

super-A-polynomial

#### Sergei Gukov

based on: hep-th/0306165 (generalized volume conjecture) with T.Dimofte, arXiv:1003.4808 (review/survey) with H.Fuji and P.Sulkowski, arXiv:1203.2182 (new!)

## Kashaev's observation

[R. Kashaev, 1996]



knot K

invariant  $\langle K \rangle_n \in \mathbb{C}$ labeled by a positive integer n

- defined via R-matrix
- very hard to compute

 $\lim_{n \to \infty} \frac{1}{n} \log \langle \mathbf{K} \rangle_{\mathbf{n}} = \operatorname{Vol} (\mathbf{S}^3 \setminus \mathbf{K})$ 

("volume conjecture")

## A first step to understanding the Volume Conjecture

 $\langle K \rangle_n = J_n(q)$  colored Jones polynomial with  $q = exp(2\pi i/n)$ 



Hitoshi Murakami



Jun Murakami (1999)

 $J_2(q) = J(q) = J$ ones polynomial

• In Chern-Simons gauge theory [E.Witten]

Wilson loop operator



 $J_2(q) = J(q) = J$ ones polynomial

Skein relations:

$$q^{2} \operatorname{J}(\mathbb{N}) - q^{2} \operatorname{J}(\mathbb{N}) = (q^{-1} - q) \cdot \operatorname{J}(\mathbb{N})$$
$$\operatorname{J}(\operatorname{unknot}) = q^{-1} + q$$

#### Example:

$$\exists \left( \textcircled{O} \right) = q + q^3 + q^5 - q^9$$

n-colored Jones polynomial:

 $J_n(K;q) \in \mathbb{Z}[q,q^*]$ R = n-dimn'l representation of SU(2)

"Cabling formula":

knot K

$$J_{\oplus_i R_i}(K;q) = \sum_i J_{R_i}(K;q)$$
$$J_R(K^n;q) = J_{R^{\otimes n}}(K;q),$$

knot K

n-colored Jones polynomial:

••••

 $\mathbf{J}_{\mathbf{n}}(\mathbf{K};\mathbf{q}) \in \mathbb{Z}[q,q^{-1}]$ 

R = n-dimn'l representation of SU(2)

 $J_1(K;q) = 1,$   $J_2(K;q) = J(K;q),$   $\mathbf{2}^{\otimes 2} = \mathbf{1} \oplus \mathbf{3} \implies J_3(K;q) = J(K^2;q) - 1,$  $\mathbf{2}^{\otimes 3} = \mathbf{2} \oplus \mathbf{2} \oplus \mathbf{4} \implies J_4(K;q) = J(K^3;q) - 2J(K;q)$ 

# Volume Conjecture

<u>Murakami & Murakami:</u>

$$\langle \mathbf{K} \rangle_{\mathbf{n}} = J_n(K; q = e^{2\pi i/n})$$

$$\lim_{n \to \infty} \frac{2\pi \log |J_n(K; q = e^{2\pi i/n})|}{n} = \operatorname{Vol}(M)$$

quantum group invariants  $\leftarrow \rightarrow$  classical hyperbolic (combinatorics, geometry representation theory)





#### Physical interpretation of the Volume Conjecture [5.G., 2003]

• analytic continuation of SU(2) is  $SL(2,\mathbb{C})$ 

$$\lim_{n \to \infty} \frac{2\pi \log |J_n(K; q = e^{2\pi i/n})|}{n} = \operatorname{Vol}(M)$$

• classical  $SL(2,\mathbb{C})$  Chern-Simons theory = classical 3d gravity (hyperbolic geometry)



#### Physical interpretation of the Volume Conjecture [5.G., 2003]

constant negative curvature metric on M

$$R_{ij} = -2g_{ij}$$

 $\longleftrightarrow \text{ flat } SL(2,\mathbb{C}) \text{ connection} \\ \text{on } M = S^3 \setminus K$ 

$$d\mathcal{A} + \mathcal{A} \wedge \mathcal{A} = 0$$

• classical  $SL(2,\mathbb{C})$  Chern-Simons theory = classical 3d gravity (hyperbolic geometry)



# Physical interpretation of the Volume Conjecture

constant negative curvature metric on M

$$R_{ij} = -2g_{ij}$$

classical solution in 3D gravity with negative cosmological constant (  $\Lambda = -1$  )

 $\rightarrow flat SL(2, \mathbb{C}) eonnection \\ on M = 5^3 \setminus K$ 

$$d\mathcal{A} + \mathcal{A} \wedge \mathcal{A} = 0$$

classical solution in CS gauge theory

#### Example: unknot = BTZ black hole

K = unknot 📂 M = solid torus



 $\mathbf{2}$ 

#### Euclidean BTZ black hole:

$$ds^{2} = N^{2}d\tau^{2} + N^{-2}dr^{2} + r^{2}\left(d\phi^{2} + N^{\phi}d\tau\right)$$
$$N = \sqrt{r^{2} - M - \frac{J^{2}}{4r^{2}}} \quad , \quad N^{\phi} = -\frac{J}{2r^{2}}$$
$$r_{\pm}^{2} = \frac{M}{2}\left[1 \pm \sqrt{1 + \left(\frac{J}{M}\right)^{2}}\right]$$



## Physical interpretation of the Volume Conjecture

<u>Generalization 1:</u> 't Hooft limit:

 $q = e^{\hbar} \to 1, \qquad n \to \infty, \qquad q^n = e^u \equiv x \quad \text{(fixed)}$ 

$$J_n(K; q = e^{\hbar}) \stackrel{n \to \infty}{\sim} \exp\left(\frac{1}{\hbar}S_0(u) + \ldots\right)$$



partition function of  $SL(2,\mathbb{C})$  Chern-Simons theory

## Generalized Volume Conjecture

 $S_0(u)$  = classical action of SL(2,C) Chern-Simons theory

 $\mathcal{M}_{\mathrm{flat}}(G_{\mathbb{C}}, M): \text{ space of solutions} \\ d\mathcal{A} + \mathcal{A} \wedge \mathcal{A} = 0 \text{ on } S^3 \setminus K$ 

 $\mathcal{C}: \quad \left\{ (x,y) \in \mathbb{C}^* \times \mathbb{C}^* \middle| \underline{A(x,y)} = 0 \right\}$ 

### Algebraic curves and knots

$$S_0(u) = \int v du = \int \log y \frac{dx}{x}$$





#### Physical interpretation of the Volume Conjecture [5.G., 2003]



### Quantum Volume Conjecture

using 
$$x \equiv e^u = q^n = \text{fixed}$$
 [S.G., 2003]

we can write this recursion relation as:

$$\widehat{A} J_*(K;q) \simeq 0$$

where  $\widehat{A}(\widehat{x},\widehat{y};q) = \alpha \widehat{y}^{-1} + \beta + \gamma \widehat{y}$ 

$$\widehat{x}J_n = q^n J_n$$

$$\widehat{y}J_n = J_{n+1}$$

so that

 $\widehat{y}\widehat{x} = q\widehat{x}\widehat{y}$ 

# Quantum Volume Conjecture

[S.G., 2003]

• In the classical limit  $q \rightarrow 1$  the operator  $\widehat{A}(\widehat{x}, \widehat{y}; q)$  becomes A(x, y) and the way it comes about is that

$$\begin{array}{rcl} x, y & \longrightarrow & \widehat{x}, \, \widehat{y} \\ A(x, y) &= & 0 & \longrightarrow & \widehat{A}(\widehat{x}, \widehat{y}) \, Z_{\mathrm{CS}}(M) \, = \, 0 \end{array}$$

 in the mathematical literature was independently proposed around the same time, and is know as the AJ-conjecture

[S.Garoufalidis, 2003]

 $\begin{aligned} & \text{Quantization and B-model} \\ & \log T(u) = \lim_{u_1 \to u_2 = u} \int \left( \frac{du_1 du_2}{(u_1 - u_2)^2} - B(u_1, u_2) \right) & \text{Bergman} \\ & \text{kernel} \end{aligned}$ 

simple formula that turns classical curves
 A(x,y) = 0 into quantum operators



$$\begin{array}{rcl} x, y & & & & & & \\ A(x,y) &= & 0 & & & \\ \widehat{A}(\widehat{x},\widehat{y};q) &= & & & \\ \widehat{A}(\widehat{x},\widehat{y};q) &= & & \\ \sum_{m,n} a_{m,n} \oint^{\mathbb{C}_{m,n}} \widehat{x}^m \, \widehat{y}^n \end{array}$$

## Quantization and B-model

[B.Eynard, N.Orantin] [V.Bouchard, A.Klemm, M.Marino, S.Pasquetti] [A.S.Alexandrov, A.Mironov, A.Morozov] [R.Dijkgraaf, H.Fuji, M.Manabe] P<sub>N/J</sub>  $+ \sum$ = J.m g-m m g-1 g x(p) and y(p)  $W^g_{r}$ Ζ  $\checkmark$ (recall:  $\hat{A}(\hat{x},\hat{y}) Z(\mathbf{M}) = 0$ )

# Classical A-polynomial

[D.Cooper, M.Culler, H.Gillet, D.Long, P.B.Shalen]



Consider, for a example, a knot complement:





$$\rho(\gamma_l) = \begin{pmatrix} y & * \\ 0 & y^{-1} \end{pmatrix}, \quad \rho(\gamma_m) = \begin{pmatrix} x & * \\ 0 & x^{-1} \end{pmatrix}$$
$$\pi_1 = \langle a, b \mid a \ b \ a = b \ a \ b \rangle$$
$$\begin{pmatrix} m = a \\ \ell = b \ a^2 b \ a^{-4} \end{pmatrix} \longrightarrow A(x, y) = (y - 1)(y + x^3)$$

# Properties of the A-polynomial $H_1(M) \cong \mathbb{Z}$ for any knot complement $A(x,y) = (y-1) (\dots)$ Abelian non-Abelian representations representations

- If K is a hyperbolic knot, then  $A(x,y) \neq y-1$ .
- If K is a knot in a homology sphere, then the A-polynomial involves only even powers of X.

# Properties of the A-polynomial

• A-polynomial can distinguish mirror knots:



- If K is a hyperbolic knot, then  $A(x,y) \neq y-1$ .
- If K is a knot in a homology sphere, then the A-polynomial involves only even powers of X.

# Properties of the A-polynomial

• A-polynomial can distinguish mirror knots:



• The A-polynomial is reciprocal:

 $A(x,y) \sim A(x^{-1},y^{-1})$ 

• The A-polynomial has integer coefficients

# Properties of the A-polynomial

• The A-polynomial is tempered, *i.e.* the faces of the Newton polygon of A(x,y) define cyclotomic polynomials in one variable:



• The slopes of the sides of the Newton polygon of A(x,y) are boundary slopes of incompressible surfaces in M.

# Connection to Physics

[S.G., 2003]

- Explains known facts and leads to many new ones:
  - the A-polynomial curve should be viewed as a holomorphic Lagrangian submanifold (as opposed to a complex equation)
  - its quantization with symplectic form  $\frac{dy}{y} \wedge \frac{dx}{x}$ leads to an interesting wave function
  - has all the attributes to be an analog of the Seiberg-Witten curve for knots and 3-manifolds





## Connection to Physics

[S.G., 2003]

• For any closed cycle:

$$\oint_{\Gamma} \log y \frac{dx}{x} \in 2\pi^2 \cdot \mathbb{Q}$$

 Has an elegant interpretation in terms of algebraic K-theory and the Bloch group of Q



[S.G., P.Sulkowski]

$$\mathcal{C}$$
 is quantizable  $\longleftrightarrow \{x, y\} \in K_2(\mathbb{C}(\mathcal{C}))$   
is a torsion class

## Connection to Physics

• For any closed cycle:

$$\oint_{\Gamma} \log y \frac{dx}{x} \in 2\pi^2 \cdot \mathbb{Q}$$

Example:

$$A(x,y) = 1 - (x^{-4} - x^{-2} - 2 - x^{2} + x^{4})y + y^{2}$$



 $B(x,y) = 1 - (x^{-6} - x^{-2} - 2 - x^{2} + x^{6})y + y^{2}$ 

Has all the symmetries, but is NOT A-polynomial of any knot

### Lessons

- A-polynomial as a limit shape (in large color limit)
- A-polynomial as a characteristic variety for recursion relations / q-difference equations
- Can be categorified to a homological volume conjecture!



w/ H.Fuji, P.Sulkowski

|                           | Quant                                 | rization Cond. K.        |       |
|---------------------------|---------------------------------------|--------------------------|-------|
| ALL DO                    | a a a a a a a a a a a a a a a a a a a | in (Geem. Larglands pro- |       |
|                           |                                       | tagt et sur.             | 200   |
| Aller                     | S                                     | line                     |       |
| Contraction of the second | 1                                     |                          | "Hand |
| 6                         | A                                     |                          | ans.  |
|                           |                                       | (                        | ERI   |
|                           |                                       |                          |       |

## Refinement / Categorification

|                                                   | <u>Algebraic curve</u>                                 | Refinement                                        |
|---------------------------------------------------|--------------------------------------------------------|---------------------------------------------------|
| Knots / SL(2,C) CS                                | A-polynomial                                           | Homological<br>invariants<br>P <sub>n</sub> (q,t) |
| Matrix models                                     | spectral curve                                         | $\beta$ -deformation                              |
| 4d gauge theories<br>3d superconformal<br>indices | Seiberg-Witten curve<br>A-polynomial                   | refinement<br>$t = -\frac{q_1}{q_2}$              |
| Topological strings<br>(B-model)                  | mirror Calabi-Yau<br>geometry <mark>A(x,y) = zw</mark> |                                                   |

### Deformation vs Quantization



## Knot Homologies

Khovanov homology: H<sup>kh</sup><sub>i,j</sub>(K)

$$J(q) = \sum_{i,j} (-1)^{i} q^{j} \dim H_{i,j}^{kh}(K)$$







### (Large) Color Behavior of Knot Homologies

- similarly,  $\mathcal{H}^{sl(2),V_n}(K)$  is the n-colored sl(2) knot homology:

$$P_n(K;q,t) = \sum_{i,j} q^i t^j \dim \mathcal{H}^{sl(2),V_n}_{i,j}(K)$$

categorify n-colored Jones polynomials:

$$J_n(K;q) = P_n(K;q,t=-1)$$

## (Large) Color Behavior of Knot Homologies

- similarly,  $\mathcal{H}^{sl(2),V_n}(K)$  is the n-colored sl(2) knot homology:

$$P_n(K;q,t) = \sum_{i,j} q^i t^j \dim \mathcal{H}^{sl(2),V_n}_{i,j}(K)$$

- satisfy recursion relations
- exhibit beautiful large-n asymptotic behavior

Both controlled by a "refined" algebraic curve

## Refinement / Categorification

Generalized Volume Conjecture: [S.G., H.Fuji, P.Sulkowski]

 $q = e^{\hbar} \to 1$ , t = fixed,  $x \equiv e^u = q^n = \text{fixed}$ 

$$P_n \simeq \exp\left(\frac{1}{\hbar}S_0(u,t) + \sum_{n=0}^{\infty}S_{n+1}(u,t)\hbar^n\right)$$

where 
$$S_0(u(t)) = \int v du = \int \log y \frac{dx}{x}$$
  
 $\mathcal{C}^{\text{ref}}: \{(x,y) \in \mathbb{C}^* \times \mathbb{C}^* | A^{\text{ref}}(x,y(t)) = 0\}$ 

## Refined Algebraic Curves

**Example:**  $A(x, y) = (y - 1)(y + x^3)$ refinement:

 $A^{\text{ref}}(x,y;t) = y^2 - \frac{1 - xt^2 + x^3t^5 + x^4t^6 + 2x^2t^2(t+1)}{1 + xt^3}y + \frac{(x-1)x^3t^4}{1 + xt^3}$ 

where 
$$S_0(u(t)) = \int v du = \int \log y \frac{dx}{x}$$
  
 $\mathcal{C}^{\text{ref}}: \{(x,y) \in \mathbb{C}^* \times \mathbb{C}^* | A^{\text{ref}}(x,y(t)) = 0\}$ 

## Refinement / Categorification

<u>Quantum Volume Conjecture:</u>

[S.G., H.Fuji, P.Sulkowski]

$$\widehat{A}^{\mathrm{ref}}(\widehat{x},\widehat{y};q,t) P_*(K;q,t) \simeq 0$$

**Example:** 
$$\alpha P_{n-1} + \beta P_n + \gamma P_{n+1} = 0$$

$$\begin{split} \alpha &= \frac{x^3(x-q)t^4}{q(q+x^2t^3)(1+xqt^3)} \,, \\ \beta &= -\frac{t^2x^2}{1+x^2qt^3} - \frac{q-xqt^2+x^4t^6+x^2t^2(1+t+qt)}{(q+x^2t^3)(1+xqt^3)} \\ \gamma &= \frac{1}{q+x^2q^2t^3} \,. \end{split}$$

## Refinement / Categorification

<u>Quantum Volume Conjecture:</u>

[S.G., H.Fuji, P.Sulkowski]

$$\widehat{A}^{\mathrm{ref}}(\widehat{x},\widehat{y};q,t) P_*(K;q,t) \simeq 0$$

$$\begin{split} \underline{\mathsf{Example:}} & \widehat{A}^{\mathrm{ref}}(\widehat{x}, \widehat{y}; q, t) = \alpha \widehat{y}^{-1} + \beta + \gamma \widehat{y} \\ \alpha &= \frac{x^3 (x - q) t^4}{q (q + x^2 t^3) (1 + x q t^3)}, \\ \beta &= -\frac{t^2 x^2}{1 + x^2 q t^3} - \frac{q - x q t^2 + x^4 t^6 + x^2 t^2 (1 + t + q t)}{(q + x^2 t^3) (1 + x q t^3)} \\ \gamma &= \frac{1}{q + x^2 q^2 t^3}. \end{split}$$

## Deformation vs Quantization



