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1 Motivation

Heuristic path integrals give single geometric picture for otherwise
disparate results, including:

• Donaldson theory from 4D topological Yang-Mills

• Topology of moduli spaces of flat connections in 3D (Casson invariant)
from supersymmetric 3D Yang-Mills

• Topology of moduli spaces of flat connections in 2D (intersection pairings)
from 2D Yang-Mills

• Gauss-Bonnet-Chern, Atiyah-Singer and Hirzebruch index theorems from
supersymmetric quantum mechanics (SUSYQM)

In each, a path integral localizes to compute a topological invariant of a finite-
dimensional space.

2 Path integral “proof” of the Gauss-Bonnet-
Chern theorem

“Facts” about path integrals (imaginary time) Fact 1 – Path integrals
represent operator kernels

Given

• an operator H acting on a space of functions,

• with KH the integral kernel of the corresponding heat operator e−tH ,

KH(x, y; t) =

∫
σ(0)=y
σ(t)=x

e−S(σ,t)Dσ.

• S =
∫ t

0
L(σ; s) ds is the classical action,
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• L is the classical Lagrangian associated to H via the Legendre transfor-
mation, and

• the integral is taken over all paths σ satisfying the given endpoint condi-
tions.

“Facts” about path integrals Fact 2 – Steepest descent approxima-
tion

As t goes to zero (from above),∫
σ(0)=y
σ(t)=x

e−S(σ,t)Dσ = e−S(σcl,t)

(
1

π

)1/2 ∫
σ̄(0)=0
σ̄(t)=0

e−SQ(σ̄,t)Dσ̄ [1 +O(t)]

• σcl(x, y, t) solves the Euler-Lagrange equations for L.

• SQ is the quadratic term in the expansion of S about this solution.

“Facts” about path integrals Fact 3 – Quadratic actions are nice
For example ∫

σ(0)=0
σ(t)=0

e−
1
2

∫ t
0
|σ̇|2 dsDσ =

[
1(
− d2

dt2

)]1/2

With zeta-function regularization,

det

(
− d

2

dt2

)
=

∞∏
n=1

(nπ
t

)2

= 2t

Gauss-Bonnet-Chern (GBC) The action

S(σ,Π,Ψ) =

∫ t

0

1

2
|σ̇|2 − i 〈Π,∇σ̇Ψ〉+

1

4
(Π, R(Ψ,Ψ) ·Π) ds

• σ : [0, t]→M for M a Riemann manifold

• Ψ is an anti-commuting section of the tangent bundle over the image of
σ.

• Π is an anti-commuting section of the cotangent bundle over the image of
σ.

Anti-commuting vector field?
∫
σ(0)=y
σ(t)=x

e−S(σ,Π,Ψ,t)DσDΠDΨ = kernel of

what?
This kernel acts on f(x, ψ) for x ∈M , ψ ∈ TxM

• Locally, ψ = ψµ ∂
∂xµ
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• Expand f(x, ψ1, . . . , ψn) in Taylor series: f(x, ψ) =

n∑
k=0

∑
µ1<µ2<···<µk

fµ1µ2···µk(x)ψµ1ψµ2 · · ·ψµk

ψµ 7→ dxµ gives an isomorphism between functions f(x, ψ) and differential
forms.

K∆(x, y, ψx, ψy; t) =

∫
e−S(σ,Π,Ψ,t)DΠDΨDσ,

(with endpoint conditions on σ and Ψ) represents the kernel of e−
t
2 ∆ for ∆ the

Laplace-Beltrami operator on forms.

Berezin integration and supertrace
∫
K∆(x, x, ψ, ψ; t) dψdx = χ(M)

Define
∮
f(ψ)dψ as the volume of the top-degree piece of ψ. [1ex] In partic-

ular, ∫
f(x, ψ)dψdx =

∫
M

f, and

∮
K(ψ,ψ)dψ = str(k),

for k the endomorphism with kernel K(ψ, ξ). [1ex] Then∫
K∆(x, x, ψ, ψ; t) dψdx =

∑
k

tr
(
e−

t
2 ∆2k

)
− tr

(
e−

t
2 ∆2k+1

)
≡ Str

(
e−

t
2 ∆
)

where ∆p is the restriction of ∆ to
∧p

M . [1ex] Because (d+ d∗) pairs the even
and odd-degree eigenforms of ∆ with non-zero eigenvalues, the right-hand side
reduces to ∑

k

dim ker ∆2k − dim ker ∆2k+1 = χ(M),

independent of t.

Path integral proof of GBC Alvarez-Gaumé 1983
Assembling, and using the first two “facts”

χ(M) = lim
t→0

∫
K∆(x, x, ψ, ψ; t) dψdx

= lim
t→0

∫ [∫
based loops

e−S(σ,Π,Ψ,t)DΠDΨDσ
]
dρdψdx

= lim
t→0

∫
e−S(σcl,Πcl,Ψcl,t) dρdψdx

×
(

1

π

)n/2 ∫
e−SQ DΠ̄DΨ̄Dσ̄.

σcl = x, Πcl = ρ Ψcl = ψ; last path integral is
(

1
2t

)n/2
, so [1ex] χ(M) =(

1

2πt

)n/2 ∫
e
t
4 (ρ,R(ψ,ψ)·ρ) dρdψdx, or χ(M) =

(
1

2π

)n/2 ∫
Pfaff(R).

3



3 Path integral proof of the Gauss-Bonnet-Chern
theorem

3.1 Overview

A rigorous path integral Overview
Use a partition P of [0, t] into N subintervals to define PathN ⊂MN+1, the

space of continuous paths composed of N geodesic segments [1ex] Approximate
the path integral by discretizing:∫

PathN

e−S(σ,Π,Ψ)DΠDΨDσ = K(t1) ∗K(t2) ∗ · · · ∗K(tN ),

where

K(x, y, ψx, ψy, t) =

∮
exp

[
− 1

2t
|σ̇|2 + i〈ρ, (∇σ̇Ψ)〉

− t
8

(ρ,R(Ψ,Ψψx) · ρ)

]
dρ

for σ the geodesic from y to x, with expy σ̇ = x,and

K(t1) ∗K(t2) =

∫ ∮
K(x, z, ψx, ψz; t1)K(z, y, ψz, ψy; t2) dψzdz

This is time-slicing∫
e−
∫ t
0
L(σ) dsDσ ∼

∫
e−
∑
L(σi,σi−1,ti)ti

∏
J dσi

with the approximation presumably improving under refinement.[1ex] Define

K = JeL. [1ex] Note that ”Fact 1” and the trivial partition give

K∆(t) ∼ K(t)

for small t.

Specifying K
Choose K(x, y, ψx, ψy; t) =

∮
(2πt)−n/2

× exp

[
− |~xy|

2

2t
− tr

6
+

1

12
Ricci(~xy, ~xy) + i

〈
ρ,Px

yψx − ψy
〉

+
t

8
(ρ,R[ψy, ψy] ρ) +

t

8

(
Px
yρ,R[ψx, ψx]Px

yρ
) ]
dρ
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when x and y are close enough to be within the injectivity radius of each other
and K = 0 otherwise. Here expy(~xy) = x, and P denotes parallel transport. In
Riemann normal coordinates centered at y,

K =

∮
(2πt)−n/2 exp

[
− |~xy|

2

2t
− tr

6
+

1

12
Ricci(~xy, ~xy) + i 〈ρ, ψx − ψy〉

+
i

6
〈ρ,R[~xy, ψx] ~xy〉+

t

8
(ρ,R[ψx, ψx] ρ) +

t

8
(ρ,R[ψy, ψy] ρ)

]
dρ,

after dropping complicating terms that do not affect the limit.

“Facts” 1 & 2 are now theorems, and imply a local form of GBC

Theorem 1. The fine-partition limit K∞ of the approximate path integrals is
well-defined and agrees with the heat kernel:∫

e−S(σ,Π,Ψ)DΠDΨDσ ≡ K∞ = ker e−t∆/2.

Theorem 2.
K∞ = K + E,

for an error term E with str(E) ∈ O
(
t2ε/n

)
for some positive ε.

Local GBC
In fact, by looking only at the top-form piece, these results lead to the local

form

Theorem 3. [
lim
t→0

K∞(x, x, ψx, ψx; t)
]

top
=(2π)

−n/2
Pfaff(R)

3.2 Proof sketch

K is an approximate heat kernel
Direct calculation gives

∂K

∂t
+

1

2
∆xK = F1H(x, y; t) + F2tOt(tε) , and

∂K

∂t
+

1

2
∆yK = F3H(x, y; t) + F4t,Ot(tε)

where H = (2πt)−n/2e−
|~xy|2

2t , and |Fi|t = O(tε) . [1ex] Here the norm on the
endomorphisms Fi is, in an orthonormal basis,∣∣∣∣ψj1 · · ·ψjk ∂

∂ψl1
· · · ∂

∂ψlk

∣∣∣∣
t

=

{
1 k ≤ 2
t(k−2)(−1/2+ε/n) k ≥ 2

.
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Operator convergence
This ensures that as operators the approximate path integrals K∗P ≡ K(t1)∗

K(t2) ∗ · · · ∗K(tN ) converge to the heat operator: [1ex] For f0(x, ψx) piecewise
continuous, and t ≥ 0,

f(t) = lim
|P |→0

K∗P ∗ f0

is the unique solution to the heat equation ∂f/∂t = − 1
2∆f with f(0) = f0.

Propositions on products

• Norms of products: For t = t1 + t2 > 0,

||K(t1) ∗ L||t ≤ e
O
(
t
ε/n
1

)
+O(t2) ||L||t2 .

• Almost semigroup:

||K(t1) ∗K(t2)−K(t)||t = O
(
t1+ε

)
.

• Cauchy For sufficiently small t > 0, all partitions P of t, and all refinements
Q of P , ∣∣∣∣K∗Q −K∗P ∣∣∣∣

t
= O(t) |P |ε .

Supertrace of error
These suffice to prove

K∆ = K∞ = K +Ot
(
t1+ε

)
.

The error term is E = F1H + tF2, for |Fi|t ∈ O
(
t1+ε

)
, so

str(E) = str(F1)(2πt)
−n/2

+ str(F2) t.

Since
∣∣∣[Fi]top

∣∣∣
t
≤ |Fi|t,

str(Fi)

∣∣∣∣ψ1 · · ·ψn ∂

∂ψ1
· · · ∂

∂ψn

∣∣∣∣
t

= str(Fi) t
(n−2)(−1/2+ε/n) ∈ O

(
t1+ε

)
,

and thus
str(E) ∈ O

(
t2ε/n

)
.

Full details
arXiv:1207.2751v1[math-ph]
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