω.

Consider a puzzle solution ε and its group GPε ≡ Ωε. Take ω1, ω2 ∈ Ωε.
If ω1 is a rotation of order k, and ω2 is a rotation of order j, then ω1

transforms ω2 in another rotation of order j, ω3, which is ω1ω2ω
−1
1 ≡

ω1(ω2).
The isomorphism between Ωε and GPε suggests that if one wants to

translate the isometries into elements of S±
n the function must be such

that if ω1 7→ s1, ω2 7→ s2, then ω3 ≡ ω1(ω2) 7→ s1s2s
−1
1 .
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Note that if s1 = (δ1, σ1), s2 = (δ2, σ2), where

σ2 = (α1α2 · · ·αl) · · · ,

then ω3 ≡ ω1(ω2) 7−→ s3 = (δ2, σ3), with

σ3 = (σ1(α1) σ1(α2) · · ·σ1(αl)) · · · .

We assign to every semiaxis of order k (≡ ω) a k-cycle σ = (α1α2 · · ·αk),
so that to the counter clock-wise rotation of 2π

k
, ω, corresponds the per-

mutation σ. This association must be coherent in the sense that it gen-
erates a group isomorphism.

In the cases we are interested in (the tetrahedron, the octahedron and
the icosahedron), it is enough to make the association to two neighbor
semiaxes. In these cases the semiaxes are defined by the vertices, the
edges (the middle point of each edge), the faces (the center of each face),
and have their origin at the polyhedron center.

If we assign to ω and ω1 (two neighbor semiaxes) the cycles σ and σ1,
then to the semiaxis ω(ω1) = ωω1ω

−1 we must assign σσ1σ
−1. When

σ1 = (α1α2 · · ·αk), then σσ1σ
−1 = (σ(α1)σ(α2) · · ·σ(αk)).

In this section we use group theory in order to find puzzles, for a given
polyhedron, such as, for example, maximal puzzles. These are important
examples, but others could be given.

To avoid ambiguities, in the puzzles we give in the following, all the
edges have numbers, and we use the numbers 1, 2, 3, 4 in the tetrahedron
and octahedron (cube) groups cases, and the numbers 1, 2, 3, 4, 5 in the
icosahedron (dodecahedron) group case.

5.1. The tetrahedron group. In the tetrahedron a vertex represents
a semiaxis of order 3. Associate to a given vertex the permutation (123).
It is not difficult to see that the only natural possibility is the one rep-
resented in the l.h.s. in figure 25. Something similar happens with per-
mutation (132) and the result is in the r.h.s. of the same figure. Hence,
there are two natural isomorphisms for the tetrahedron group (see figure
25) which are equivalent. This equivalence can be done, for example, by
any transposition and an element of Ω+. In this case

S = ({1} × A4) ∪ ({−1} × (S4 \ A4)).

5.1.1. Cube puzzles. Figure 26 shows the two solutions of the cube (2)
puzzle, which represent even better than figure 25 the tetrahedron group.
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5.1.2. Octahedron puzzles. Figure 27 represents solutions of two equiv-
alent puzzles, that we call the octahedron (2) puzzle. These solutions
correspond to the natural tetrahedron isomorphisms. Note that

S = ({1} × A4) ∪ ({−1} × (S4 \ A4))

is precisely the plate group.

5.1.3. Cuboctahedron puzzles. Figure 28 represents solutions of two equiv-
alent puzzles, that we call the cuboctahedron (3) puzzle. These solutions
correspond to the natural tetrahedron isomorphisms. Note that, as in
the octahedron case, S is precisely the plate group.

5.2. The octahedron (cube) group. There is only one natural iso-
morphism for the octahedron (cube) group (see figure 29). In this case

S = {−1, 1} × S4.



POLYHEDRON PUZZLES AND GROUPS 25

3 1

2

3 1

1

22

3
4 4

4
4 4

4

2 2

3

31

1
1 3

2

Figure 27.

2

2

2

1

3

4

3

4

3

3

2

1

4
4

4

2

1

1

3

2

3

1

1

4
3

3

1

3

4

1

2

1

4

4

1

4

2
3

1

3

2

3

2

1

4

2

4

2

Figure 28.

5.2.1. Cube and octahedron puzzles. If one looks for puzzles with solu-
tions that have as their group Ω+ ≡ S4, we find the cube (1) and the
octahedron (1) puzzles. Those solutions are maximal. This means that
there are no puzzles where S = {−1, 1} × S4 is a solution group.

5.2.2. Cuboctahedron puzzles. The cuboctahedron (1) puzzle has only a
maximal natural solution which is shown in the l.h.s. of figure 30. As its
group is precisely S = {−1, 1} × S4, this solution is excellent in order to
represent the octahedron (cube) group. This puzzle and this solution is
completely rediscovered using S.

In the r.h.s. of figure 30 is represented the solution of the cubocta-
hedron (2) puzzle which has also S as group. These two are the only
possibilities for cuboctahedron puzzles with S as maximal group.
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Note that the rhombic dodecahedron puzzle of Reference [6] has only
one natural solution which is dual of the l.h.s. solution in figure 30. This
property was crucial in choosing the puzzle.
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5.2.3. Rhombicuboctahedron puzzles. Consider a rhombicuboctahedron square
face which has no common edge with a triangular face. Associate to this
face the permutation (1234). To a neighbor triangular face one must
assign the permutation (132), as it is shown in figure 31, if one wants
to have a puzzle with a maximal group containing S4. Figure 31 shows
sixteen possibilities and none of them has a central symmetry. All of
them are maximal solutions of puzzles with S4 as a group.

There are six puzzles. All the puzzles have the six plates of figure 6.
Four of them have the eight plates represented in figure 2 (see the first
three rows in figure 31) and the other two have eight triangular plates
of the type aaa (see the last row in figure 31). The first puzzle has the
remaining square plates of the type abac (6 solutions). The second puzzle
has the remaining square plates of the type aabb (2 solutions). The third
puzzle has the remaining square plates of the type aaaa (2 solutions).
The forth puzzle has the remaining square plates of the type abab (2
solutions). The fifth puzzle has the remaining square plates of the type
abac (2 solutions). The sixth puzzle has the remaining square plates of
the type aabb (2 solutions).

The first puzzle is the one presented in Reference [6]. It was chosen
because two of its six solutions with S4 as a maximal group are dual of
two maximal solutions of the deltoidal icositetrahedron puzzle presented
in the same Reference [6].

5.2.4. Snub cube puzzles. As in the rhombicuboctahedron situation there
are sixteen cases, that are shown in figure 32, if one wants to have puzzles
with S4 as a maximal group (the largest one possible, as the snub cube
has no central symmetry).

In the figure the edge marked with x must have a 2 or a 3 in each of
the sixteen cases. Hence, there are, in fact, thirty two possibilities.

There are five puzzles. All the puzzles have the six plates of figure 6.
Three have the eight plates represented in figure 2 and two have eight
triangular plates of the type aaa.

The first puzzle has the remaining triangular plates of the type abc (8
solutions). The second puzzle has the remaining triangular plates of the
type aab (14 solutions). The third puzzle has the remaining triangular
plates of the type aaa (2 solutions). These are the first three puzzles (the
first three columns in figure 32).

The last two puzzles (the last column in figure 32) are as follows.
The fourth puzzle has the remaining triangular plates of the type abc (4
solutions). The fifth puzzle has the remaining triangular plates of the
type aab (4 solutions).
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5.3. The icosahedron (dodecahedron) group. In the icosahedron
the center of a face represents a semiaxis of order 3. Associate to a given
face the permutation (123) as it is shown in figure 33. Then there are 8
possibilities for the vertices of this face, but only two of them, the green
ones in the figure, are coherent in the sense that they generate a group
isomorphism.

There are two natural isomorphisms for the icosahedron (dodecahe-
dron) group (see figure 34) which are equivalent. This equivalence is
made, for example, by any transposition and an element of Ω+. In this
case

S = {−1, 1} × A5.

5.3.1. Icosahedron and dodecahedron puzzles. Using this isomorphism one
can recover the icosahedron (1) and the dodecahedron (2) puzzles, which
have precisely S as maximal group (see Reference [4]).

5.3.2. Icosidodecahedron puzzles. For the icosidodecahedron there is only
one puzzle with S as maximal group (in fact, there are two equivalent
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puzzles). Figure 35 shows the possibilities if one wants to have A5 as
a group (two puzzles). Only one of them, the green one, has a central
symmetry.
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