TQFT and semi-classical limit

Laurent Charles

September 17, 2012

3-dimensional quantum invariant

X an oriented closed 3-manifold, $G=\operatorname{SU}(2)$.
Witten's definition:

$$
Z_{k}^{W}(X)=\int_{\Omega^{1}(X, \mathfrak{g})} e^{2 i \pi k \operatorname{CS}_{X}(a)} d a
$$

with $C S_{X}$ the Chern-Simons functional.
Witten (89), Quantum Field theory and the Jones polynomial.

Combinatorial definition:
$Z_{k}^{R T}(X)=\left(\frac{\sqrt{2} \sin (\pi / k)}{k^{1 / 2}}\right)^{n+1} \tau_{k}^{-\operatorname{sgn}\left(A_{L}\right)} \sum_{\ell \in\{1, \ldots, k-1\}^{n}}\left([\ell]!J_{\ell}^{L}\right)_{t=-e^{i \pi / 2 k}}$
if $X=S^{3}(L)$ with $\pi_{0}(L)=\left\{L_{1}, \ldots, L_{n}\right\}$ and

- J_{ℓ}^{L} the colored Jones polynomial
- [$\ell]$! a factorial of quantum integers
- A_{L} the linking matrix and $\tau_{k}=\exp (3 i \pi / 4-3 i \pi / 2 k)$.

Reshetikhin-Turaev (91), Invariants of 3-manifolds via link polynomials and quantum groups.
Blanchet-Habegger-Masbaum-Vogel (95), Quantum field theories derived from the Kauffman bracket

Witten asymptotic conjecture

Let X be an oriented closed 3-manifold. Then

$$
Z_{k}^{W}(X) \sim \sum_{P \in \mathcal{M}(X)} e^{i \frac{\pi}{2} \eta(P)}|\tau(P)|^{\frac{1}{2}} e^{2 i \pi k \operatorname{CS}_{X}(P)}
$$

where

- $\mathcal{M}(X)=\{$ flat G-principal bundle over $X\} / \sim$ and
- $\eta(P)$ and $\tau(P)$ are the eta invariant and the analytic torsion of the flat vector bundle $P \times_{\text {ad }} \mathfrak{g}$.
- $\mathrm{CS}_{X}(P)$ is the Chern-Simons invariant of P.

Question: Has $Z_{k}^{R T}(X)$ this asymptotic behavior ?

Proof of Witten conjecture

- Lens spaces and mapping torus of hyperbolic diffeomorphism of the torus (Jeffrey, 92)
- Seifert manifolds (Rozanski 95-96, Hansen 05)
- Brieskorn homology sphere (Hikami 05)
- Mapping torus of finite order diffeomorphism of surface with genus $\geqslant 2$ (Andersen).
- Mapping torus of diffeomorphism of surface with genus $\geqslant 2$ satisfying a transversality assumption (C 10).

Theorem (Marché-C)

Let X be the manifold obtained by surgery with parameter p / q on the figure eight knot. We assume that p is not divisible by 4 and that for any $\rho \in \mathcal{X}(M), H^{1}\left(M, \operatorname{Ad}_{\rho}\right)=0$. Then

$$
Z_{k}^{R T}(X)=\sum_{\rho \in \mathcal{M}(M)} e^{i \frac{m(\rho) \pi}{4}} k^{n(\rho)} a(\rho) e^{i k \operatorname{CS}(\rho)}+O\left(k^{-1}\right)
$$

where for any $\rho \in \mathcal{M}(X), m(\rho)$ is an integer, $n(\rho)=0,-1 / 2$ or $-3 / 2$ according to ρ is irreducible, no central abelian or central and

$$
a(\rho)=\left\{\begin{array}{l}
2^{-1}(\mathbb{T}(\rho))^{1 / 2} \text { if } \rho \text { is irreducible } \\
2^{-1 / 2}(\mathbb{T}(\rho))^{1 / 2} \text { if } \rho \text { is non-central abelian } \\
2^{1 / 2} \pi / p^{3 / 2} \text { if } \rho \text { is central. }
\end{array}\right.
$$

with $\mathbb{T}(\rho)$ the Reidemeister torsion.

Topological Quantum Field Theory

TQFT with group $S U(2)$ and level $k \in \mathbb{N}^{*}$

- Closed surface $\Sigma^{2} \rightarrow$ Hermitian space $V_{k}(\Sigma)$
- Manifold $M^{3} \rightarrow Z_{k}(M) \in\left\{\begin{array}{l}\mathbb{C} \text { if } \partial M=\emptyset \\ V_{k}(\partial M) \text { otherwise }\end{array}\right.$

If M and N have the same boundary Σ,

$$
Z_{k}\left(M \cup_{\Sigma} N^{-}\right)=\left\langle Z_{k}(M), Z_{k}(N)\right\rangle_{V_{k}(\Sigma)}
$$

Knot state

The state of a knot K in S^{3} is

$$
Z_{k}\left(E_{K}\right) \in V_{k}(\Sigma)
$$

where E_{K} is $\left(S^{3} \backslash\right.$ tubular neighborhood of $\left.K\right)$ and $\Sigma=\partial E_{K}$ is the peripheral torus.

If $X=E_{K} \cup_{\Sigma} N$ with N a solid torus with boundary Σ,

$$
Z_{k}(X)=\left\langle Z_{k}\left(E_{K}\right), Z_{k}(N)\right\rangle_{V_{k}(\Sigma)}
$$

Torus quantization and theta functions

(μ, λ) positive basis of $H_{1}(\Sigma, \mathbb{Z}),(p, q)$ associated linear coordinates, $z=p+\tau q$ complex coordinate.
where $t=e^{2 i \pi(p+\tau q) q}$.
Then $\left(\Psi_{\ell}-\Psi_{-\ell}, 1 \leqslant \ell \leqslant k-1\right)$ is a basis of $\mathcal{H}_{k}^{\text {alt }}$ where

$$
\Psi_{\ell}(z)=\Theta_{k, \tau}\left(z+\frac{\ell}{2 k} \tau\right) e^{2 i \pi\left(\ell z+\tau \frac{\ell^{2}}{4 k}\right)} t^{k}(z)
$$

with

$$
\Theta_{\tau, k}(z)=\sum_{n \in \mathbb{Z}} e^{4 i \pi z k n+2 i \pi n^{2} k \tau}
$$

Knot state norms

Figure: The pointwise norm of the knot state for the trefoil and the figure eight knot at level $k=200$

Knot state asymptotics

Theorem (Marché-C;C)
Let K be the figure eight knot or a torus knot. Then for any $\rho \in \mathcal{M}(\Sigma)$, we have

- if $\rho \notin r\left(\mathcal{M}\left(E_{K}\right)\right), Z_{k}\left(E_{K}\right)(\rho)=\mathcal{O}\left(k^{-\infty}\right)$.
- if $r^{-1}(\rho)=\left\{\rho_{1}, \ldots, \rho_{N}\right\}$ and ρ_{j} is irreductible for any j, then

$$
Z_{k}\left(E_{K}\right)(\rho) \sim k^{3 / 4} \sum_{j=1, \ldots, N} e^{i m_{j} \pi / 4} \frac{\sqrt{\mathbb{T}\left(\rho_{j}\right)}}{4 \pi^{3 / 4}} e^{2 i \pi k \operatorname{CS}\left(\rho_{j}\right)}
$$

where the m_{j} are integers.

- if $r^{-1}(\rho)=\left\{\rho_{0}\right\}$ and ρ_{0} regular abelian, then

$$
Z_{k}\left(E_{K}\right)(\rho) \sim k^{1 / 4} e^{i m \pi / 4} \frac{\sqrt{\mathbb{T}\left(\rho_{0}\right)}}{2^{3 / 2} \pi^{3 / 4}} e^{2 i \pi k \operatorname{CS}\left(\rho_{0}\right)}
$$

q-difference relation, $q=e^{-2 i \pi / k}$

The knot state satisfies:

$$
Q_{k} Z_{k}\left(E_{K}\right)=R_{k} Z_{k}^{0}
$$

where if K is the figure eight knot

$$
\begin{aligned}
Q_{k}= & \left(q^{-1} M^{2}-q M^{-2}\right) L+\left(q M^{2}+q^{-1} M^{-2}\right) L^{-1} \\
& +\left(M^{2}-M^{-2}\right)\left(-M^{4}-M^{-4}+M^{2}+M^{-2}+q^{2}+q^{-2}\right), \\
R_{k}= & \left(M^{5}+M^{-5}+M^{3}+M^{-3}-\left(q^{2}+q^{-2}\right)\left(M+M^{-1}\right)\right)
\end{aligned}
$$

and if K is the torus knot with parameter (a, b)

$$
Q_{k}=\mathrm{id}-\left(q^{-1} M\right)^{-2 a b} L^{-2}, \quad R_{k}=\sum_{i=1}^{4} \epsilon_{i} q^{\epsilon_{i}}\left(q^{-1} M\right)^{-a b+p_{i}}
$$

with $\left(\epsilon_{i}, p_{i}\right)=(1,-a-b),(-1,-a+b),(1, a+b),(-1, a-b)$ for $i=1,2,3,4$.

Bibliography

1. Knot state asymptotics I, AJ Conjecture and abelian representations, arXiv:1107.1645, Marché-C.
2. Knot state asymptotics II, Witten conjecture and irreducible representations, arXiv:1107.1646, Marché-C.
3. Torus knot state asymptotics, arXiv:1107.4692, C.
