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Introduction and Motivation

We start with Witten’s model for Yang-Mills in two dimensions (1988). The action can be written in a way that is only measure

(not metric) dependent:

S[A] = − 1

4q2

ˆ
Σ

Tr(F 2) = − 1

2q2

ˆ
Σ

dµTr(f2)

• Σ is a 2d compact manifold not necessarily orientable. We also assume a principal G-bundle E over it;

• A is a g-valued connection, where g is the Lie algebra of G;

• F is the curvature of A (Ad(E)-valued two-form). One can always write F = ρf , where ρ is a volume form (or density)

and f and Ad(E)-valued function;

• Tr: quadratic form on g.

Note: The explicit original metric dependence can be seen by writing
´

Σ
Tr(F 2) =

´
Σ
dµgikgjlTr(FijFkl) (implicit summation).

Consider now a related action

I[A,B] = −i
ˆ

Σ

Tr(BF )− q2

2

ˆ
Σ

dµTr(B2)

The two actions give rise to the same quantum theory in the sense the ‘volume of the moduli space of flat connections’ or ‘vacuum

expectation value’ is the same:

Z(Σ) =

ˆ
DADBe−i

´
Σ

Tr(BF )− q2

2

´
Σ
dµTr(B2) =

ˆ
DAe

− 1
4q2

´
Σ

Tr(F 2)

Note: Heuristically one obtains the identity by ‘completing the square’ and performing the Gaussian integral over the B field.

The limit q → 0 is BF theory (topological as we know). The purpose of this talk is to highlight possible directions to find

〈O〉 :=

ˆ
DADBO[A,B]e

−i
´
Σ

Tr(BF )

What we know already:

• All such expectation values will be topological invariants;

• We know how to calculate the vacuum expectation value for all compact surfaces.

Note: The nomenclature used for ‘moduli space of flat connections’ is L2(A0/G). Step by step: L2(A) is the Hilbert space of

functions of the connections, L2(A/G) is the gauge invariant subspace; finally, to obtain L2(A0/G) we gauge fix F = 0.
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BF theory in two dimensions

We have two pictures to reconciliate:

• Lattice gauge theory (independent of the lattice chosen);

• the standard TQFT approach.

As previously mentioned L2(A0/G) is the Hilbert space of gauge invariant functions of A, subject to the choice of gauge F = 0.

The inner product can be constructed from the usual Lie group non-degenerate bilinear form (
´
G
ψ̄φ). Lattice gauge theory

provides us with a basis for this space of functions: we take the radical step of replacing the smooth manifold Σ by a topologically

equivalent simplicial complex |K|, a triangulation. Unfortunately, all the topological information of the principal bundle is lost

in this manner and the result is interpreted as ‘averaging over all possible principal G-bundles’. As Fig. 1 tries to depict, we

will associate with each dual edge of the triangulation a parallel transport variable ρba

(
e
´
e1
A
)

= ρba (g) , g ∈ G. These variables

Figure 1: A 1-simplex t of the triangulation together with the dual information

are matrix elements of the irreducible representations of the Gauge group G (ρ labels such a representation). If each vertex is

also given the structure of an intertwiner (details omitted) the networks hence formed will be dense in L2(A0/G). This would

be enough to calculate the vacuum expectation value in the world of lattice gauge theory, via

Z(Σ) =
∑
i∈I

dim i∑
a,b,c=1

∏
triangles t

ˆ
G

(ρi)a
b(g)(ρi)b

c(h)(ρi)c
a(l), ghl = 1G

and by imposing triangulation independence. As a physicist I like this formula because it resembles the original functional

integral:

Z(Σ) =

ˆ
DADBe−i

´
Σ

Tr(BF ) =

ˆ
DAδ(F ).

However, my mathematician half has some reservations towards using it, since we have all the technology of TQFTs at our

disposal. Recall TQFTs in two dimensions require the association of circles with vector spaces, cobordisms with linear maps, a

tensor product etc. In fact, because of the product requirement, what we really need is a special associative algebra A: one that

comes with a non-degenerate linear map ε : A→ k.

TQFT’s in its full realization allow for too much generality (nilpotent algebras). As can be seen in the work by Fukuma,

Hosono and Kawai we need the algebra to be symmetric and separable (semi-simple in most cases). This will underly our TQFT

from lattice gauge theory. For the example at hand, the algebra we are interested is the group algebra. To see this we would

note that the matrix elements of representations in Irr(G) (a set dense in L2(A0/G)) is also dense in C[G]. The most natural

candidate might then seem to be C[G] (with evaluation at the identity as its linear functional), but it turns out we really need

R[G]. This comes from the treatment of non-orientable surfaces (as explored by Karimipour and Mostafazadeh). It requires

additional structure: a ?-operation (an anti-homomorphism that is an involution). In the case at hand, this ? would be the linear

extension of the inverse map of G, that forces us to take the algebra to be R[G]. The volume of moduli space of flat connections

would be given by ∑
i∈I

fi(dim i)χΣ , (1)
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with fi given by −1, 0 or 1 if the representation labelled by i is of quaternionic, complex or real type.

TQFTs with defects

Expression (1) is also the one we would obtain from lattice gauge theory calculations. Then what is the advantage of using the

TQFT formalism? The answer is its power: we know how to treat (finite) surfaces with boundary. In particular, take a look at

the cylinder map depicted in Fig. 2a. One can conclude that it is an operator (linear map) A → A. In fact, we can write with

no loss of generality ZA → ZA because it is a surjective projection onto ZA. When we look at our case of interest, A = R[G]

we can in fact conclude it is an operator that preserves gauge invariance! A loop variable g is invariant under the adjoint action

UgU−1, U ∈ G and at ZR[G] lie exactly the functions satisfying f(g) = f(UgU−1). The interesting part is that there are many

(a) Cylinder ‘bare’ map (b) ’Loop’ operator (c) ‘Theta’ operator

Figure 2: Several possible ‘gauge invariant’ operators associated with a cylinder

more operators yet to be given a physical interpretation. A whole panoply has been introduced by Davydov, Kong and Runkel

(2011) (Fig. 2b and 2c). To each directed defect line we associate an algebra bimodule. In lattice gauge theory, the axioms of a

bimodule appear from the topological restrictions exactly as the separable Frobenius algebra appears for the bare theory. The

vertices (see Fig. 3) are again associated with intertwiner maps now from a (cyclic invariant) tensor product of bimodules to the

underlying field (these are isomorphisms in several important cases).

Figure 3: An example of a defect intertwiner

Remark to the categorical inclined minds

TQFT’s with defects (at least from lattice gauge theory) form a monoidal bicategory (with duals), known as Bim (objects

are separable Frobenius k-algebras A,B, morphisms are bimodules AXB , ...). The spaces of cyclic invariant tensor products can

be obtained using the “round trace” defined by Willerton in analogy with the usual trace of monoidal categories (with duals).

The invariant subspaces correspond to the first Hochschild homology class HH0(A,X). Something remarkable happens for sep-

arable Frobenius algebras: the invariants HH0(A,X) and HH0(A,X) match (this is directly related to the fact the sub-vector

space A/[A,A] is in fact isomorphic to the ideal Z(A)). This means they are also given by the “diagonal trace” discovered

independently by Ganter, Kapranov ’07 and Willerton and defined for any 2-category (and that is conjugation invariant). This

seems to point towards an equivalence of the two traces, in certain bicategories, yet to be found.

Example (constrained BF theory)

I would like to end my talk with something more palpable, with a little help from Yang-Mills à la Witten. Consider the following

vacuum expectation value:

Z̃(Σ) =

ˆ
DADBDλe−

q2

2

´
Σ
λ(Tr(B2)−iR2)−i

´
Σ

Tr(BF ).
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We can reinterpret it has

〈O〉 =

ˆ
DADBO[B]e−i

´
Σ

Tr(BF ), O[B] =

ˆ
Dλe−

q2

2

´
Σ
λ(Tr(B2)−iR2)

We have been able to conclude Z̃(Σ) = fı(dim ı)χΣ if iR2 = c2(ı) or zero otherwise; it was then not difficult to find the coun-

terpart of O as a topological defect. It is a loop as in Fig. 2b associated to the representation labeled by ı regarded as an R[G]

bimodule.

The expressions for operators associated to BF theory regarded as topological defects have been found. By construction they

are all topological invariants and in the next months it is our goal to find their counterpart in terms of operators O[A,B] of

quantum field theory.
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