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The idea of this talk is

e to present the quantum group SU,(2) and the standard Podles sphere chz as
its quantum homogeneous space, and to equip them with a suitable class of
differential calculi;

e to introduce Laplacian operators on them through the definition of Hodge

dualities on both Q(SU,(2)) and €(S?);
e to describe their gauge coupling corresponding to a class of Hopt fibration.

e to present the class of monopole solutions.



The classical setting: a classical Hopt bundle
e SU(2) is a matrix Lie group
[ u v 2 1 Q3
g—(v u)’ (u,v) €eC*: uu+ovv=1~ 57
with a Lie algebra su(2) ~ R?
[Laa Lb] — Eabch [Raa Rb] — _eabcRc

e The group manifold is parallelizable. Left and right vector fields give a global
basis for the differential calculus.

dp = (La-d)w" =Y (Ry- o)’ ong € A(S%)

b

e The exterior algebra
O(S%) = (@Y, QF(S?), A, d: QF(S%) — QF1(S%), d% = 0)
is given by free A(S?)-bimodules on the basis of left (right) — invariant {w?}
({n°}) 1-forms.



e SU(2) contains a U(1) subgroup

s (1 0 es/2
U(l)ah_explg(o_]_)]_( 0 6i8/2>7

the quotient of its right principal action r,(g) = g - h is SU(2)/ U(1) ~ S=.

e The U(1)-action generator is the vertical field L, of the fibration,
a connection gives the horizontal subspaces.

e The exterior algebra over the 2-dim sphere is:

V(5% = {9 € Q(S°) 1ir.d = 0; 17(9) = ¢}

e A connection can be given by a suitable projection on Q!(S%):
Mwy) =0 MNw, =w, + A
with A € Q'(S?).



e Vn € Z there is an IRREP of the gauge group U(1),
p(n) : U(l) _ C*, p(n)<6ia> _ einoz

e Horizontal and p,-equivariant r-forms on S? give the line bundles

L ={pe (S 1ig.g =0,
76) = pi (ke © Lz<¢>=—§¢}.

or equivalently sections of the associated bundles (matter fields).

e Covariant derivatives V : Ey(f) — E%TH) act as

Vo =do+wA ¢

with w = (in/2)(w, + A) the connection 1-form.
The monopole connection corresponds to A = 0.



e On the Lie algebra su(2) ~ R? the Cartan-Killing metric
is round (S® C R?):

g=L,®L, +L,®L, + L.®L,

e The Laplacian obtained via its corresponding Hodge duality operator
* 0 QF(S3) — 3HF(SY) x2 = (=D*3 ) (sgn g)
is the Casimir operator

Oz = xdxdo = (L2 + L) + L?) =,

e The induced metricon S?is g = 1/2 (wy Qw_ + w_ @ w,),
the corresponding Hodge duality defines the Laplacian

Uf = %(LL+ + LyL ) f



e The second order covariant derivative
Vip =F A ¢

gives the curvature of the connection; on each associated bundle it is

Q*(S*) > F = nw_Aw, + %dA

F—F o A=A +idf
(gauge transformations, f € A(S?))

e The Bianchi identity holds
DF = 0;

e The Yang-Mills field equations (the stationary points
of the action functional) are

D*F) = %J



e On the Hopf bundle (J = 0)
d x(dA) = 0

has the non perturbative (Dirac) monopole solution A = 0.

Yang-Mills field equations require a rich geometrical setting.

The aim of the talk is then:

e to describe how Yang Mills equations can be introduced in an algebraic
setting where groups are quantum

e to describe which kind of non perturbative solutions they have in the case
of the lowest dimensional Hopf bundle.



e The unifying idea of NCG is to extend some concepts (measure theory,
topology, differential geometry) to spaces which are no point sets; and are
then studied in terms of algebras and states

e The prototype of this analysis is the G.N.S. theorem.

o [f A is a commutative C*-algebra, then a locally compact Hausdorff space
X exists (the Gelfand spectrum of A) with an isometric *-isomorphism

A~ Cy(X)

o [f A is a non commutative C*-algebra, then a separable Hilbert space H
exists, with again an isometric x-isomorphism

A ~ B(H)



The quantum group SU,(2)

e In the spirit of Gelfand duality, (following [Wo]) a compact quantum group
G = (A, A) is separable unital C*-algebra with a (dense) coproduct A.

e The set of all linear combinations of matrix elements all finite dimensional
unitary IRREPs of GG is a dense Hopf *x-algebra A C A.

e As quantum group SU,(2) consider the Hopf (S, e, A, %),
polynomial unital x-algebra (with ¢ € R) generated by

[ _ (a —qc* ) ac = qca ac* = qc'a ccf = c'c
T )

c a a*a + c'c = aa* + q¢°cc* = 1.
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e Given U(1) := Clz, 2*] /< zz* — 1 >. The map

r:SU2) — U(L), (i jff) = (g f)

is a surjective Hopt x-algebra homomorphism.

e U(1) is a quantum subgroup of SU,(2) with right coaction:
op = (id®m)o A : SU,(2) — SU,2) ® U(1)

e The algebra S?] of the standard Podles sphere is given by
the cotnvariants for this coaction

S ={be SU,2):dr(b) =b® 1}

e This coaction allows to define the line bundles (n € Z)

L, ={reSU,2) : dp@)=r®2"}
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e This talk will not be about the spectral geometry
(A, H, D)

of these quantum spaces (A = SU,(2),S;) [G,DLSVvS, CP,NT], since their
corresponding spectral differential calculus is not manageable.

e Connes’ formulation gives a top-down approach to an algebraic formulation
of the geometry. A Dirac operator encodes the differential calculus and the
metric aspects of a non commutative space. Our approach is bottom-up: the
idea is to construct the various aspects of a complete algebraic formalism.

e [n order to have consistent differential operators, we shall equip SU,(2) (and
then S?]) with a class of Woronowicz type differential calculi, build the exte-
rior algebras, and then introduce Hodge duality operators.
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Differential calculi over SU,(2) [Wo

e The dually paired Hopf universal envelopping algebra to SU,(2)
is U, (su(2)) = {K* E, F = E*}

K? - K2
K*E=¢°EK* K*F=¢'FK* |[E,F|=

qd—4q

e A family of left-covariant 3D x-calculi (i.e. d(z*) = (dx)*)
dr =) (Xepa)w,, X, € Uy (su(2)), (a==,2),

a

e A bicovariant 4D *-calculus

with R, = —S™Y(L,) € U, (su(2)) (a = +,0, 2)

dr = Z (Lo>x)w Zwa (Ro>x) Z Na(x<Ry,)
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e Any of these calculi has a braiding o : (Q'(SU,(2)))®? O
(c®1)o (1®R0)o(0®]l) =(1®c)o (c®1)o (1R0)
which allows to define anti-symmetriser operators
AT (QYSUL(2)) O
so that the exterior algebra is

Q" (SUL(2)) = (Q4(SU,(2)))®" /Ker A™)

e The classical braiding is the flip 0 = 7, with 0 = 1. The properties of the
(classical) wedge product originates from this, and one has

AN = rlw, Vw e Q(S%

e The (quantum) wedge product depends on o, and one has a specific spectral
decomposition on Q(SU,(2)).

AV = N\, w,
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e Differential calculi on S are induced via the U(1)-coaction.

and the fibration?

e A formulation of principal bundles where a Hopf algebra H (the gauge group)
coacts on a total space algebra P has been developed by |[BM,H D].

e In order to have a consistent notion of vertical vectors, horizontal forms, and
connections, differential calculi on P and ‘H must be compatible.

e [t is then possible to define sections of associated bundles, which are elements
of finite projective modules over the base P of the bundle.
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For each 3d calculus considered over SU,(2) we have

e a 1d calculus on U(1),
a 2d exterior algebra over Sg.

They are compatible

For the 4d calculus over SU,(2) we have

e a 1d calculus on U(1),
a 3d exterior algebra over Sg.

They also are compatible
so we have connections, and covariant derivative

The missing ingredient is then a suitable Hodge duality on Q(SU,(2)) and (S?).
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e In the classical setting one starts from a tensor and contractions

g=9"X, X, gw',w’) = ¢”
so to define
R ONG) - OYHG)  x(9) = 3000, )
and to prove that |
K2 oc (—1)F=R) o g = ghe

x4 =0 & g =g

e The degeneracy of x* characterizes the symmetry of g.

And in the quantum setting?!
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e We start from a tensor
g = JapXa @ Xy
on the quantum tangent space of the calculus on SU,(2)
and a volume form p.

e We define a contraction operator

T(g, A, ) + Q(SUy(2)) — QN_T<SUq(2>>

e [s g symmetric?! Is the contraction operator a Hodge duality?!

e We relate this two questions.
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e We define the bilinear g o-symmetric, provided the square of the contraction
operator T" has the same degeneracy of the antisymmetrisers A").

e We define the bilinear g real, provided the contraction operator I’ commutes
with the x-hermitian conjugation:

T,%x] =0

e Do non degenerate o-symmetric and real bilinear g’s exist? Yes.

e We then say, T are the Hodge operators corresponding to real and symmetric
bilinear form ¢, with 7%(1) = sgn(det g)
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example: for the 4D calculus

e Following this formalism one has
AL

(T*P0) = (=149 (s g)Ai*) "

[t appears as a natural generalisation of the classical relation to the quantum
setting, where the braidings o™ associated to the calculus on SU,(2) have a
non trivial spectrum.

e Moreover:
THT (W) =T THw) = (=1)"*"¥(sgn ¢) w.

This relation shows the closest similarity to the classical.

e The Laplacian coming from a specific choice of such a g is the Casimir

Oz = —a{L L_+q¢L_L,+ (1+¢)L.L.—2(¢* —1)LyL.}>x
= a Oy,
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example: Yang-Mills equations on S(Q]

e Given Hodge dualities on the family of £2(SU,(2)), via a reduction procedure
we induce Hodge duality on Q(S;).

e For each Hopf fibration we describe the set of connections on the associated
bundles via a connection w = &(n)(w, + A) 1-form; the corresponding
curvature 1s

PSH) 2 F=dw+wAw

e Gauge transformations are given by:

oL nYe A — dle el
A = e e AT — a(e i) e

e Non perturbative solutions of the Yang-Mills equations are still given by the
Grassmann (monopole) connection A = 0.
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e [s it possible to write non perturbative solutions of the YM equations on

SU,(2)7!

e [s it possible to understand how to introduce a Chern-Simons action for a
field theory on this class of 3D non commutative spaces?

Some references

1. AZ, Hodge duality operators on left covariant exterior algebras
arXiv:1112.6383;

2. AZ, A class of hodge duality operators over the quantum SU(2),
J. Geom. Phys. 2012

3. G.Landi, AZ, Calculi, Hodge operators and Laplacians on a quantum
Hopf fibration, Rev.Math.Phys. 2011;

Many many thanks!
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