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Main Result

Theorem
Let K0 and K1 be 2-foams w/out boundary
embedded in 4-space with diagrams D(Ki) for
i = 0, 1. K0 and K1 are isotopic if and only if
there is a sequence D(Ki/n) of diagrams for
i = 0, . . . , n such that D(Ki/n) differs from
D(K(i− 1)/n) by one of the RR-type* moves
that are listed below.

*Reidemeister-Roseman
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Analogy and definition

1

2

3

1

2

3

<1,2,3>

Classical
knots are to knotted surfaces as knotted trivalent
graphs are to knotted foams. Here I illustrate the
space Y 2.



The space Y 2 will also be called the associator.
In the general scenarios of categorification, we
can define higher dimensional associators as
geometric representations of the Stasheff
polytopes. Here is the general construction.



The Space Y n

Let ∆n+1 = {~x ∈ Rn+2 :
∑
xi = 1 & 0 ≤ xi}

denote the standard simplex. The space
Y n ⊂ ∆n+1 is defined as follows: Y 0 = (1

2 ,
1
2).

Take ∆n
j = {~x ∈ ∆n+1 : xj = 0}. Embed a copy,

Y n−1
j ⊂ ∆n

j . Cone ∪n+2
j=1Y

n−1
j to the barycenter

b = 1
n+2(1, 1, . . . , 1) of ∆n+1.

Y n = C
(
∪n+2

j=1Y
n−1
j

)
.



Y 0, Y 1, and Y 2

Y 0 Y 1

Y 2



Definition of n-foams

Every point y ∈ Y n has a nbhd. that is homeom.
to Y n−k ×Dk. The union of these points is called
the k-stratum — the union of these is a set of(
n+2
k

)
disks of dimension k, for k = 1, . . . , n.

An n-foam is a top. sp. X for which each pt.
x ∈ X has a nbhd homeom. to a nbhd. of a point
in Y n.



A 2-foam is a compact topological space in for
which every point has a nbhd. homeom. to a
nbhd. of a point of Y 2.
A 2-foam has vertices, edges, and faces. Four
edges are incident to a vertex. Three faces are
incident to an edge. Six faces are incident at the
vertex.
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Developing the analogy

First, we consider the local pictures involved in
knotted trivalent graphs.

critical  points

crossing
vertices



Diagrams for trivalent graphs

critical  points

crossing
vertices

In dim 0-mfld ⊂ 1-mfld, we have vertices. In one
dim larger, they may be created or annihilated by
critical points (index 0 or 1), or they may cross
(1-mfld ∩ 1-mfld ⊂ 2-mfld). Trivalent vertices are
considered as 0-dim’l ⊂ 2-dim’l.



The basic philosophy of the Reidemeister-type
moves is to carefully quantify the critical points
and intersections in a picture that is one
dimensional larger. By observing the codimension
1 singularities in one more dimension, we observe
the Reidemeister moves.
Before we exploit this, I want to turn to the
interactions between critical points and crossings.



Types of moves: Part I
These moves do not change the underlying
topology of the plane containing the diagram:



Cat. and Geom. Conseq.

1. The zig-zag move gives a categorical dual or
adjoint map. 2. A comultiplication can be defined
in terms of a multiplication. 3. The upside-down
versions of the last four moves follow easily.





When we are looking at knotted trivalent graphs,
we are looking at a type of braided Frobenius
category. I hesitate to make the categorical
construction explicit because it is beyond my
categorical expertise. For the rest of the talk, I
want to examine the Reidemeister moves for
trivalent graphs, consider these as atomic pieces
of knotted foams, and consider the Reidemeister
moves for the foams. Ultimately, I believe that
there is a complete categorical interpretation of
this and it is within the suzerain of TQFTs. In
my talk tomorrow, I will give homological
interpretations to the moves and their higher
dimensional versions.



Types of moves: Part II

These are the Reidemeister moves for knotted
trivalent graphs.



Critical Analysis: Type-I

Both the type-I move and the twisted vertex are
occurrences of a critical point on the double
decker set — the pre-image of the double point
set on the ambient surface/foam.



Critical Analysis: Type-II

The type-II-move is a critical point of the double
point set.



Intersection Analysis: Type-III +
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Intersection Analysis: Type-III +

The type-III-move is the intersection b/2 a
1-dim’l set (crossing ×[0, 1]) and a 2-dim’l sheet
(arc ×[0, 1]). Similarly, the Y I-move and the
IY -move have the same projection in which the
vertex of the Y ×[0, 1] crosses a 2-dim’l sheet (arc
×[0, 1]).



Foam Vertex

The vertex of a foam is a 0-dim’l point in 3-space.
While we can think of the intersection b/2 the
two arcs in the blue sheet, this is artificial — it
depends on the particular drawing.



Small remark

Each of the ψ-type moves has a interpretation as
a surface. Frohman and Roseman are studying
embedded foams and also only pay mild attention
to these. I include them here, now, because they
facilitate one’s drawings of the knotted foams.



Recap

The Reid. moves for trivalent graphs correspond
to critical points and intersections in one more
dimension. Thus an isotopy between knotted
graphs can be decomposed into critical pieces. By
compactness there are finitely many of these.
Each move is found from among these:



Recap
Each move to a knotted trivalent graph is found
from among these:



Turaev’s trick



Roseman-type moves for knotted foams

In the next few slides, I am going to discuss the
critical points and intersections in one higher
dimension. So our foams are 2-dim’l. The branch
points, twisted vertices, triple points, and
intersections b/2 an edge and a transverse sheet
are all 0-dim’l. so the critical pts. of 1-dim’s sets
characterize these moves. Before this I want to
mention the critical points of foams.



Critical points of foams



Critical points of the branch point set

The critical points for arcs of branch points (and
twist points) are illustrated here.



Critical points of the triple point set

The triple point set forms an arc during an
isotopy. Its critical points are optima.



Critical points of the intersection set 1

This move is a Y I-bubble move. The crossing
points between an edge and a transverse sheet are
0-dim’l. A critical point creates or annihilates
such a pair.



Critical points of the intersection set 2

This move is a Y I-saddle move. The crossing
points between an edge and a transverse sheet are
0-dim’l. A critical point creates or annihilates
such a pair.



Critical points of the double point set

The double point set forms a surface in an
isotopy. Its critical points are optima or saddles.



Int. pts. b/2 branch/twist set and trnsvs.
sheet

The branch pt./twist vertex can pass through a
transverse sheet. 1-dim ∩ 3-dim ⊂ 4-dim.



8 interesting moves

<1,2,3,4>

.

<1,2,3><4>

<1><2,3><4>

<1,2><3,4> <1,2><3><4>

<1><2><3,4> <1><2,3,4>
.

.

<1><2><3><4>



Caution

In the slide above, I listed the standard 3-2 move
(compatibility among associators). This is not
strictly a move for 2-foams. But if the foam is
carrying an embedded 4-mfd in S4, then the
move is allowed.



The Y II-move

An edge of the form Y 1 × [0, 1] pass through an
edge of double points. 2-dim ∩ 2-dim ⊂ 4-dim.



Y II , IY I , IIY



The Y Y -move

Two edges (each of the form Y 1 × [0, 1]) pass
through each other.2-dim ∩ 2-dim ⊂ 4-dim.



The Y Y I-move

.

A vertex (at the juncture of the foam Y 2) passes
through a transverse sheet. 1-dim ∩ 3-dim ⊂
4-dim.



The Zamalochikov/Tetrahedral move

A triple point passes through a transverse sheet.



Thanks
That’s my story and I am sticking to it.

Obrigado!

ありがとう
謝謝

�����


