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The idea of this talk is

• to present the quantum group SUq(2) and the standard Podleś sphere S2
q as

its quantum homogeneous space, and to equip them with a suitable class of
differential calculi;

• to introduce Laplacian operators on them through the definition of Hodge
dualities on both Ω(SUq(2)) and Ω(S2

q);

• to describe their gauge coupling corresponding to a class of Hopf fibration.

• to present the class of monopole solutions.
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The classical setting: a classical Hopf bundle

• SU(2) is a matrix Lie group

g =

(
u −v̄
v ū

)
, (u, v) ∈ C2 : ūu + v̄v = 1 ∼ S3;

with a Lie algebra su(2) ∼ R3

[La, Lb] = εabcLc, [Ra, Rb] = −εabcRc

• The group manifold is parallelizable. Left and right vector fields give a global
basis for the differential calculus.

dφ =
∑
a

(La · φ)ωa =
∑
b

(Rb · φ)ηb onφ ∈ A(S3)

• The exterior algebra

Ω(S3) = (⊕Nk=1Ω
k(S3),∧, d : Ωk(S3)→ Ωk+1(S3), d2 = 0)

is given by freeA(S3)-bimodules on the basis of left (right) – invariant {ωa}
({ηb}) 1-forms.
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• SU(2) contains a U(1) subgroup

U(1) 3 h = exp

[
is

2

(
1 0
0 −1

)]
=

(
eis/2 0

0 e−is/2

)
;

the quotient of its right principal action rh(g) = g · h is SU(2)/U(1) ∼ S2.

• The U(1)-action generator is the vertical field Lz of the fibration,
a connection gives the horizontal subspaces.

• The exterior algebra over the 2-dim sphere is:

Ωr(S2) =
{
φ ∈ Ωr(S3) : iLz φ = 0; r∗k(φ) = φ

}

• A connection can be given by a suitable projection on Ω1(S3):

Π(ω±) = 0 Π(ωz) = ωz + A

with A ∈ Ω1(S2).
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• ∀n ∈ Z there is an IRREP of the gauge group U(1),

ρ(n) : U(1)→ C∗, ρ(n)(e
iα) = einα

• Horizontal and ρn-equivariant r-forms on S3 give the line bundles

L(r)
n =

{
φ ∈ Ωr(S3) : iLzφ = 0,

r∗k(φ) = ρ−1
(n)(k)φ ⇔ Lz(φ) = −in

2
φ

}
.

or equivalently sections of the associated bundles (matter fields).

• Covariant derivatives ∇ : L(r)
n → L(r+1)

n act as

∇φ = dφ + ω ∧ φ
with ω = (i n/2)(ωz + A) the connection 1-form.

The monopole connection corresponds to A = 0.
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• On the Lie algebra su(2) ∼ R3 the Cartan-Killing metric
is round (S3 ⊂ R4):

g = Lx ⊗ Lx + Ly ⊗ Ly + Lz ⊗ Lz

• The Laplacian obtained via its corresponding Hodge duality operator

? : Ωk(S3) → Ω3−k(S3) ?2 = (−1)k(3−k)(sgn g)

is the Casimir operator

�x = ? d ? dx = (L2
x + L2

y + L2
z)x,

• The induced metric on S2 is g = 1/2 (ω+ ⊗ ω− + ω− ⊗ ω+),
the corresponding Hodge duality defines the Laplacian

�f =
1

2
(L−L+ + L+L−) f
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• The second order covariant derivative

∇2 φ = F ∧ φ

gives the curvature of the connection; on each associated bundle it is

Ω2(S2) 3 F = nω− ∧ ω+ +
i n

2
dA

F = F ′ ⇔ A = A′ + i df

(gauge transformations, f ∈ A(S2))

• The Bianchi identity holds
DF = 0;

• The Yang-Mills field equations (the stationary points
of the action functional) are

D(?F ) = ? J
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• On the Hopf bundle (J = 0)

d ? (dA) = 0

has the non perturbative (Dirac) monopole solution A = 0.

Yang-Mills field equations require a rich geometrical setting.

The aim of the talk is then:

• to describe how Yang Mills equations can be introduced in an algebraic
setting where groups are quantum

• to describe which kind of non perturbative solutions they have in the case
of the lowest dimensional Hopf bundle.
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• The unifying idea of NCG is to extend some concepts (measure theory,
topology, differential geometry) to spaces which are no point sets, and are
then studied in terms of algebras and states

• The prototype of this analysis is the G.N.S. theorem.

• If A is a commutative C∗-algebra, then a locally compact Hausdorff space
X exists (the Gelfand spectrum of A) with an isometric ∗-isomorphism

A ∼ C0(X)

• If A is a non commutative C∗-algebra, then a separable Hilbert space H
exists, with again an isometric ∗-isomorphism

A ∼ B(H)
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The quantum group SUq(2)

• In the spirit of Gelfand duality, (following [Wo]) a compact quantum group
G = (A,∆) is separable unital C∗-algebra with a (dense) coproduct ∆.

• The set of all linear combinations of matrix elements all finite dimensional
unitary IRREPs of G is a dense Hopf ∗-algebra A ⊂ A.

• As quantum group SUq(2) consider the Hopf (S, ε,∆, ∗),
polynomial unital ∗-algebra (with q ∈ R) generated by

U =

(
a −qc∗
c a∗

)
,

ac = qca ac∗ = qc∗a cc∗ = c∗c
a∗a + c∗c = aa∗ + q2cc∗ = 1.
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• Given U(1) := C[z, z∗]
/
< zz∗ − 1 >. The map

π : SUq(2) → U(1), π

(
a −qc∗
c a∗

)
:=

(
z 0
0 z∗

)
is a surjective Hopf ∗-algebra homomorphism.

• U(1) is a quantum subgroup of SUq(2) with right coaction:

δR := (id⊗π) ◦∆ : SUq(2) → SUq(2)⊗ U(1)

• The algebra S2
q of the standard Podleś sphere is given by

the coinvariants for this coaction

S2
q = {b ∈ SUq(2) : δR(b) = b⊗ 1}

• This coaction allows to define the line bundles (n ∈ Z)

Ln := {x ∈ SUq(2) : δR(x) = x⊗ z−n}
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• This talk will not be about the spectral geometry

(A,H, D)

of these quantum spaces (A = SUq(2), S2
q) [G,DLSVvS, CP,NT], since their

corresponding spectral differential calculus is not manageable.

• Connes’ formulation gives a top-down approach to an algebraic formulation
of the geometry. A Dirac operator encodes the differential calculus and the
metric aspects of a non commutative space. Our approach is bottom-up: the
idea is to construct the various aspects of a complete algebraic formalism.

• In order to have consistent differential operators, we shall equip SUq(2) (and
then S2

q) with a class of Woronowicz type differential calculi, build the exte-
rior algebras, and then introduce Hodge duality operators.
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Differential calculi over SUq(2) [Wo]

• The dually paired Hopf universal envelopping algebra to SUq(2)
is Uq(su(2)) = {K±, E, F = E∗}

K±E = q±EK± K±F = q∓FK± [E,F ] =
K2 −K−2

q − q−1

• A family of left-covariant 3D ∗-calculi (i.e. d(x∗) = (dx)∗)

dx =
∑
a

(Xa.x)ωa, Xa ∈ Uq(su(2)), (a = ±, z),

• A bicovariant 4D+ ∗-calculus
with Ra = −S−1(La) ∈ Uq(su(2)) (a = ±, 0, z)

dx =
∑
a

(La.x)ωa =
∑
a

ωa(Ra.x) =
∑
a

ηa(x/Ra)
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• Any of these calculi has a braiding σ : (Ω1(SUq(2)))⊗2 	

(σ ⊗ 1) ◦ (1⊗ σ) ◦ (σ ⊗ 1) = (1⊗ σ) ◦ (σ ⊗ 1) ◦ (1⊗ σ)

which allows to define anti-symmetriser operators

A(r) : (Ω1(SUq(2)))⊗r 	

so that the exterior algebra is

Ωr(SUq(2)) = (Ω1(SUq(2)))⊗r/Ker A(r)

• The classical braiding is the flip σ = τ , with σ2 = 1. The properties of the
(classical) wedge product originates from this, and one has

A(r)
τ ω = r! ω, ∀ ω ∈ Ωr(S3)

• The (quantum) wedge product depends on σ, and one has a specific spectral
decomposition on Ω(SUq(2)).

A(r) ω = λω ω,
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• Differential calculi on S2
q are induced via the U(1)-coaction.

and the fibration?

• A formulation of principal bundles where a Hopf algebraH (the gauge group)
coacts on a total space algebra P has been developed by [BM,H,D].

• In order to have a consistent notion of vertical vectors, horizontal forms, and
connections, differential calculi on P and H must be compatible.

• It is then possible to define sections of associated bundles, which are elements
of finite projective modules over the base HP of the bundle.
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For each 3d calculus considered over SUq(2) we have

• a 1d calculus on U(1),
a 2d exterior algebra over S2

q.

They are compatible

For the 4d calculus over SUq(2) we have

• a 1d calculus on U(1),
a 3d exterior algebra over S2

q.

They also are compatible
so we have connections, and covariant derivative

The missing ingredient is then a suitable Hodge duality on Ω(SUq(2)) and Ω(S2
q).
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• In the classical setting one starts from a tensor and contractions

g = gabXa ⊗ Xb g(ωa, ωb) = gab

so to define

? : Ωk(G) → ΩN−k(G) ? (φ) =
1

k!
g(φ, µ)

and to prove that

?2 ∝ (−1)k(N−k) ⇔ gab = gba

[?, ∗] = 0 ⇔ g∗ = g

• The degeneracy of ?2 characterizes the symmetry of g.

And in the quantum setting?!
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•We start from a tensor
g = gabXa ⊗Xb

on the quantum tangent space of the calculus on SUq(2)
and a volume form µ.

•We define a contraction operator

T (g, λ, µ) : Ωr(SUq(2)) → ΩN−r(SUq(2))

• Is g symmetric?! Is the contraction operator a Hodge duality?!

•We relate this two questions.
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•We define the bilinear g σ-symmetric, provided the square of the contraction
operator T has the same degeneracy of the antisymmetrisers A(r).

•We define the bilinear g real, provided the contraction operator T commutes
with the ∗-hermitian conjugation:

[T, ∗] = 0

• Do non degenerate σ-symmetric and real bilinear g’s exist? Yes.

•We then say, T are the Hodge operators corresponding to real and symmetric
bilinear form g, with T 2(1) = sgn(det g)
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example: for the 4D calculus

• Following this formalism one has

(T±)2(ω) = (−1)k(4−k)
(

(sgn g)
λ±ω
λ±ω∗

)
ω.

It appears as a natural generalisation of the classical relation to the quantum
setting, where the braidings σ± associated to the calculus on SUq(2) have a
non trivial spectrum.

•Moreover:
T+T−(ω) = T−T+(ω) = (−1)k(4−k)(sgn g)ω.

This relation shows the closest similarity to the classical.

• The Laplacian coming from a specific choice of such a g is the Casimir

�x = −a{L+L− + q2L−L+ + (1 + q2)LzLz − 2(q2 − 1)L0Lz}.x
= aCq.x,
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example: Yang-Mills equations on S2
q

• Given Hodge dualities on the family of Ω(SUq(2)), via a reduction procedure
we induce Hodge duality on Ω(S2

q).

• For each Hopf fibration we describe the set of connections on the associated
bundles via a connection ω = ξ(n) (ωz + A) 1-form; the corresponding
curvature is

Ω2(S2
q) 3 F = dω + ω ∧ ω

• Gauge transformations are given by:

A′ =
1

ξ(n)
(ξ(n) e−i fAei f − d(e−i f) ei f)

• Non perturbative solutions of the Yang-Mills equations are still given by the
Grassmann (monopole) connection A = 0.
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• Is it possible to write non perturbative solutions of the YM equations on
SUq(2)?!

• Is it possible to understand how to introduce a Chern-Simons action for a
field theory on this class of 3D non commutative spaces?
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